Phase II Environmental Site Assessment Historic Waste Disposal Site Red Deer Motors The City of Red Deer

Prepared For: The City of Red Deer

Prepared By: Tiamat Environmental Consultants Ltd.

Date: February 26, 2014

File: 12-435

EXECUTIVE SUMMARY

On behalf of The City of Red Deer, Tiamat Environmental Consultants Ltd. (Tiamat) presents this Phase II Environmental Site Assessment for a historic waste disposal site designated as the Red Deer Motors Site.

This historic waste material (site) lies within the neighbourhood of South Hill. The site is currently zoned A2 – Environmental Preservation (Land Use Bylaw 3357/2006). The objective of this ESA is to assess the environmental quality of the subsurface soil and groundwater underlying the site. This report presents the scope of work, a summary of the results and our professional opinion respecting the environmental quality of the site.

The key results of this ESA are as follow:

- Surrounding land uses include hotels, automotive related businesses and a college. There are no obvious activities which pose a high potential to adversely impact the site from activities on adjacent developments.
- The interpreted plan area of the historic waste is estimated to be 11,180 m² (2.76 ac), more or less with a maximum observed depth of 4.6 m (15 feet). Subsurface soil contaminated by petroleum hydrocarbons was encountered in the northwest quadrant of the site to a depth of 5.2 m (17 feet) below the ground surface. The waste and contaminated soil extend beyond the subdivided lot onto a portion of the 32 Street right-of-way, refer to Figure 2.
- Groundwater quality testing shows impact to the local groundwater with a potential for the contaminated groundwater to connect to Waskasoo Creek.
- Soil vapour samples from three soil vapour wells indicate three broad groups of VOCs, aliphatic and aromatic hydrocarbons and siloxanes. The relative concentrations are considered to be low to mild and may potentially create an adverse level of exposure to deep utilities (sanitary and storm sewers). The measured soil vapours are not at a level that is considered to be an environmental concern to the adjacent land uses.

The concerns for environmental and human health hazards stemming from the proximity of this historic waste site will persist for the foreseeable future. The potential to adversely impact future development is viewed to be limited and manageable.

Any use of the local groundwater may create an emission or potential exposure to various VOC compounds resulting from VOCs degassing from the extracted groundwater. Accordingly, local groundwater should not be used for either human consumption or for any other purposes.

To better understand the off-site environmental risks associated with this historic waste disposal site, several recommendations are presented in this report.

TABLE OF CONTENTS

Execut	tive Sur	nmary	i
1.0	Introdu	uction	1
	1.1	Scope of Work	1
2.0	Site D	escription & Environmental Setting	2
	2.1	Site Description and Environmental Setting	2
	2.2	Notable Environmental Conditions for Special Consideration	3
	2.3	Regional Geology and Hydrogeology	4
	2.4	Previous Investigations and Historic Perspective	4
3.0	Fieldw	ork	5
	3.1	Underground Line Locates and Testhole Drilling	6
	3.2	Site Monitoring and Groundwater Sampling	7
4.0	Result	s	7
	4.1	Soil Profile	8
	4.2	Groundwater Conditions	8
	4.3	Headspace Vapours	9
5.0	Summ	ary of Assessment	9
	5.1	Quality of Subsurface Soil	9
	5.2	Quality of Local Groundwater	10
	5.3	Interpretation of Soil Vapours	11
6.0	Conclu	usions and Recommendations	
7.0		nent of Limitations	
8.0	Closur	re	16
Refere	ences		17
Table		Soil Vapour and Groundwater Monitoring Well Elevations	
Table 2		Site Monitoring Results – Existing Test Locations Installed by Oth	iers
Table 2		Site Monitoring Results – Newly Installed Test Locations	
Table :		Analytical Results – Soil – Drill Cuttings (Soil Bag) Analytical Results – Soil – General Indices and Heavy Metals	
Table :		Analytical Results – Soil – General Indices and Heavy Metals Analytical Results – Soil – VOCs	
Table 4		Groundwater Indices Measured at Time of Sampling	
Table 4		Analytical Results – Groundwater – General Water Quality	
Table 4	4B	Analytical Results – Groundwater – General Water Quality	

12-435

Phase II ESA – Red Deer Motors Site Historic Waste Disposal Sites, The City of Red Deer

TABLE OF CONTENTS Continued...

Table 4C	Analytical Results – Groundwater – Metals
Table 4D	Analytical Results – Groundwater – VOCs
Table 5A	Summary of Parameters Measured During Sampling of Soil Vapour
Table 5B	Analytical Results – Soil Vapour – General Indices
Table 5C	Analytical Results – Soil Vapour – VOCs
Table 5D	Analytical Results – Soil Vapour – Siloxanes
Figure 1	Site Plan Showing Surrounding Land Use
Figure 2	Phase II ESA Test Locations and Interpreted Extent of Waste
Figure 3	Cross Sections A-A' and B-B'
Appendix A	Field Protocols and Analytical Data, ASCM Information and
	Laboratory Reports
Appendix B	Testhole Logs
Appendix C	Select Photographs

Page iii

1.0 INTRODUCTION

On behalf of The City of Red Deer, Tiamat Environmental Consultants Ltd. (Tiamat) presents this Phase II Environmental Site Assessment (ESA) report for a historic waste disposal site designated as the Red Deer Motors Site.

The objectives of this Phase II ESA are to consolidate results from previous investigations by others and to characterize the composition of the leachate and the subsurface plume of soil vapour sourced from the historic waste material. This report presents the scope of work, a summary of the results and our professional opinion respecting the subsurface environmental conditions associated with the historic waste materials. This report is intended to complement the Phase I ESA dated September 24, 2013.

1.1 Scope of Work

A summary of the key tasks for this Phase II ESA are outlined below:

Fieldwork

- Identify and locate underground utilities within the work areas on the site;
- Supervise the drilling of testholes (THs) located within the legal property lines of the site;
- Collect the soil samples for laboratory analyses of benzene, toluene, ethylbenzene, xylenes (BTEX), petroleum hydrocarbon fractions F1 (C₆-C₁₀), F2 (>C₁₀-C₁₆), F3 (>C₁₆-C₃₄), F4 (>C₃₄), EPA 8260 list of volatile organic compounds (VOCs), metals, chlorides (Cl⁻) and nitrates/nitrites (NO₃⁻/NO₂⁻);
- Screen the soil cuttings to determine the feasibility to dispose of drill cuttings at a Class II landfill facility. Acceptance parameters for disposal include laboratory analyses of pH, soil flash point, paint filter, total organic carbon (TOC) and TCLP assay for BTEX compounds and metals;
- Each TH is completed with either a groundwater (MW) or vapour (VW) monitoring well or backfilled and abandoned;
- Collect groundwater samples for laboratory analyses of BTEX, hydrocarbon fractions F1, F2, VOCs, total and dissolved metals, Cl⁻, sulfate (SO₄), ammonium (NH₄-N), phosphorus (P), TOC, chemical oxygen demand (COD), biochemical oxygen demand (BOD), NO₃⁻/NO₂⁻, total nitrogen (N), pH, electrical conductivity (EC), adsorbable organic halides (AOXs) and volatile fatty acids;

- Collect vapour samples for laboratory analyses of VOCs, oxygen (O₂), carbon monoxide (CO), carbon dioxide (CO₂), methane (CH₄), nitrogen (N), volatile hydrocarbons and siloxanes or volatile organic silicon compounds (VOSCs);
- Survey each test location for horizontal and vertical control relative to an established ASCM (Alberta Survey Control Marker) datum within The City of Red Deer.

Report

• Prepare a report summarising the results including figures, tabulated data and our interpretation of the subsurface environmental conditions resulting from the historic waste disposal site.

2.0 SITE DESCRIPTION & ENVIRONMENTAL SETTING

This section provides general information of the site including a brief description of the location, surrounding land use(s), regional geology, hydrogeology and notable environmental conditions specific to the site.

2.1 Site Description and Environmental Setting

The historic waste material (site) lies within the neighbourhood of South Hill with a legal description, Lot 3MR Block 2 Plan 842 2279 and lies within the SE 08-38-27 W4M. The site is currently zoned A2 – Environmental Preservation (Land Use Bylaw 3357/2006). The site is bounded on the north and west by 32 Street and Taylor Drive, respectively. Surrounding land uses include hotels, automotive related businesses and a college.

Presently, the site is vacant and undeveloped. The City Parks Department maintains the grassy field at the site. The site reflects a wedge-shaped configuration and tapers to a point at the south end. Overhead electrical lines cross the site in an east-west orientation in the central section of the site. Two groundwater wells, previously installed by Alberta Environment, are present near the east boundary of the site. Growth of bushes and trees envelop both monitoring wells. The nearest residential housing is north of 32 Street and the Community of West Park is to the northwest. A site plan showing the surrounding land uses is presented as Figure 1.

Waskasoo Creek bounds the west perimeter of the site, flowing north parallel to the east side of Taylor Drive. The creek meanders for about 5.7 km, more or less to a confluence at the Red Deer River. The Red Deer River is approximately 1.7 km north of the site.

The West Park Community and Area Redevelopment Plan (ARP), Bylaw 3488/2013, describes extensive improvements and upgrades intended to be implemented in the community. The ARP acknowledges the 300 m setback to potentially restrict any

redevelopment in the southeast portion of the community. This historic waste site will potentially affect land uses for single and multi-family residential developments, food services, park space and municipal infrastructure (road and utilities).

A review of historical information indicates the historic waste disposal activity was conducted with agreement between the provincial regulatory authorities and The City of Red Deer, refer to the September 24, 2013 Phase I ESA.

2.2 Notable Environmental Conditions for Special Consideration

Within the immediate area of the historic waste there is no noted direction of principal overland flow or surface run-off control measures. There are no obvious environmental concerns for surface water run-off or run-on throughout this area. This area is mapped outside of the 100-year flood fringe (Environment Canada and Alberta Environmental Protection, Edition 1, 1995). Following the recent severe June 2013 flood event, it is recognized the flood fringe may be updated following a review by the provincial authority.

A buried electrical cable runs parallel to the south curb of 32 Street and bounds the north side of the site. A storm sewer traverses near the south end of the site with an outfall into Waskasoo Creek. The relative locations of the underground municipal utilities are shown on Figure 1.

Currently, with the exception of Waskasoo Creek, there are no other environmental conditions associated with the site requiring special consideration.

Potential environmental concerns arising from the historic waste site are grouped into three broad categories:

- Ground stability issue where the historic waste lies;
- Continual generation of soil vapour from the decomposing waste materials; and
- Lateral transport of groundwater, which passes through the waste material and potentially discharges to Waskasoo Creek and ultimately into the Red Deer River.

Several geochemical processes and physical settlement occurs as the buried historic waste materials decompose. There is visual evidence the soil cover for the historic waste has settled in an irregular manner. The grass and underlying loam lies in an uneven mat across areas underlain by the historic waste. Site observations indicate differential settlement has occurred and is indicative of the instability of the ground surface overlying the historic waste.

As surface infiltration percolates through the historic waste materials and contacts the groundwater table, leachate is formed. This leachate is a potentially polluting liquid that can adversely affect the environmental quality of the local groundwater system. A potential exists for impacted groundwater to discharge into Waskasoo Creek.

Landfill gas is a by-product of a geochemical process associated with the decomposing waste materials. The soil vapours comprising of constituents from landfill gas can migrate in the subsurface. The geochemical process also yields soluble hydrocarbons to the groundwater system with some volatile components capable of degassing into the soil vapour regime.

Elements of testing in this Phase II ESA are to confirm the extents of the historic waste and an initial assessment of the subsurface conditions for soil vapour and leachate associated with this historic waste site.

2.3 Regional Geology and Hydrogeology

Waskasoo Creek and the Red Deer River are situated west and north of the historic waste site, respectively. The site and immediate area are interpreted to lie within a zone of groundwater recharge with a downward component of flow. Ground topography suggests the groundwater would trend to the north-northwest.

A summary of the published geological and hydrogeological information is presented in the September 24, 2013 Phase I ESA report.

2.4 Previous Investigations & Historic Perspective

Prior to this Phase II ESA, previous environmental assessments for the site include:

- Summary Report Former City Landfill, Red Deer Motors Site, Part of SE 8-38-27-W4M, March 2007. Prepared by Stantec Consulting Ltd. and Parkland Geotechnical Consulting Limited.
- Phase I Environmental Site Assessment, Historic Waste Disposal Sites, Red Deer Motors Site, September 24, 2013, prepared by Tiamat.

The March 2007 Summary Report was provided to Tiamat by The City of Red Deer. The report was perused and discussed in the Phase I ESA report (Tiamat, 2013).

The historic waste disposal activity at the site occurred over a period of about three years, beginning in 1968. Documentation indicates conflicting information regarding the estimated footprint of the landfill and when the waste disposal activity ceased.

The key results of the 2013 Phase I ESA are as follows:

- Historical records indicate the present configuration of the site has been largely unchanged since the original plan of subdivision in March 1968. The lot designation has been amended on several occasions. Currently, the site is zoned as a municipal reserve.
- Historic information suggests the past disposal of municipal (sanitary) waste materials started in 1968. There was conflicting information concerning when the disposal of waste was terminated. A plausible termination of the waste disposal at the site may have coincided with the start of waste disposal at the Red Deer College land on or about 1970.
- There was no confirming information concerning the placement of commercial and/or mixed industrial waste at the site.
- Anecdotal information suggests some burial of construction waste (concrete rubble, asphalt, rebar and timber) may have been placed along a portion of the elevated plateau bounding the east margin of the site.
- Records from regulatory agencies do not indicate any outstanding environmental
 concern on the site. Other than basic landscaping and an overhead electrical line,
 there were no noted activities or structures on this site.
- Commercial properties are located north of the site, across 32 Street and bounding the south and east margins. The commercial activities east of the site are on an elevated plateau. The campus of the Red Deer College is west of the site, across Taylor Drive. There are presently no obvious activities on the adjacent lands that are interpreted as an environmental concern relative to the site.

The findings of the 2013 Phase I ESA identify several uncertainties associated with this historic waste disposal site. In consultation with the Management of The City of Red Deer, a Phase II ESA was developed to further characterize the leachate and soil vapour relative to the present urban developments and land uses. It is understood this information would assist the City with the future management of environmental risks which are associated with this historic waste disposal site.

3.0 FIELDWORK

This section describes the fieldwork for this Phase II ESA. A description of the field methods and data quality assurance implemented by Tiamat for this Phase II ESA is provided in Appendix A. Testhole logs from the drilling program are provided in Appendix B. Select photographs of the testholes and monitoring wells are presented in Appendix C.

Page 5

Page 6

3.1 Underground Line Locates and Testhole Drilling

The two existing groundwater monitoring wells were assessed and found to be in reasonable condition. The wells are protected by a 76 mm diameter PVC casing. The 51 mm diameter PVC monitoring well was not capped. Tiamat installed a lockable well cap and a padlock to secure each groundwater monitoring well.

The drilling program is intended to better define the footprint and the profile of the historic waste material. Prior to drilling, public and private underground utilities within the work area were identified and marked. The subsurface investigation commenced on Wednesday, June 26 and was completed on Friday, June 28, 2013.

A representative of Tiamat supervised an auger drill mounted on a truck rig from Earth Drilling Co. of Calgary, Alberta to advance 152 mm diameter test holes at various locations across the site. The testhole locations were selected with consideration of access for the drill rig.

Attempts to install a groundwater monitoring well on the west and south sides of the site without encountering waste material could not be undertaken due to the thickness of the bush and trees. There is no accessible route for the drill onto the site from Taylor Drive.

Each testhole was drilled vertically to depths ranging between 3.5 m to 7.6 m below the ground surface. On completion of drilling, either a groundwater monitoring well or soil vapour well was installed, or the testhole was backfilled and abandoned.

Each groundwater monitoring well consists of a 51 mm diameter PVC machine slotted screen section and a solid section of pipe. The annulus of the borehole was backfilled with Sil-9 sand to approximately 0.3 m above the screen section followed by granular bentonite to about 0.3 m from the surface. Each well was protected by either an above-ground lockable steel casing or flush-mount steel bolt-down road box. Subsequent to establishing the depth of the testhole for a soil vapour well, a dedicated soil vapour well was assembled. Typically the soil vapour well consists of a 30 cm 0.020 PVC screen and a 25 mm diameter PVC solid standpipe. The screen section and brass value assembly are mechanically threaded with stainless steel locking set screws.

A summary of the well completion details is presented in Table 1 and shown on the testhole logs in Appendix B. Each test location was surveyed for horizontal and vertical control by a local survey firm. To ensure the survey coordinates and elevations (via the GPS) of each test location are reasonably accurate, multiple ASCM markers located throughout the city and in proximity to the site were referenced. Elevations for each test location are relative to an established geodetic datum for the ASCM as established by the Alberta Survey Control Network. A copy of the specified ASCM information sheets are provided in Appendix A.

The soil profile was visually classified during drilling and bulk grab samples were retrieved at approximately 0.6 m intervals for field screening. In the event significant MSW (municipal solid waste) material was encountered, an RKI Eagle 2 capable of simultaneously measuring the combustible and volatile vapour in the testhole at the surface was used. This field assessment was undertaken to determine whether potential methane and other VOCs were emanating from the testhole at concentrations deemed potentially hazardous for drilling operations. For example, should combustible vapours exceed the lower explosive limit or elevated VOCs greater than 35 ppm be encountered, drilling would temporarily cease until the level of vapours have subsided. Each on-site worker had a dedicated half-mask respirator with organic vapour filter as part of their respective personal protective equipment during drilling.

The drilling protocol for testhole(s) encountering MSW was to advance the drill such that contact is made with the underlying undisturbed native soil. At locations where no MSW was found, the testhole was advanced to an appropriate depth to install either a soil vapour well or a groundwater well. Solid stem tooling was used in order to properly install the monitoring well as the encountered soil consisted mainly of clay and sand. Drill cuttings were stored in 1 cubic meter capacity tote bags for off-site disposal.

The principal elevations of each test location are summarised in Table 1 and the relative test locations are shown on Figure 2.

3.2 Site Monitoring and Groundwater Sampling

To allow the subsurface conditions to re-equilibrate from the drilling disturbance, the groundwater and soil vapour wells were allowed to "rest" for a period. On Saturday, August 3, 2013, the monitoring wells were field tested. Field measurements consisted of measurement of headspace vapours and the depth to the liquid level. Groundwater samples were collected from the three installed monitoring wells.

4.0 RESULTS

The nearby residential Communities of West Park and South Hill, located north of 32 Street are identified to be potentially the most sensitive environmental receptors. Accordingly, the residential/parkland criteria have been referenced to assess the environmental quality of the subsurface soil and groundwater beneath the site. It should be noted the assessment is to illustrate the relative environmental quality and is not intended to infer remedial objectives.

This section summarizes the field observations during drilling and field testing for this Phase II ESA. For clarity, the analytical results for soil, groundwater and soil vapours are discussed in Section 5.

4.1 Soil Profile

Testholes which did not encounter buried waste material was generally consistent. Surface material was sod or organic clay over a sand or clay fill material. The thickness of the fill material without MSW was observed to be about 3.0 to 4.6 m. At some testhole locations, MSW lies immediately beneath the sod (about 3 cm thickness) with the maximum depth of waste observed to be about 4.6 m (15 feet) at TH-03, in the central area of the historic waste. The waste material was observed to be bedded on native clay. Bedrock was not encountered to the maximum depth of investigation, 7.6 m (25 feet).

The MSW was within a mixture of silty sand and clay. The composition of the observed sanitary waste appears to be of a typical waste material consisting of plastics, tin cans, remnants of paper, scrap metal, wire and pieces of glass and rubber. In addition, at some locations, trace construction debris was noted as fragments of timber, masonry brick and concrete. The interpreted footprint of the historic waste area is shown on Figure 2.

Subjectively, a moderate to strong pungent odour was noted during drilling at TH-06 and TH-08. Mild petroleum hydrocarbon odours and grey hydrocarbon staining were encountered at depths of 3 m to 5.2 m at MW-01, 3 m at VW-01, 1.5 m to 2.1 m at TH-03 and 1.5 m to 3.2 m at TH-09.

Auger refusal was encountered at TH-06, TH-07 and TH-08 in the south half of the site. The refusal of the auger drill bit at each of these testholes is suspected to be a boulder.

Select cross sections depicting the interpreted soil stratigraphy are presented as Figure 3. A copy of the testhole logs is presented in Appendix B. Select photographs of the drilling are presented in Appendix C.

To better understand the chemical composition of the MSW interacting with the underlying native soil, a sample of soil which the MSW is situated on was collected for laboratory testing. A composite soil sample from the soil bag was submitted for screening purposes to determine whether the soil bags can be transferred to The City of Red Deer Waste Management Facility. Analytical results are tabulated in Tables 3A to 3C and discussed in Section 5.1.

4.2 Groundwater Conditions

Static depth to groundwater was measured at each monitoring well. The relative groundwater elevations are presented on Table 2. On Saturday, August 3, 2013, the average depth to groundwater was approximately 4.2 m below the ground surface. The two groundwater monitoring wells are insufficient to triangulate the local pattern of the groundwater. However, the measured elevation at MW-01 and MW-02 suggest a local groundwater flow direction to the northwest with a horizontal gradient of about 2%.

The purged water was mildly murky and trace petroleum hydrocarbon odour was noted at

12-435 Page 9

Phase II ESA – Red Deer Motors Site Historic Waste Disposal Sites, The City of Red Deer

MW-01. General water quality indices were measured during purging and at the time of sampling. A summary of the field measured indices is presented as Table 4A.

Water samples were preserved and submitted to the laboratory for analysis. The results of groundwater tests are presented in Tables 4B to 4D and discussed in Section 5.2.

4.3 Headspace Vapours

A summary of the concentration of soil vapours as interpreted from headspace measurements from the groundwater monitoring wells and the soil vapour wells are tabulated in Table 2.

Combustible vapours and volatile vapours measured from the headspace at MW-01 were 250 ppm and 43 ppm, respectively. Vapours were not detected at MW-02.

Combustible vapours from the headspace of the groundwater monitoring wells ranged between 20 ppm (VW-02) and 1,600 ppm (VW-01). Volatile vapours from the headspace ranged from 2 ppm (VW-03) to 64 ppm (VW-01). Laboratory results for a soil vapour sample are discussed in Section 5.3.

5.0 SUMMARY OF ASSESSMENT

This section discusses our interpretation of the observations made from the fieldwork and the laboratory results with respect to the potentials for an adverse environmental impact.

The areal footprint of the historic waste disposal area is practically the entire subdivided lot and extends onto the 32 Street road right-of-way (refer to Survey Plan 6296 NY, in the Phase I ESA, September, 24 2013). The north boundary parallels 32 Street. The east and west limits are defined by thick bush and tree lines on either side. The plan area of the historic waste is calculated to be approximately 9,600 m² (2.37 ac) more or less on the site and the off-site area is estimated to be approximately 1,580 m² (0.39 ac). The MSW was noted to extend to a maximum depth of 4.6 m (15 feet), more or less.

5.1 Quality of Subsurface Soil

The surface topography overlying the waste clearly shows differential settlement. The ground settlement appears to be occurring in an irregular manner. Observations indicate other than the sod, there is practically no notable soil cover over the waste. This implies the ability of the cover material to effectively direct surface water away from the underlying waste material and resist seasonal infiltration is severally hampered.

12-435 Page 10

Phase II ESA – Red Deer Motors Site Historic Waste Disposal Sites, The City of Red Deer

For this Phase II ESA, samples were analyzed following the laboratory package using the US EPA 8260 list of VOCs. This list includes a greater number of VOCs relative to the VOC list published in the referenced Tier 1 Guideline.

Analytical results for the soil bag indicate the drill cuttings satisfy the acceptance guidelines for disposal at The City of Red Deer Class II Waste Management Facility, refer to Table 3A.

The analytical results from a select soil sample collected from MW-01 at 5.2 m shows no notable heavy metals exceeding the referenced Tier 1 Guidelines, refer to Table 3B.

Analytical results for organic compounds in soil are summarised in Table 3C. Semi-volatile petroleum hydrocarbon fraction F3 ($C_6 - C_{10}$) and 1,2,4-trimethylbenzene were detected in the soil sample, but did not exceed Tier 1 Guidelines. It is noted the reported laboratory limit of method of detection for carbon tetrachloride, chloroform, 1,2-dichloroethane, hexachlorobutadiene, and vinyl chloride exceed the referenced Tier 1 Guideline. A copy of the laboratory reports for soil is provided in Appendix A.

5.2 Quality of Local Groundwater

For this initial Phase II ESA, two test locations were sampled for groundwater, namely MW-01 and MW-02, located along the interpreted up-gradient and down gradient margins for groundwater entering and leaving the historic waste disposal area. MW-03 was not sampled due to its proximity to MW-02.

Field measured water quality indices were recorded during purging and at the time of sampling (August 3, 2013, sunny, no precipitation prior to or during). The groundwater indices at MW-01 indicate the local groundwater is near an anoxic state with a negative redox potential. The field measured groundwater indices are presented in Table 4A.

General Water Quality parameters are summarised in Table 4B. Generally, the water quality at MW-01 appears to be of lower quality relative to MW-02. Cadmium and ammonia (as nitrogen) exceeds the referenced Tier 1 Guideline at MW-01 and the concentrations of chlorides, sulphates, total nitrogen and Kjeldahl nitrogen are notably higher at MW-01 relative to MW-02. The analytical result for conductivity was about 1.5 times the field measured values; the discrepancy is presently unknown.

The reported alkalinity ranges from 490 mg/L to 570 mg/L while the field measured pH was less than 8. Typical groundwater has an alkalinity not more than about 100 mg/L and seldom exceeds 300 mg/L in a natural setting. Similarly, the concentration of bicarbonates in the groundwater samples may also infer a higher concentration of carbon dioxide in the subsurface. The composition of the fill material within the test locations may be influencing the environmental quality of the local groundwater. The estimated age (over 40 years old) of the buried waste materials has likely attained a quasi-steady rate of decomposition.

Concentrations of total metals in MW-01 exhibited an exceedance to the referenced Tier 1 Guidelines for numerous metals. Concentrations of total metals in MW-02 exceeded Tier 1 Guidelines for aluminum, iron, and manganese. The companion concentration for dissolved metal species was low or less than the limit of method detection. The Tier 1 Guidelines do not have published values for dissolved metals. The results suggest the concentration of total metals is likely from minerals in the soil and not their soluble forms. The results for total and dissolved metals are summarised in Table 4C.

It should be noted, the complexity arising from multi-parameter reactions in a non-equilibrium condition introduces significant uncertainty to identifying specific source(s) leading to the reducing condition. Notwithstanding, the landfill leachate reduces (oxidizes) the local groundwater regime with a corresponding increase in the organic content, ammonia and other similar reduction reactions such as nitrite to nitrogen, ferric iron (III) to ferrous iron (II), sulphate to sulphide, carbon dioxide to methane and depletion of dissolved oxygen in the natural system. Generally, the water quality at the down gradient test location (MW-01) suggests constituents in the leachate will extend beyond the boundary of the site. The initial data suggest the impacted groundwater would likely connect to Waskasoo Creek.

Table 4D is a summary of organic hydrocarbon and volatile compounds. The results of this initial test event show no detectable organic compounds in the groundwater at the up gradient test location (MW-02). Conversely, at the down gradient location (MW-01), petroleum derived hydrocarbons and some volatile chlorinated organic compounds were detected. Trace concentrations of benzene, xylenes, cis-1,2-dichloroethene, trans-1,2-dichloroethene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene and vinyl chloride were detected at MW-01. The concentration of vinyl chloride exceeds the referenced Tier 1 Guidelines.

It should be noted that these initial interpretations are solely from the initial readings. To better understand the plume of leachate constituents, further measurements would be necessary. To determine whether this contaminated groundwater is discharging into Waskasoo Creek, testing of surface water samples from up gradient and down gradient locations would be necessary.

5.3 Interpretation of Soil Vapours

For this Phase II ESA, an initial evaluation of the soil vapour was performed at two locations analogous to the groundwater tests. This approach was undertaken to develop a "snap-shot assessment" of the local groundwater and soil vapour relationship. A soil vapour sample (VW-02) near the south end of the site was also tested.

To reduce uncertainties concerning the assessment of soil vapour, the construction of soil vapour wells, sample collection and laboratory testing of soil vapour was performed in accordance with a standardized practice. Specifically, ASTM D5314-92(2006) Standard Guide for Soil Gas Monitoring in the vadose zone.

Page 11

12-435 Page 12

Phase II ESA – Red Deer Motors Site Historic Waste Disposal Sites, The City of Red Deer

Field measurements during purging of vapours in the well headspace at each well include the measurement of ambient barometric pressure. The field measurements are summarised in Table 5A. There was a slight negative pressure gradient at VW-01 and VW-03 and a small positive differential at VW-02. These initial readings may imply a dynamic soil vapour plume. However, further measurements would be required to better understand these initial findings.

Sample collection consisted of two methods of collection at each soil vapour well. One 1.4 L laboratory certified Summa Canisters[®] and one sterile 1 L Tedlar Bag[®] samples were collected. The sample collected by the Summa Canister[®] was analysed for general air indices (oxygen, carbon dioxide, carbon monoxide, nitrogen and methane) and a suite of VOCs in accordance with US EPA TO14A for toxic organic compounds in air. The sample collected in the Tedlar Bag[®] was analysed for volatile organic silicon compounds (VOSCs), commonly referred as siloxanes.

General analytical indices for soil vapour are presented in Table 5B. As shown, the general composition of the soil vapour showed methane to be about 26% by volume at VW-01 and less than the limit of quantification (0.3% v/v) at VW-02 and VW-03. The reported proportions of the main components: oxygen, nitrogen, carbon dioxide and methane appear to be acceptable, total aggregate 100%, more or less.

Table 5C summarises the results of volatile organic compounds measured in the soil vapour samples. Petroleum hydrocarbon constituents included BTEX compounds, various VOCs and chlorinated hydrocarbons were detected. The specific chemicals include:

Petroleum hydrocarbons

Total BTEX compounds ranging from non-detect to 13.83 ppb

Volatile aliphatic compounds ranging from less than 0.5 ppm to 141.96 ppm (421.3 $\mu g/m^3$ to 141,964 $\mu g/m^3$)

Extractable aromatic compounds ranging from non-detect to less than 0.2 ppm (123.2 $\mu g/m^3)$

Chlorinated hydrocarbons

1,2-dichlorotetrafluoroethane, chloromethane, vinyl chloride, Freon 11, Freon 12, 1,1-dichloroethylene, cis-1,2-dichloroethylene, Trans-1,2-dichloroethylene, methylene chloride, chloroform, 1,1,1-trichloroethane, trichloroethylene (TCE), and tetrachloroethylene (PCE) each less than 519 ppb.

Other VOCs

Ethanol, 2-propanol, 2-propanone, methyl ethyl ketone, styrene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, hexane, heptane, cyclohexane, propene, 2,2,4-trimethylpentane and carbon disulfide each less than 17,800 ppb.

As shown on Table 5D, generally volatile aliphatic petroleum hydrocarbons to carbon chain 16 were detected. Aromatic hydrocarbon compounds between carbon chain 8 and 12 were relatively low. Semi-volatile petroleum hydrocarbon vapours are present in the subsurface at varying concentrations. It is noted, trace concentrations of BTEX compounds were detected in the groundwater at MW-01. However, BTEX compounds were not detected in the soil sample from the zone of groundwater and the soil vapour sample. This discrepancy is unclear and follow-up testing may be necessary.

It should be noted the measured concentrations are influenced by climatic conditions, ground conditions (frozen versus frost-free) and moisture content in the vadose zone, natural biodegradation and geochemical reactions. Furthermore, the noted results do not imply the composition of the soil vapour is a constant as subsurface biodegradation and geochemical reactions are continuous along with influences by climatic factors.

Light molecular weight petroleum gases (ethane, ethylene, methane, n-butane, n-pentane, propane, and propene) were detected at low concentrations. This suggests either the measured soil vapours are not influenced by petroleum exploration or production activities and/or these highly volatile vapours are preferentially venting to the atmosphere.

Approximately, 52% of the total (64) VOCs assayed were detected from the Summa Canister[®] samples. The 33 VOCs identified in the soil vapour samples include a variety of chlorinated and other halogenated hydrocarbons, ketones and other oxygenated volatile hydrocarbons. The results indicate constituents in the soil gas are likely attributed to the petroleum hydrocarbon contaminated soil, landfill gas and the decomposing waste materials.

Results for analyses of siloxanes are tabulated in Table 5D. As shown, trimethysilanol and siloxanes D3, D4, D5 and D6 were identified in each soil vapour sample with the maximum concentration of 192.7 ppb. Currently, there are no regulatory guidelines or standards for siloxanes compounds in soil vapour. Volatile siloxane compounds are considered a significant component of landfill gas. Ongoing toxicity studies have implicated exposure to siloxanes by inhalation to be linked to adverse effects to humans. It is anticipated, regulatory guidelines will be developed in the future as further research and toxicity information becomes available.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The results of the Phase II ESA confirm the presence of petroleum hydrocarbon contaminated soil within the area of the sanitary waste material. The waste material extends beyond the lot boundary onto the right-of-way of 32 Street. The petroleum hydrocarbon contamination appears to extend to a depth of 5.2 m (17 feet) below the ground surface and lies within the northwest quadrant of the site. The hydrocarbon impacts are observed and illustrated on Figure 3, Cross Section A-A.' The hydrocarbons extends southward onto the site. The total areal area of the waste material and

Page 13

contaminated soil is estimated to be 20,680 m² (5.11 ac). It should be noted, the lateral extent of the subsurface soil contaminated with petroleum hydrocarbons may extend beneath the adjoining portion of 32 Street and the intersection (Taylor Drive).

The results for soil vapour tests indicate various constituents of landfill gas are present in the subsurface. It must be acknowledged, this summer sampling event likely reflects muted concentrations which would likely increase due to the lack of natural venting from the soil under frozen ground conditions.

In order to better understand the off-site environmental risks associated with this historic waste disposal site, several aspects of the data presented in this Phase II ESA deserve some further attention. It is recommended Management at The City of Red Deer consider the following actions:

- Collect groundwater elevations and soil vapour data at a bi-annual interval for at least one standard hydrogeological cycle. This information is to better understand the local flow pattern and what risks are presented to the river.
- In consultation with ESRD, determine whether surface water testing is implemented along with additional groundwater monitoring locations to better define the flow pattern and environmental risks to Waskasoo Creek and whether a concern exists for the Red Deer River.
- Collect a second data set consisting of soil vapour and groundwater chemistry, groundwater levels and headspace measurements during the winter period. The information obtained from this second event would attempt to illustrate the best/worst case for seasonal variability of the soil vapours.
- Develop a site specific risk management plan (RMP) addressing the identified environmental concerns with consideration of the potential future land development opportunities with an emphasis on lands which are deemed down gradient and on lands in proximity to the historic waste disposal area.
- Review all additional data to develop and (when necessary) update/amend the site specific RMP in light of new information.

Page 15

7.0 STATEMENT OF LIMITATIONS

This Phase II Environmental Site Assessment was conducted on the dates presented within this report. The conditions prevalent and noted at this time must be recognized as having a limited life. Should activities be introduced or practices change, either of which may not be deemed to comply with generally accepted environmental practices, the site conditions would be altered sufficiently for this report to be invalid. This report has been prepared for the use of The City of Red Deer and the approved designates for the specific application described in Section 1.0.

The report has been based in part with information obtained by others. Verification of the results presented by others has not been done. This report has been prepared in accordance with generally accepted environmental engineering practice and no other warranty is made, either expressed or implied. The opinions, conclusions and recommendations presented herein reflect the best judgment of Tiamat ©2014, all rights reserved. As such, Tiamat reserves the right to re-evaluate our conclusions and recommendations presented in this report should new information become available.

Any use by a third party of this report or any reliance by a third party upon the information, records or documents in this report is undertaken solely at the risk and responsibility of such third party. Tiamat shall not in any way be responsible for any damages suffered by a third party due to decisions or actions taken by a third party on the basis of this report.

This report was issued electronically in an encrypted PDF format. Notwithstanding, the file encryption, Tiamat cannot guarantee the contents of this report has not been altered. Should an authenticated copy be required, the reader should contact The City of Red Deer and our office.

8.0 **CLOSURE**

We trust the information presented herein satisfies your present requirements. Should you have any questions, we invite the reader to contact our office at (403) 640-9009.

Respectfully submitted,

Tiamat Environmental Consultants Ltd.

Jessica A.C. Lee, E.I.T. Per:

Environmental Engineer

Kristen E. Sanger, G.I.T. Per:

Krister Song

Environmental Geoscientist

Per: Leon T. Mah, P.Eng.

Senior Project Engineer

/kjs

The Association of Professional Engineers and Geoscientists of Alberta

Permit To Practice No.: P 7109

References

- 1. Standard Guide for Soil Gas Monitoring in the Vadose Zone, ASTM D5314-92(2006).
- 2. B. Slomczynska and T. Slomczynski, "Physico-Chemical and Toxicological Characteristics of Leachates from MSW Landfills," Institute of Environmental Engineering Systems, Warsaw University of Technology, June 2004.
- 3. P. Kjeldsen, M.A. Barlaz, et al., "Present and Long Term Composition of MSW Landfill Leachate" A Review," Environmental Science and Technology, Volume 32(4) pages 297 336, 2002.
- 4. M.O. Rivett, Gary P. Wealthall, R.A. Dearden, T.A. McAlary, "Review of Unsaturated-Zone Transport and Attenuation of Volatile Organic Compound Plumes Leached from Shallow Source Zones," Journal of Contaminant Hydrology, Edition 123, pages 130 156, 2011.
- 5. West Park Community and Area Redevelopment Plan, Bylaw No. 3488-2013, The City of Red Deer.
- 6. Summary Report Former Site Landfill Red Deer Motors Site, Part of SE-08-38-27-W4M, Red Deer, Alberta by Stantec Inc. and Parkland Geotechnical Consulting Ltd., March 2007.
- 7. Phase I Environmental Site Assessment, Historic Waste Disposal Site, Red Deer Motors Site, The City of Red Deer, by Tiamat Environmental Consultants Ltd., September 24, 2013.

Page 17

TABLES

Table 1
Elevations for Soil Vapour and Groundwater Monitoring Wells

Test	Well		Eleva	ntions		Screen
Location	Depth	Ground	Top of Pipe	Screen	Screen Interval	
	(m)	(m)	(m)	Bottom	Тор	(m)
	ļ					
MW-01	6.1	874.014	875.099	867.914	872.514	4.6
MW-02	6.6	877.302	878.096	870.702		
MW-03	5.1	877.297	877.307	872.197		
VW-01	3.5	874.194	874.943	870.694	870.994	0.3
VW-02	4.6	877.321	878.166	872.721	873.021	0.3
VW-03	4.0	877.316	878.017	873.316	873.616	0.3
	ļ					
TH-03	No Well	875.332				
TH-05	No Well	875.567				
TH-06	No Well	876.597				
TH-07	No Well	876.925				
TH-08	No Well	876.812				
TH-09	No Well	875.907				

- 1) Geodetic elevations are referenced to multiple ASCM Nos. 269191, 376673 and 384792.
- 2) MW Monitoring Well.
- 3) VW Soil Vapour Well.
- 4) TH Testhole.
- 5) Well depth, screen interval derived from borehole logs by others, where avalable.
- 6) - No value established.

12-435
Phase II ESA - Red Deer Motors Site
Historic Waste Disposal Sites, The City of Red Deer

Table 2
Site Monitoring Results

Test	Eleva	ntions	Groundwat	er Elevation		Headspace Vapour		
Location	Ground	Top of Pipe	(n	n)	03/0	03/08/13		
	(m)	(m)	03/08/13		Combustible	Volatile	Combustible	Volatile
MW-01	874.014	875.099	869.841		230	43		
MW-02	877.302	878.096	874.276		ND	ND		
MW-03	877.297	877.307	NM		NM	NM		
VW-01	874.194	874.943			1,600	64		
VW-02	877.321	878.166			20	2		
VW-03	877.316	878.017			25	ND		
TH-03	875.332	NA						
TH-05	875.567	NA						
TH-06	876.597	NA						
TH-07	876.925	NA						
TH-08	876.812	NA						
TH-09	875.907	NA						

- 1) Geodetic elevations are referenced to multiple ASCM Nos 269191, 376673 and 384792.
- 2) Measurement of combustible and volatile vapours by RKI Eagle 2. Units ppmv. Combustible vapour sensor calibrated to hexane and photoionization detector calibrated to isobutylene.
- 3) NA Not Applicable.
- 4) ND Not Detected, less than the limit of instrument detection.
- 5) NM Not Measured.
- 6) - No applicable value.

Table 3A
Analytical Results - Soil - Drill Cuttings (Soil Bag)

Parameter Detection Soil Bag Class II Landfill								
1 ai ainctei	Limit	1 of 1	Acceptance Criteria					
	Limit	1011	Acceptance Criteria					
pН	0.10	7.71	2-12.5					
Flash Point (°C)	30.0	>75	>61					
Paint Filter Test	-	PASS	PASS					
TCLP Hydrocarbons								
Benzene	0.0050	ND	0.5					
Toluene	0.0050	ND	0.5					
Ethylbenzene	0.0050	ND	0.5					
Xylenes	0.0050	ND	0.5					
TCLP Metals								
Antimony (Sb)	5.0	ND	500					
Arsenic (As)	0.20	ND	5					
Barium (Ba)	5.0	ND	100					
Beryllium (Be)	0.50	ND	5					
Boron (B)	5.0	ND	500					
Cadmium (Cd)	0.050	ND	1					
Chromium (Cr)	0.50	ND	5					
Cobalt (Co)	5.0	ND	100					
Copper (Cu)	5.0	ND	100					
Iron (Fe)	5.0	ND	1,000					
(71.)	0.50	ND	-					
Lead (Pb)	0.50	ND	5					
Mercury (Hg)	0.010	ND	0.2					
Nickel (Ni)	0.50	ND	5					
Selenium (Se)	0.20 0.50	ND ND	1 5					
Silver (Ag)	0.50	ND	3					
Thallium (Tl)	0.50	ND	5					
Uranium (U)	1.0	ND ND	2					
Vanadium (V)	5.0	ND ND	100					
Zinc (Zn)	5.0	ND	500					
Zirconium (Zr)	5.0	ND	500					
Zircomuni (Zi)	2.0	1,12	200					
		<u> </u>						

- 1) Applicance waste screening process for The City of Red Deer Class II Waste Managment Facility.
- Class II Landfill Acceptable Criteria per Table 2, Part 4 Schedule to the Alberta User Guide for Waste Managers 3/95.
- 3) All units are mg/L unless otherwise stated.
- 4) ND Not Detected
- 5) Soil Bags were sampled June 26, 2013.
- 6) For further laboratory information, refer to the specific laboratory report in Appendix A.

Table 3B
Analytical Results - Soil - General Indices and Heavy Metals

Parameters	Units	Detection	TH-01	Tier 1
1 arameters	Cints	Limit	@ 5.2 m	Guideline
		12mmt	06/26/2013	Guidellic
			00/20/2013	
Chloride (Cl)	mg/kg	15	188	
Nitrate-N	mg/kg	0.74	ND	
Nitrite-N	mg/kg	0.74	ND	
Title IV	mg/Kg	0.71	ND	
<u>Metals</u>				
Antimony (Sb)	mg/kg	0.20	0.44	20
Arsenic (As)	mg/kg	0.20	7.18	17
Barium (Ba)	mg/kg	5.0	242	500
Beryllium (Be)	mg/kg	1.0	ND	5
Cadmium (Cd)	mg/kg	0.50	ND	10
, ,				
Chromium (Cr)	mg/kg	0.50	35.7	64
Cobalt (Co)	mg/kg	1.0	7.8	20
Copper (Cu)	mg/kg	2.0	18.3	63
Lead (Pb)	mg/kg	5.0	8.0	140
Mercury (Hg)	mg/kg	0.05	ND	6.6
Molybdenum (Mo)	mg/kg	1.0	1.2	4
Nickel (Ni)	mg/kg	2.0	28.6	50
Selenium (Se)	mg/kg	0.50	ND	1.0
Silver (Ag)	mg/kg	1.0	ND	20
Thallium (Tl)	mg/kg	0.5	ND	1.0
Tin (Sn)	mg/kg	2.0	ND	5
Uranium (U)	mg/kg	2.0	ND	23
Vanadium (V)	mg/kg	1.0	38.4	130
Zinc (Zn)	mg/kg	10	63	200
Hexavalent Chromium	mg/kg	0.10	ND	0.4
Boron (B), Hot Water Ext.	mg/kg	0.10	1.26	2

- 1) Tier 1 Guideline Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for residential/parkland land use.
- 2) ND Not Detected, less than the limit of method detection.
- 3) -- No value established in the referenced criteria.
- 4) Bold & Shaded Exceeds the referenced Alberta Tier 1 Guidelines.
- 5) For further laboratory information, refer to the specific laboratory report in Appendix A.

Table 3C Analytical Results - Soil - VOCs

Parameters	Analytical Results - Soil - VOCs								
Hydrocarbons Hydrocarbons F1 (C ₂ C ₂) mg/kg 10 ND 24 F2 (C ₁₁ -C ₁₂) mg/kg 25 ND 130 F3 (C ₁₁ -C ₁₂) mg/kg 50 117 300 Total Hydrocarbons (C ₁₂ -C ₈₀) mg/kg 50 117 Volatife Organic Compounds Benzene mg/kg 0.010 ND Bromoehorzene mg/kg 0.010 ND Bromoehorzene mg/kg 0.010 ND Bromoform mg/kg 0.010 ND Bromoform mg/kg 0.010 ND Bromoform mg/kg 0.010 ND Bromoform mg/kg 0.010 ND sc-Butylbenzene mg/kg 0.010 ND er-Butylbenzene mg/kg 0.010 ND er-Butylbenzene mg/kg 0.010 ND .	Parameters	Units	Detection	TH-01	Tier 1				
Hydrocarbons F1 (C _G C _G C _G) mg/kg 10 ND 24 F1 (C _G C _G C) mg/kg 25 ND 130 F3 (C _G C _G) mg/kg 50 ND 2,800 F3 (C _G C _S) mg/kg 50 ND 2,800 Total Hydrocarbons (C _G C _{S0}) mg/kg 50 ND 0.73 Benzene mg/kg 0.010 ND Bromoelhoromethane mg/kg 0.010 ND Bromoelhane mg/kg 0.010 ND Actribition mg/kg 0.010 ND Actribition mg/kg 0.010 ND Carbon tribition mg/kg 0			Limit	@ 5.2 m	Guideline				
FI (C ₂ -C ₁₀)				06/26/2013					
FI (C ₂ -C ₁₀)									
F2 (C1 C1 C1 C2 C2 C2 C3 C3 C4 C4 C3 C4 C4 C4			10	NID	2.4				
$F3 C_{12} C_{21} C_{32} C_{30} c \\ F4 C_{12} C_{30} c \\ Total Hydrocarbons (C_x C_{30}) c \\ mg/kg 50 c \\ mg/kg 50$									
F4 (C ₃ -C ₃ -C ₃₀) mg/kg 50 ND 2,800			_						
Total Hydrocarbons (Ca^{-}Cs0)		mg/kg	50	117	300				
Note	$F4 (C_{34}-C_{50})$	mg/kg	50	ND	2,800				
Benzene mg/kg 0.005 ND 0.073	Total Hydrocarbons (C ₆ -C ₅₀)	mg/kg	50	117					
Benzene mg/kg 0.005 ND 0.073									
Bromochoromethane mg/kg 0.010 ND		/1	0.0050	MD	0.072				
Bromochloromethane mg/kg 0.010 ND					0.073				
Bromodchloromethane mg/kg 0.010 ND									
Bromoform									
Bromomethane									
n-Butylbenzene mg/kg 0.010 ND sco-Butylbenzene mg/kg 0.010 ND carbon tetrachloride mg/kg 0.010 ND 0.00056 Chlorobenzene mg/kg 0.010 ND 0.00056 Chlorobenzene mg/kg 0.010 ND 0.00056 Chlorobenzene mg/kg 0.010 ND 0.018 Chloroform mg/kg 0.010 ND 0.27 Chloroform mg/kg 0.010 ND 0.27 Chloroform mg/kg 0.010 ND 0.018 Chloroform mg/kg 0.010 ND 0.010 Chloroform mg/kg 0.010 ND 0.0010 Chloromethane mg/kg 0.010 ND 2-Chlorotoluene mg/kg 0.010 ND 1.2-Dibromo-3-chloropropane mg/kg 0.010 ND 1.2-Dibromo-shohropropane mg/kg 0.010 ND 1.2-Dichlorobenzene mg/kg 0.010 ND 1.2-Dichlorobenzene mg/kg 0.010 ND 0.08 Dichlorodifluoromethane mg/kg 0.010 ND 0.098 Dichlorodifluoromethane mg/kg 0.010 ND 0.098 Dichlorodifluoromethane mg/kg 0.010 ND 1.2-Dichloroethane mg/kg 0.010 ND 0.0027 1.1-Dichloroethane mg/kg 0.010 ND 0.0027 1.1-Dichloroethane mg/kg 0.010 ND 0.0027 1.1-Dichloropropane mg/kg 0.010 ND 0.0027 1.1-Dichloropropane mg/kg 0.010 ND 0.0027 1.1-Dichloropropane mg/kg 0.010 ND 0.0027 1.2-Dichloropropane mg/kg 0.010 ND 0.0021 mg/kg 0.010 ND 0.005 Methylene chloride mg/kg 0.010 ND 0.0067 Methylene mg/kg 0.010 N	Bromotorm	mg/kg	0.010	ND					
sec-Butylbenzene mg/kg 0.010 ND	Bromomethane	mg/kg	0.10	ND					
sec-Buylbenzene mg/kg 0.010 ND	n-Butylbenzene		0.010	ND					
	II		0.010	ND					
Carbon tetrachloride mg/kg 0.010 ND 0.00056 Chlorobenzene mg/kg 0.010 ND 0.018 Dibromochloromethane mg/kg 0.010 ND 0.27 Chloroform mg/kg 0.010 ND Chloroform mg/kg 0.010 ND Chlorotoluene mg/kg 0.010 ND 2-Chlorotoluene mg/kg 0.010 ND 4-Chlorotoluene mg/kg 0.010 ND 1,2-Dibromo-3-chloropropane mg/kg 0.010 ND 1,2-Dibromo-3-chloropropane mg/kg 0.010 ND 1,2-Dibromo-3-chloropropane mg/kg 0.010 ND 1,2-Dibromo-3-chloropropane mg/kg 0.010 ND 1,2-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropane mg/kg 0.010 ND 1,2-Dichloropropane									
Chlorobenzene	II		0.010	ND	0.00056				
Dibromochloromethane mg/kg 0.010 ND 0.27 Chloroethane mg/kg 0.10 ND Chloroform mg/kg 0.010 ND 2-Chlorotoluene mg/kg 0.010 ND 1.2-Dibromo-3-chloropropane mg/kg 0.010 ND 0.18 1.3-Dichlorobethane mg/kg 0.010 ND 0.098 1.1-Dichloroethane mg/kg 0.010 ND 0.021 1.1-Dichloroethene mg/kg 0.010 ND 0.021									
Chloroethane mg/kg 0.10 ND									
Chloroform mg/kg 0.010 ND 0.0010 Chlorotoluene mg/kg 0.10 ND 2-Chlorotoluene mg/kg 0.010 ND 1,2-Dibromo-3-chloropropane mg/kg 0.010 ND 1,2-Dibromoethane mg/kg 0.010 ND 1,2-Dichlorobenzene mg/kg 0.010 ND 1,3-Dichlorobenzene mg/kg 0.010 ND 1,4-Dichlorobenzene mg/kg 0.010 ND 0.08 1,4-Dichloroethane mg/kg 0.010 ND 0.098 1,1-Dichloroethane mg/kg 0.010 ND 0.027 1,1-Dichloroethane mg/kg 0.010 ND 0.021 1,1-Dichloroethane					0.27				
Chloromethane mg/kg 0.10 ND 2-Chlorotoluene mg/kg 0.010 ND 4-Chlorotoluene mg/kg 0.010 ND 1,2-Dibromo-3-chloropropane mg/kg 0.010 ND 1,2-Dibromo-dhane mg/kg 0.010 ND 1,2-Dichlorobenzene mg/kg 0.010 ND 1,3-Dichlorobenzene mg/kg 0.010 ND 1,4-Dichlorobenzene mg/kg 0.010 ND 1,4-Dichlorobenzene mg/kg 0.010 ND 1,1-Dichlorobethane mg/kg 0.010 ND 1,1-Dichloroethane mg/kg 0.010 ND 0.021 1,1-Dichloroethene mg/kg 0.010 ND 0.021 1,1-Dichloroethene mg/kg 0.010 ND 1,1-Dichloroethene mg/kg 0.010 ND 1,1-Dichloroethene mg/kg<									
2-Chlorotoluene		mg/kg	0.010	ND	0.0010				
4-Chlorotoluene 1,2-Dibromo-3-chloropropane 1,2-Dibromo-shene Dibromomethane Dibr	Chloromethane	mg/kg	0.10	ND					
4-Chlorotoluene 1,2-Dibromo-3-chloropropane 1,2-Dibromo-shene Dibromomethane Dibr			0.010	375					
1,2-Dibromo-3-chloropropane mg/kg 0.010 ND 1,2-Dibromoethane mg/kg 0.010 ND 1,2-Dichlorobenzene mg/kg 0.010 ND 1,3-Dichlorobenzene mg/kg 0.010 ND 1,4-Dichlorobenzene mg/kg 0.010 ND 1,4-Dichloroethane mg/kg 0.010 ND 1,1-Dichloroethane mg/kg 0.010 ND 1,1-Dichloroethane mg/kg 0.010 ND 0.021 1,1-Dichloroethene mg/kg 0.010 ND 0.021 cis-1,2-Dichloroethene mg/kg 0.010 ND 0.021 trans-1,2-Dichloroethene mg/kg 0.010 ND mg/kg 0.010 ND trans-1,2-Dichloropropane mg/kg 0.010 ND 1,3-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropane									
1,2-Dibromoethane									
Dibromomethane	11 '								
1,2-Dichlorobenzene									
1,3-Dichlorobenzene mg/kg 0.010 ND 1,4-Dichlorobenzene mg/kg 0.010 ND 0.098 Dichlorodifluoromethane mg/kg 0.010 ND 1,1-Dichloroethane mg/kg 0.010 ND 1,2-Dichloroethane mg/kg 0.010 ND 0.021 i,1-Dichloroethene mg/kg 0.010 ND i,1-Dichloroethene mg/kg 0.010 ND metrans-1,2-Dichloroethene mg/kg 0.010 ND Methylene chloride mg/kg 0.010 ND Methylene chloride mg/kg 0.010 ND Methylene chloride mg/kg 0.010 ND 1,2-Dichloropropane mg/kg 0.010 ND 1,3-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropane mg/kg 0.010 ND trans-1,3-Dichloroprop	Dibromomethane	mg/kg	0.010	ND					
1,3-Dichlorobenzene mg/kg 0.010 ND 1,4-Dichlorobenzene mg/kg 0.010 ND 0.098 Dichlorodifluoromethane mg/kg 0.010 ND 1,1-Dichloroethane mg/kg 0.010 ND 1,2-Dichloroethane mg/kg 0.010 ND 0.021 i,1-Dichloroethene mg/kg 0.010 ND i,1-Dichloroethene mg/kg 0.010 ND metrans-1,2-Dichloroethene mg/kg 0.010 ND Methylene chloride mg/kg 0.010 ND Methylene chloride mg/kg 0.010 ND Methylene chloride mg/kg 0.010 ND 1,2-Dichloropropane mg/kg 0.010 ND 1,3-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropane mg/kg 0.010 ND trans-1,3-Dichloroprop	1 2-Dichlorobenzene	ma/ka	0.010	ND	0.18				
1,4-Dichlorobenzene mg/kg 0.010 ND 0.098 Dichlorodifluoromethane mg/kg 0.010 ND 1,1-Dichloroethane mg/kg 0.010 ND 1,2-Dichloroethane mg/kg 0.010 ND 0.021 1,1-Dichloroethene mg/kg 0.010 ND 0.021 sis-1,2-Dichloroethene mg/kg 0.010 ND Methylene chloride mg/kg 0.010 ND 1,2-Dichloropropane mg/kg 0.010 ND 1,3-Dichloropropane mg/kg 0.010 ND sis-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND Ethylbenzene <td></td> <td></td> <td></td> <td></td> <td>0.10</td>					0.10				
Dichlorodifluoromethane					0.098				
1,1-Dichloroethane mg/kg 0.010 ND 1,2-Dichloroethane mg/kg 0.010 ND 0.0027 1,1-Dichloroethene mg/kg 0.010 ND 0.021 cis-1,2-Dichloroethene mg/kg 0.010 ND Methylene chloride mg/kg 0.010 ND 1,3-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropane mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND ttrans-1,3-Dichloropropene mg/kg 0.010 ND 0.01 Ethylenche									
1,2-Dichloroethane mg/kg 0.010 ND 0.0027 1,1-Dichloroethene mg/kg 0.010 ND 0.021 cis-1,2-Dichloroethene mg/kg 0.010 ND Methylene chloride mg/kg 0.010 ND Methylene chloride mg/kg 0.010 ND 1,2-Dichloropropane mg/kg 0.010 ND 1,3-Dichloropropane mg/kg 0.010 ND 2,2-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropane mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND ttrans-1,3-Dichloropropene mg/kg 0.015 ND 0.21 Hexachlorobutadiene mg/kg 0.010 ND Isopropyltolue									
1,1-Dichloroethene mg/kg 0.010 ND 0.021 cis-1,2-Dichloroethene mg/kg 0.010 ND trans-1,2-Dichloroethene mg/kg 0.010 ND Methylene chloride mg/kg 0.010 ND 0.095 1,2-Dichloropropane mg/kg 0.010 ND 1,3-Dichloropropane mg/kg 0.010 ND 2,2-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropene mg/kg 0.010 ND cis-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND 0.21 Hexachlorobutadiene mg/kg 0.010 ND 0.0067 Isopropylbenzene mg/kg 0.010 ND <t< td=""><td>1,1-Dicinoroeulane</td><td>mg/kg</td><td>0.010</td><td>ND</td><td></td></t<>	1,1-Dicinoroeulane	mg/kg	0.010	ND					
1,1-Dichloroethene mg/kg 0.010 ND 0.021 cis-1,2-Dichloroethene mg/kg 0.010 ND trans-1,2-Dichloroethene mg/kg 0.010 ND Methylene chloride mg/kg 0.010 ND 0.095 1,2-Dichloropropane mg/kg 0.010 ND 1,3-Dichloropropane mg/kg 0.010 ND 2,2-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropene mg/kg 0.010 ND cis-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND 0.21 Hexachlorobutadiene mg/kg 0.010 ND 0.0067 Isopropylbenzene mg/kg 0.010 ND <t< td=""><td>1,2-Dichloroethane</td><td>mg/kg</td><td>0.010</td><td>ND</td><td>0.0027</td></t<>	1,2-Dichloroethane	mg/kg	0.010	ND	0.0027				
cis-1,2-Dichloroethene mg/kg 0.010 ND Methylene chloride mg/kg 0.010 ND Methylene chloride mg/kg 0.010 ND 1,2-Dichloropropane mg/kg 0.010 ND 1,3-Dichloropropane mg/kg 0.010 ND 2,2-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropene mg/kg 0.010 ND cis-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND Ethylbenzene mg/kg 0.015 ND 0.21 Hexachlorobutadiene mg/kg 0.010 ND Ethylbenzene mg/kg 0.010 ND P-Isopropyltoluene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND styrene mg/	1,1-Dichloroethene		0.010	ND	0.021				
trans-1,2-Dichloroethene Methylene chloride mg/kg 0.010 ND Methylene chloride mg/kg 0.010 ND 0.095 1,2-Dichloropropane mg/kg 0.010 ND 1,3-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropene mg/kg 0.010 ND cis-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND 0.21 Hexachlorobtudadiene mg/kg 0.010 ND 0.21 Hexachlorobtudadiene mg/kg 0.010 ND Isopropylbenzene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND	cis-1,2-Dichloroethene		0.010	ND					
Methylene chloride mg/kg 0.010 ND 0.095 1,2-Dichloropropane mg/kg 0.010 ND 1,3-Dichloropropane mg/kg 0.010 ND 2,2-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropene mg/kg 0.010 ND cis-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.015 ND 0.21 Hexachlorobutadiene mg/kg 0.010 ND Itans-1,3-Dichloropropene mg/kg 0.010 ND 0.0067 Isopropylbenzene mg/kg 0.010 ND 0.0067 Isopropylbenzene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.050 ND 0.8 1,1,1,2-Tetrac	trans-1,2-Dichloroethene		0.010	ND					
1,3-Dichloropropane mg/kg 0.010 ND 2,2-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropene mg/kg 0.010 ND cis-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND Ethylbenzene mg/kg 0.015 ND 0.21 Hexachlorobutadiene mg/kg 0.010 ND Isopropylbenzene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND styrene mg/kg 0.050 ND 0.8 1,1,2-Tetrachloroethane mg/kg 0.050 ND 1,1,2-Trichlorobenzene mg/kg			0.010	ND	0.095				
1,3-Dichloropropane mg/kg 0.010 ND 2,2-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropene mg/kg 0.010 ND cis-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND Ethylbenzene mg/kg 0.015 ND 0.21 Hexachlorobutadiene mg/kg 0.010 ND Isopropylbenzene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND styrene mg/kg 0.050 ND 0.8 1,1,2-Tetrachloroethane mg/kg 0.050 ND 1,1,2-Trichlorobenzene mg/kg									
2,2-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropene mg/kg 0.010 ND cis-1,3-Dichloropropene mg/kg 0.010 ND ttrans-1,3-Dichloropropene mg/kg 0.010 ND Ethylbenzene mg/kg 0.015 ND 0.21 Hexachlorobutadiene mg/kg 0.010 ND Isopropylbenzene mg/kg 0.010 ND p-Isopropylbenzene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND styrene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND 1,1,2-Tetrachloroethane mg/kg 0.050 ND 0.8 1,1,1,2-Tetrachloroethane mg/kg 0.050 ND 0.16 Toluene mg/kg 0.050 ND 0.49 1,2,3-Trichlorobenzene mg/kg									
1,1-Dichloropropene mg/kg 0.010 ND cis-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND Ethylbenzene mg/kg 0.015 ND 0.21 Hexachlorobutadiene mg/kg 0.010 ND Isopropylbenzene mg/kg 0.010 ND p-Isopropyltoluene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND styrene mg/kg 0.050 ND 0.8 1,1,1,2-Tetrachloroethane mg/kg 0.050 ND 0.8 1,1,1,2-Tetrachloroethane mg/kg 0.050 ND 0.16 Toluene mg/kg 0.050 ND 0.16 Toluene mg/kg 0.050 ND 0.26 1,2,3-Trichlorobenzene mg/kg 0.010 ND 0.23 1,1,1-Trichloroethane mg/kg									
cis-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND Ethylbenzene mg/kg 0.015 ND 0.21 Hexachlorobutadiene mg/kg 0.010 ND 0.0067 Isopropylbenzene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND styrene mg/kg 0.050 ND 0.8 1,1,2-Tetrachloroethane mg/kg 0.050 ND 1,1,2-Tetrachloroethane mg/kg 0.050 ND 0.16 Toluene mg/kg 0.050 ND 0.49 1,2,3-Trichlorobenzene mg/kg 0.010 ND 0.26 1,2,4-Trichloroethane mg/kg 0.010 ND Trichloroethane mg/kg 0.010 ND Trichloroethane mg/kg	1 1								
trans-1,3-Dichloropropene Ethylbenzene Ethylbenzene mg/kg mg/kg 0.015 ND 0.21 Hexachlorobutadiene mg/kg 0.010 ND 0.0067 Isopropylbenzene mg/kg 0.010 ND 0.050 ND 0.8 I,1,1,2-Tetrachloroethane mg/kg 0.050 ND 0.16 Isopropylbenzene mg/kg 0.010 ND 0.23 I,1,1-Trichloroethane mg/kg 0.010 ND 0.23 I,1,2-Trichloroethane mg/kg 0.010 ND 0.012 Isopropylbenzene mg/kg 0.010 ND 0.013 0.013 0.0034	1 1								
Ethylbenzene mg/kg 0.015 ND 0.21 Hexachlorobutadiene mg/kg 0.010 ND 0.0067 Isopropylbenzene mg/kg 0.010 ND p-Isopropyltoluene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND Styrene mg/kg 0.050 ND 0.8 1,1,2-Tetrachloroethane mg/kg 0.010 ND 1,1,2-Tetrachloroethane mg/kg 0.050 ND Tetrachloroethene mg/kg 0.010 ND 0.16 Toluene mg/kg 0.050 ND 0.49 1,2,3-Trichlorobenzene mg/kg 0.010 ND 0.26 1,2,4-Trichloroethane mg/kg 0.010 ND 1,1,2-Trichloroethane mg/kg 0.010 ND Trichloroethene mg/kg 0.010 ND Trichlorofluoromethane mg/kg	cis-1,3-Dichloropropene	mg/kg	0.010	ND					
Ethylbenzene mg/kg 0.015 ND 0.21 Hexachlorobutadiene mg/kg 0.010 ND 0.0067 Isopropylbenzene mg/kg 0.010 ND p-Isopropyltoluene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND Styrene mg/kg 0.050 ND 0.8 1,1,2-Tetrachloroethane mg/kg 0.010 ND 1,1,2-Tetrachloroethane mg/kg 0.050 ND Tetrachloroethene mg/kg 0.010 ND 0.16 Toluene mg/kg 0.050 ND 0.49 1,2,3-Trichlorobenzene mg/kg 0.010 ND 0.26 1,2,4-Trichloroethane mg/kg 0.010 ND 1,1,2-Trichloroethane mg/kg 0.010 ND Trichloroethene mg/kg 0.010 ND Trichlorofluoromethane mg/kg	trans-1.3-Dichloropropene	mg/kg	0.010	ND					
Hexachlorobutadiene									
Isopropylbenzene	II *								
p-Isopropyltoluene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND Styrene mg/kg 0.050 ND 0.8 1,1,1,2-Tetrachloroethane mg/kg 0.010 ND 1,1,2,2-Tetrachloroethane mg/kg 0.050 ND 1,1,2,2-Tetrachloroethane mg/kg 0.010 ND 0.16 Toluene mg/kg 0.050 ND 0.49 1,2,3-Trichlorobenzene mg/kg 0.010 ND 0.26 1,2,4-Trichloroethane mg/kg 0.010 ND 1,1,2-Trichloroethane mg/kg 0.010 ND 1,1,2-Trichloroethane mg/kg 0.010 ND Trichlorofluoromethane mg/kg 0.010 ND 1,2,3-Trichloropropane mg/kg 0.010 ND 1,2,4-Trimethylbenzene mg/kg 0.010 ND 1,3,5-Trimethylbenzen									
n-Propylbenzene mg/kg 0.010 ND Styrene mg/kg 0.050 ND 0.8 1,1,1,2-Tetrachloroethane mg/kg 0.010 ND 1,1,2,2-Tetrachloroethane mg/kg 0.050 ND Tetrachloroethene mg/kg 0.010 ND 0.16 Toluene mg/kg 0.050 ND 0.49 1,2,3-Trichlorobenzene mg/kg 0.010 ND 0.26 1,2,4-Trichloroethane mg/kg 0.010 ND 1,1,2-Trichloroethane mg/kg 0.010 ND 1,1,2-Trichloroethane mg/kg 0.010 ND Trichloroethene mg/kg 0.010 ND Trichlorofluoromethane mg/kg 0.010 ND 1,2,3-Trichloropropane mg/kg 0.020 ND 1,2,4-Trimethylbenzene mg/kg 0.010 ND 1,3,5-Trimethylbenzene									
Styrene mg/kg 0.050 ND 0.8 1,1,1,2-Tetrachloroethane mg/kg 0.010 ND 1,1,2,2-Tetrachloroethane mg/kg 0.050 ND Tetrachloroethene mg/kg 0.010 ND 0.16 Toluene mg/kg 0.050 ND 0.49 1,2,3-Trichlorobenzene mg/kg 0.010 ND 0.26 1,2,4-Trichlorobenzene mg/kg 0.010 ND 0.23 1,1,1-Trichloroethane mg/kg 0.010 ND 1,1,2-Trichloroethane mg/kg 0.010 ND Trichloroethene mg/kg 0.010 ND Trichlorofluoromethane mg/kg 0.010 ND 1,2,3-Trichloropropane mg/kg 0.020 ND 1,2,4-Trimethylbenzene mg/kg 0.010 ND 1,3,5-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride									
1,1,1,2-Tetrachloroethane mg/kg 0.010 ND 1,1,2,2-Tetrachloroethane mg/kg 0.050 ND Tetrachloroethene mg/kg 0.010 ND 0.16 Toluene mg/kg 0.050 ND 0.49 1,2,3-Trichlorobenzene mg/kg 0.010 ND 0.26 1,2,4-Trichloroethane mg/kg 0.010 ND 1,1,1-Trichloroethane mg/kg 0.010 ND 1,1,2-Trichloroethane mg/kg 0.010 ND Trichloroethene mg/kg 0.010 ND Trichlorofluoromethane mg/kg 0.010 ND 1,2,3-Trichloropropane mg/kg 0.020 ND 1,2,4-Trimethylbenzene mg/kg 0.010 ND 1,3,5-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride mg/kg 0.20 ND 0.00034	II = -								
1,1,2,2-Tetrachloroethane mg/kg 0.050 ND Tetrachloroethene mg/kg 0.010 ND 0.16 Toluene mg/kg 0.050 ND 0.49 1,2,3-Trichlorobenzene mg/kg 0.010 ND 0.26 1,2,4-Trichlorobenzene mg/kg 0.010 ND 1,1,1-Trichloroethane mg/kg 0.010 ND 1,1,2-Trichloroethane mg/kg 0.010 ND Trichloroethene mg/kg 0.010 ND 0.012 Trichlorofluoromethane mg/kg 0.010 ND 1,2,3-Trichloropropane mg/kg 0.020 ND 1,2,4-Trimethylbenzene mg/kg 0.010 ND 1,3,5-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride mg/kg 0.20 ND 0.00034	II				0.8				
Tetrachloroethene mg/kg 0.010 ND 0.16 Toluene mg/kg 0.050 ND 0.49 1,2,3-Trichlorobenzene mg/kg 0.010 ND 0.26 1,2,4-Trichlorobenzene mg/kg 0.010 ND 0.23 1,1,1-Trichloroethane mg/kg 0.010 ND 1,1,2-Trichloroethane mg/kg 0.010 ND Trichloroethene mg/kg 0.010 ND 0.012 Trichlorofluoromethane mg/kg 0.010 ND 1,2,3-Trichloropropane mg/kg 0.020 ND 1,2,4-Trimethylbenzene mg/kg 0.010 ND 1,3,5-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride mg/kg 0.20 ND 0.00034									
Toluene mg/kg 0.050 ND 0.49 1,2,3-Trichlorobenzene mg/kg 0.010 ND 0.26 1,2,4-Trichlorobenzene mg/kg 0.010 ND 0.23 1,1,1-Trichloroethane mg/kg 0.010 ND 1,1,2-Trichloroethane mg/kg 0.010 ND Trichloroethene mg/kg 0.010 ND 0.012 Trichlorofluoromethane mg/kg 0.010 ND 1,2,3-Trichloropropane mg/kg 0.020 ND 1,2,4-Trimethylbenzene mg/kg 0.010 ND 1,3,5-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride mg/kg 0.20 ND 0.00034									
1,2,3-Trichlorobenzene mg/kg 0.010 ND 0.26 1,2,4-Trichlorobenzene mg/kg 0.010 ND 0.23 1,1,1-Trichloroethane mg/kg 0.010 ND 1,1,2-Trichloroethane mg/kg 0.010 ND Trichloroethene mg/kg 0.010 ND 0.012 Trichlorofluoromethane mg/kg 0.010 ND 1,2,3-Trichloropropane mg/kg 0.020 ND 1,2,4-Trimethylbenzene mg/kg 0.010 0.013 1,3,5-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride mg/kg 0.20 ND 0.00034	Tetrachloroethene	mg/kg	0.010	ND	0.16				
1,2,3-Trichlorobenzene mg/kg 0.010 ND 0.26 1,2,4-Trichlorobenzene mg/kg 0.010 ND 0.23 1,1,1-Trichloroethane mg/kg 0.010 ND 1,1,2-Trichloroethane mg/kg 0.010 ND Trichloroethene mg/kg 0.010 ND 0.012 Trichlorofluoromethane mg/kg 0.010 ND 1,2,3-Trichloropropane mg/kg 0.020 ND 1,2,4-Trimethylbenzene mg/kg 0.010 0.013 1,3,5-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride mg/kg 0.20 ND 0.00034	Toluene	ma/ka	0.050	ND	0.40				
1,2,4-Trichlorobenzene mg/kg 0.010 ND 0.23 1,1,1-Trichloroethane mg/kg 0.010 ND 1,1,2-Trichloroethane mg/kg 0.010 ND Trichloroethene mg/kg 0.010 ND 0.012 Trichlorofluoromethane mg/kg 0.010 ND 1,2,3-Trichloropropane mg/kg 0.020 ND 1,2,4-Trimethylbenzene mg/kg 0.010 0.013 1,3,5-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride mg/kg 0.20 ND 0.00034									
1,1,1-Trichloroethane mg/kg 0.010 ND 1,1,2-Trichloroethane mg/kg 0.010 ND Trichloroethene mg/kg 0.010 ND 0.012 Trichlorofluoromethane mg/kg 0.010 ND 1,2,3-Trichloropropane mg/kg 0.020 ND 1,2,4-Trimethylbenzene mg/kg 0.010 0.013 1,3,5-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride mg/kg 0.20 ND 0.00034									
1,1,2-Trichloroethane mg/kg 0.010 ND Trichloroethene mg/kg 0.010 ND 0.012 Trichlorofluoromethane mg/kg 0.010 ND 1,2,3-Trichloropropane mg/kg 0.020 ND 1,2,4-Trimethylbenzene mg/kg 0.010 0.013 1,3,5-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride mg/kg 0.20 ND 0.00034									
Trichloroethene mg/kg 0.010 ND 0.012 Trichlorofluoromethane mg/kg 0.010 ND 1,2,3-Trichloropropane mg/kg 0.020 ND 1,2,4-Trimethylbenzene mg/kg 0.010 0.013 1,3,5-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride mg/kg 0.20 ND 0.00034									
Trichlorofluoromethane mg/kg 0.010 ND 1,2,3-Trichloropropane mg/kg 0.020 ND 1,2,4-Trimethylbenzene mg/kg 0.010 0.013 1,3,5-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride mg/kg 0.20 ND 0.00034	1,1,2-111011010cmanc	mg/ng	0.010	ND	<u>-</u>				
Trichlorofluoromethane mg/kg 0.010 ND 1,2,3-Trichloropropane mg/kg 0.020 ND 1,2,4-Trimethylbenzene mg/kg 0.010 0.013 1,3,5-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride mg/kg 0.20 ND 0.00034	Trichloroethene	mg/kg	0.010	ND	0.012				
1,2,3-Trichloropropane mg/kg 0.020 ND 1,2,4-Trimethylbenzene mg/kg 0.010 0.013 1,3,5-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride mg/kg 0.20 ND 0.00034	Trichlorofluoromethane	mg/kg	0.010	ND					
1,2,4-Trimethylbenzene mg/kg 0.010 0.013 1,3,5-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride mg/kg 0.20 ND 0.00034	1,2,3-Trichloropropane		0.020	ND					
1,3,5-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride mg/kg 0.20 ND 0.00034									
Vinyl chloride mg/kg 0.20 ND 0.00034									
'	•		0.20	3770	0.0000:				
Ayrenes mg/kg 0.1 ND 12	II *								
n I I I I I I I I I I I I I I I I I I I	Xylenes	mg/kg	0.1	ND	12				

¹⁾ Tier 1 Guideline - Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for residential/parkland land use.

²⁾ ND - Not Detected, less than the limit of method detection.

^{3) --} No value established in the reference criteria.

⁴⁾ Bold & Shaded - Exceeds the referenced Alberta Tier 1 Guidelines.

⁵⁾ For further laboratory information, refer to the specific laboratory report in Appendix A.

Table 4A Groundwater Indices Measured at Time of Sampling

Monitoring	pН	Electrical Conductivity	Temperature	Dissolved Oxygen	Total Dissolved Solid	Potential Redox
Well		(µg/cm)	(°C)	(mg/L)	(mg/L)	(±mV)
MW-01	8.11	1,437	6.9	0.77	1,404.00	-83.6
MW-02	7.89	641	6.9	1.56	637.00	+42.3
MW-03						

- 1) Samples collected on Saturday, August 3, 2013.
- 2) Groundwater indices are field measured by YSI Pro Plus multi-meter.

Table 4B
Analytical Results - Groundwater - Routine Water Quality

	_	orounawater - K			
Parameter	Unit	Detection	MW-01	MW-02	Tier 1
		Limit	08/03	/2013	Guideline
General Water Quality					
Biochemical Oxygen Demand	mg/L	2.0	11	2	
Chemical Oxygen Demand	mg/L mg/L	5.0	350	16	
Conductivity	μS/cm	1.0	2,400	1,100	
pH	Unitless	NA	7.20	7.51	6.5-8.5
Total Organic Carbon (C)	mg/L	0.50	10	3.5	0.5-6.5
Total Organic Carbon (C)	IIIg/L	0.50	10	3.3	
Dissolved Cadmium (Cd)	μg/L	0.0050	0.037	0.025	
Total Cadmium (Cd)	μg/L	0.0050	3.4	0.025	0.060*
Alkalinity (CaCO ₃)	mg/L	0.50	570	490	
Bicarbonate (HCO ₃)	mg/L	0.50	700	600	
Carbonate (CO ₃)	mg/L	0.50	ND	ND	
Hydroxide (OH)	mg/L	0.50	ND	ND	
Sulphates (SO ₄)	mg/L	1.0	100	48	
Chlorides (Cl)	mg/L	1.0 - 5.0	360	36	
Total Ammonia (NH ₃ -N)	mg/L	0.050 - 0.50	9	0.1	1.37*
Total Phosphorus (P)	mg/L	0.0030 - 0.0150	4.6	0.015	
Total Nitrogen (N)	mg/L	0.050	12	0.26	
Nitrate plus Nitrite (N)	mg/L	0.0030015	0.019	ND	
Total Kjeldahl Nitrogen (TKN)	mg/L	0.050 - 0.5	12	0.25	
Nitrite (NO ₂)	mg/L	0.0030 - 0.015	ND	ND	
Nitrate (NO ₃)	mg/L	0.0030	0.019	0.013	
Trace Organics					
Acetic Acid	mg/L	50	ND	ND	
Formic Acid	mg/L	50	ND	ND	
Propionic Acid	mg/L	50	ND	ND	
Adsorbable Organic Halogen	mg/L	0.004 - 0.02	0.29	0.016	

- 1) Tier 1 Guideline Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for residential/parkland land use.
- 2) * Surface Water Quality Guidelines for Use in Alberta (AENV, 1999) on aquatic life pathway. Canadian Council of Ministers of the Environment (CCME) Guidelines as referenced in the Tier 1 Guidelines.
- 3) ND Not Detected, less than the limit of method detection.
- 4) -- No value established in the reference criteria.
- 5) Bold & Shaded Exceeds the referenced Alberta Tier 1 Guideline.
- 6) For further laboratory information, refer to the specific laboratory report in Appendix A.

Table 4C Analytical Results - Groundwater - Metals

Analytical Results - Groundwater - Metals Parameter Detection MW-01 MW-02 Tier 1									
Parameter	Detection	MW-01	Tier 1						
	Limit	08/03	/2013	Guideline					
Total Metals									
Aluminum (Al)	0.0030	34	0.29	0.1*					
Antimony (Sb)	0.00060	0.0017	ND	0.006					
Arsenic (As)	0.00020	0.085	0.00072	0.005					
Barium (Ba)	0.010	1.8	0.15	1					
Beryllium (Be)	0.0010	0.0024	ND						
Boron (B)	0.020	0.11	0.065	1.5					
Calcium (Ca)	0.30	330	150	1.3					
Chromium (Cr)	0.0010	0.11	ND	0.001*					
Cobalt (Co)	0.00030	0.078	0.0022	0.001					
Copper (Cu)	0.00020	0.16	0.0023	0.003*					
Iron (Fe)	0.060	180	0.98	0.3					
Lead (Pb)	0.00020	0.10	0.00057	0.004*					
Lithium (Li)	0.020	0.12	0.051						
Magnesium (Mg)	0.20	170	52						
Manganese (Mn)	0.0040	5.6	1.8	0.05					
Molybdenum (Mo)	0.00020	0.0071	0.00034	0.073*					
Nickel (Ni)	0.00050	0.20	0.0034	0.11*					
Phosphorus (P)	0.10	3.4	ND						
Potassium (K)	0.30	22	6.6						
Selenium (Se)	0.00020	0.0026	ND	0.001					
Ciliaan (Ci)	0.10 0.50	100	0.0						
Silicon (Si)	0.10 - 0.50	100	9.9						
Silver (Ag)	0.00010	0.00058	ND	0.0001*					
Sodium (Na)	0.50	140	16						
Strontium (Sr) Sulphur (S)	0.020 0.20	1.8 32	0.97 15						
Sulphul (S)	0.20	32	13						
Thallium (Tl)	0.00020	0.00097	ND	0.0008*					
Tin (Sn)	0.0010	0.0029	ND						
Titanium (Ti)	0.0010	0.71	0.015						
Uranium (U)	0.00010	0.006	0.0097	0.02					
Vanadium (V)	0.0010	0.17	0.0015						
7: (7)	0.0030	0.41	0.0097	0.03					
Zinc (Zn)	0.0030	0.41	0.0097	0.03					
Dissolved Metals									
Aluminum (Al)	0.0030	0.017	0.011						
Antimony (Sb)	0.00060	ND	ND						
Arsenic (As)	0.00020	0.0230	ND						
Barium (Ba)	0.010	0.68	0.13						
Beryllium (Be)	0.0010	ND	ND						
Boron (B)	0.020	0.074	0.063						
Calcium (Ca)	0.30	160	140						
Chromium (Cr)	0.0010	ND	ND						
Cobalt (Co)	0.00030	0.012	0.0017						
Copper (Cu)	0.00020	0.00078	0.002						
Iron (Fe)	0.060	27	0.11						
Lead (Pb)	0.00020	ND	ND						
Lithium (Li)	0.020	0.051	0.049						
Magnesium (Mg)	0.20	110	49						
Manganese (Mn)	0.0040	1.9	1.8						
Molybdenum (Mo)	0.00020	0.0015	0.00026						
Nickel (Ni)	0.00050	0.022	0.002						
Phosphorus (P)	0.10	ND	ND						
Potassium (K)	0.30	14	6.6						
Selenium (Se)	0.00020	ND	ND						
Silioon (Si)	0.10	1.5	9.1						
Silicon (Si) Silver (Ag)	0.10	15 ND	9.1 ND						
Sodium (Na)	0.00010	ND 140	ND 17						
Strontium (Sr)	0.020	1.60	0.98						
Sulphur (S)	0.020	32	0.98 15						
Surpriur (S)	0.20	32	1.5						
Thallium (Tl)	0.00020	ND	ND						
Tin (Sn)	0.0010	ND	ND						
Titanium (Ti)	0.0010	ND	ND						
Uranium (U)	0.00010	0.0011	0.0092						
Vanadium (V)	0.0010	ND	ND						
Zinc (Zn)	0.0030	0.0067	0.0062						
	0.0030	0.0007	0.0002	- -					

- 1) Tier 1 Guideline Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for residential/parkland land use.
- 2) * Surface Water Quality Guidelines for Use in Alberta (AENV, 1999) on aquatic life pathway. Canadian Council of Ministers of the Environment (CCME) Guidelines as referenced in the Tier 1 Guidelines.
- 3) ND Not Detected, less than the limit of method detection.
- 4) Unless specified all units are mg/L.
- 5) -- No value established in the reference criteria.
- 6) Bold & Shaded Exceeds the referenced Alberta Tier 1 Guideline.
- 7) For further laboratory information, refer to the specific laboratory report in Appendix A.

Table 4D Analytical Results - Groundwater - VOCs

	ai Kesuits - Grot				
Parameter	Detection	MW-01	MW-02	Tier 1	
	Limit	08/03	/2013	Guideline	
Volatile Organic Compounds					
Benzene	0.00040	0.0015	ND	0.005	
Toluene	0.00040	ND	ND	0.024	
Ethylbenzene	0.00040	ND	ND	0.0024	
Xylenes (Total)	0.00080	0.0018	ND	0.3	
Aylelles (Total)	0.00080	0.0018	ND	0.3	
F1 (C ₆ -C ₁₀)	0.10	ND	ND	0.81	
F2 (C ₁₀ -C ₁₆₎	0.10	ND	ND	1.1	
Total Trihalomethanes	0.0020	ND	ND	0.1	
Bromodichloromethane	0.00050	ND	ND		
Bromoform	0.00050	ND	ND		
Bromomethane	0.0020	ND	ND		
Carbon tetrachloride	0.00050	ND	ND	0.00056	
Chlorobenzene	0.00050	ND	ND	0.0013	
Chlorodibromomethane	0.0010	ND	ND		
Chloroethane	0.0010	ND	ND		
Chloroform	0.00050	ND	ND	0.0018	
Chloromethane	0.0020	ND	ND		
1,2-dibromoethane	0.00050	ND	ND		
1,2-dichlorobenzene	0.00050	ND	ND	0.0007	
1,3-dichlorobenzene	0.00050	ND	ND		
1,4-dichlorobenzene	0.00050	ND	ND	0.001	
1,1-dichloroethane	0.00050	ND	ND		
1,2-dichloroethane	0.00050	ND	ND	0.005	
1,1-dichloroethene	0.00050	ND	ND	0.014	
cis-1,2-dichloroethene	0.00050	0.033	ND		
trans-1,2-dichloroethene	0.00050	0.0034	ND		
Dichloromethane	0.00030	0.0034 ND	ND ND	0.05	
	0.0020	ND	ND	0.03	
1,2-dichloropropane	0.00050	ND	ND		
cis-1,3-dichloropropene	0.00050	ND	ND		
trans-1,3-dichloropropene	0.00050	ND	ND		
Methyl methacrylate	0.00050	ND	ND	0.47	
Methyl-tert-butyl ether (MTBE)	0.00050	ND	ND	0.015	
Styrene	0.00050	ND	ND	0.072	
1,1,1,2-tetrachloroethane	0.00030	ND ND	ND ND	0.072	
1,1,2,2-tetrachloroethane	0.0020				
		ND ND	ND ND	0.02	
Tetrachloroethene	0.00050	ND ND	ND ND	0.03	
1,2,3-trichlorobenzene	0.0010	ND	ND	0.008	
1,2,4-trichlorobenzene	0.0010	ND	ND	0.015	
1,3,5-trichlorobenzene	0.00050	ND	ND	0.014	
1,1,1-trichloroethane	0.00050	ND	ND		
1,1,2-trichloroethane	0.00050	ND	ND		
Trichloroethene	0.00050	ND	ND	0.005	
Tricklore flyoremethers	0.00050	VID	ND		
Trichlorofluoromethane	0.00050	ND 0.004	ND ND		
1,2,4-trimethylbenzene	0.00050	0.004	ND		
1,3,5-trimethylbenzene	0.00050	0.0018	ND		
Vinyl chloride	0.00050	0.003	ND	0.0011	

- 1) Tier 1 Guideline Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for residential/parkland land use.
- 2) $\ensuremath{\mathrm{ND}}$ Not Detected, less than the limit of method detection.
- 3) Unless specified all units are mg/L (ppm).
- 4) -- No value established in the reference criteria.
- 5) Bold & Shaded Exceeds the referenced Alberta Tier 1 Guidelines.
- 6) For further laboratory information, refer to the specific laboratory report in Appendix A.

Table 5A
Summary of Parameters Measured During Sampling of Soil Vapour

Parameter	Well Diameter	Screen Length	Well Depth	Headspace Volume	Purge Rate	Purge Time	Pı	ressure
	(mm)	(cm)	(m)	(cm ³)	(cm ³ /min)	(min)	Ambient (psi)	Vapour Well (psi)
VW-01	25	30	3.5	1,718.06	943.3	4	15.00	15.00
VW-02	25	30	4.6	2,258.02	943.3	7	15.10	15.06
VW-03	25	30	4.0	1,963.50	943.3	5	15.14	15.08

- 1) Measurement of pressure by digital Cole-Parmer absolute pressure gauge.
- 2) Purge time is minimum elapsed time prior to the collection of a soil vapour sample.
- 3) Screen set at base of well.
- 4) Soil vapour sampling was completed on Saturday, August 3, 2013.

Table 5B Analytical Results - Soil Vapour - General Indices

· · · · · · · · · · · · · · · · · · ·							
Parameter	Unit	Detection Limit	VW-01	VW-02	VW-03		
Gauge Pressure Following sampling Reported by laboratory	psi psi	1 1	-5.0 -1.4	NA -3.6	-5.0 -3.4		
Fixed Gases Oxygen Nitrogen Carbon monoxide Methane Carbon dioxide	% v/v % v/v % v/v % v/v % v/v	0.2 - 0.3 0.2 - 0.3 0.2 - 0.3 0.2 - 0.3 0.2 - 0.3	8.4 52.5 ND 26 13.1	17.2 77.8 ND ND 4.6	19.8 78.3 ND ND 1.9		

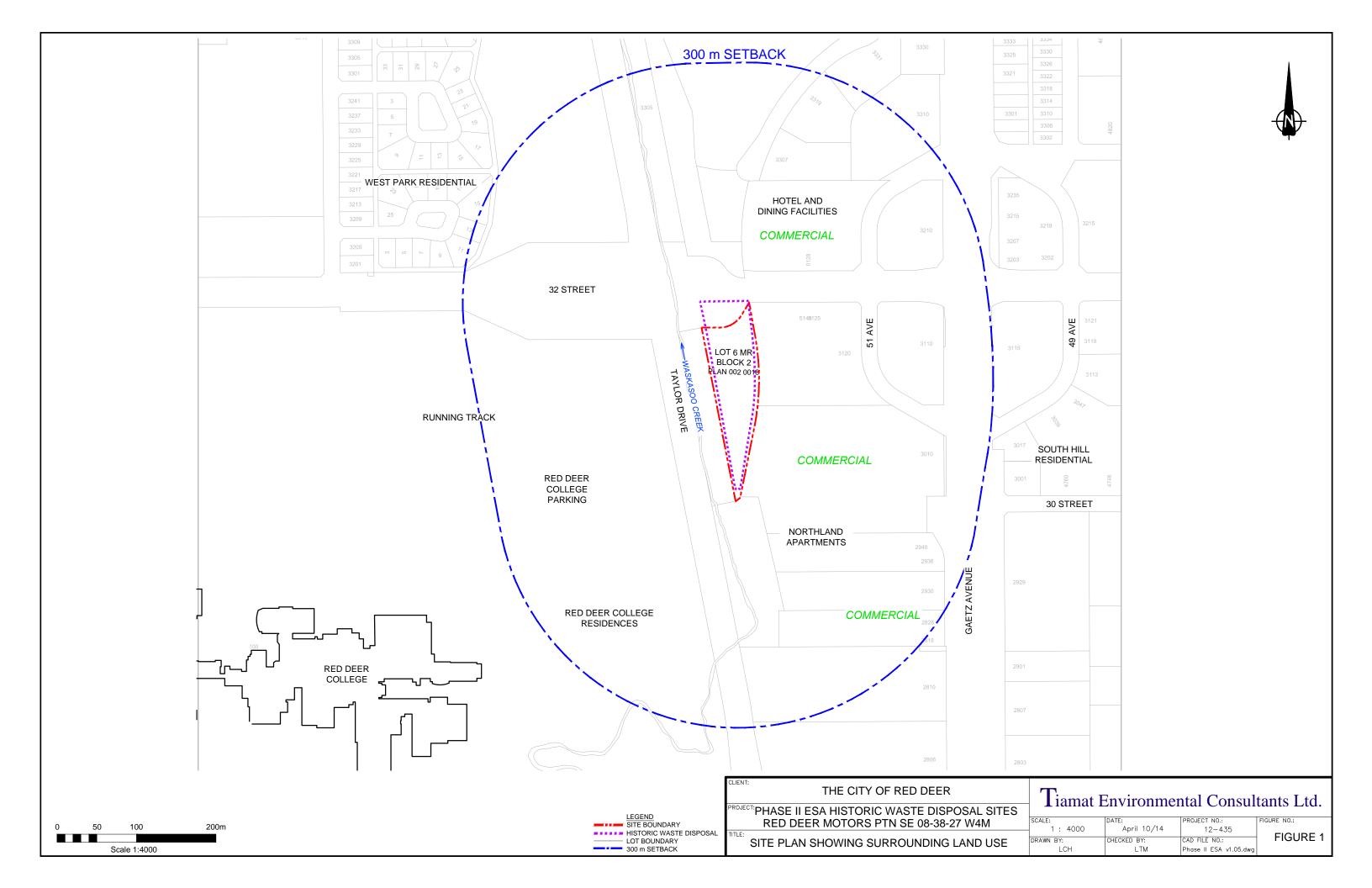
- 1) Soil vapour sample collected on Saturday, August 3, 2013.
- 2) ND Not Detected, less than the limit of method detection.
- 3) NA Not Available.
- 4) - No value established in the detection limit.
- 5) For further information, the reader should refer to the laboratory report in Appendix A.

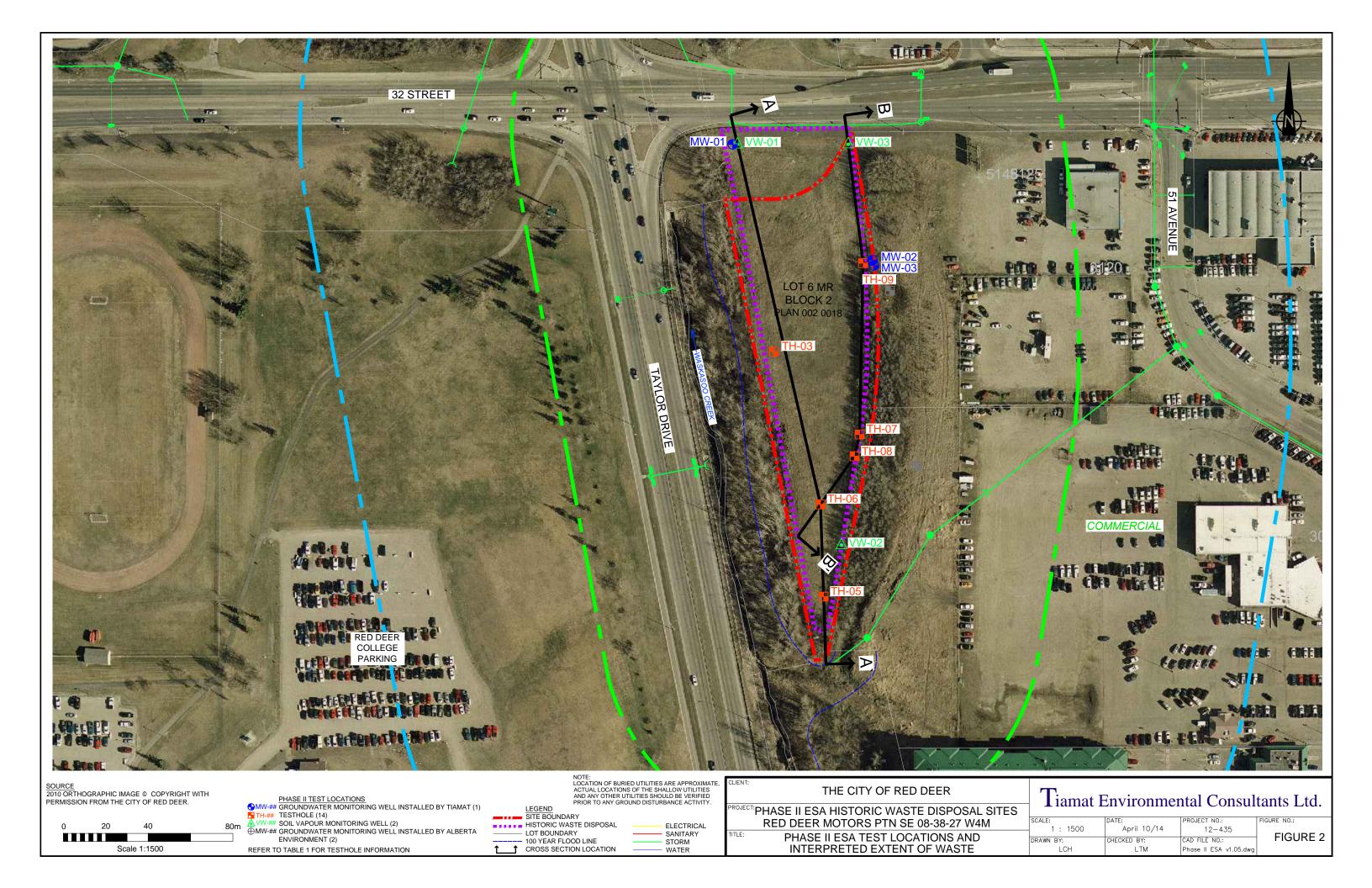
Table 5C

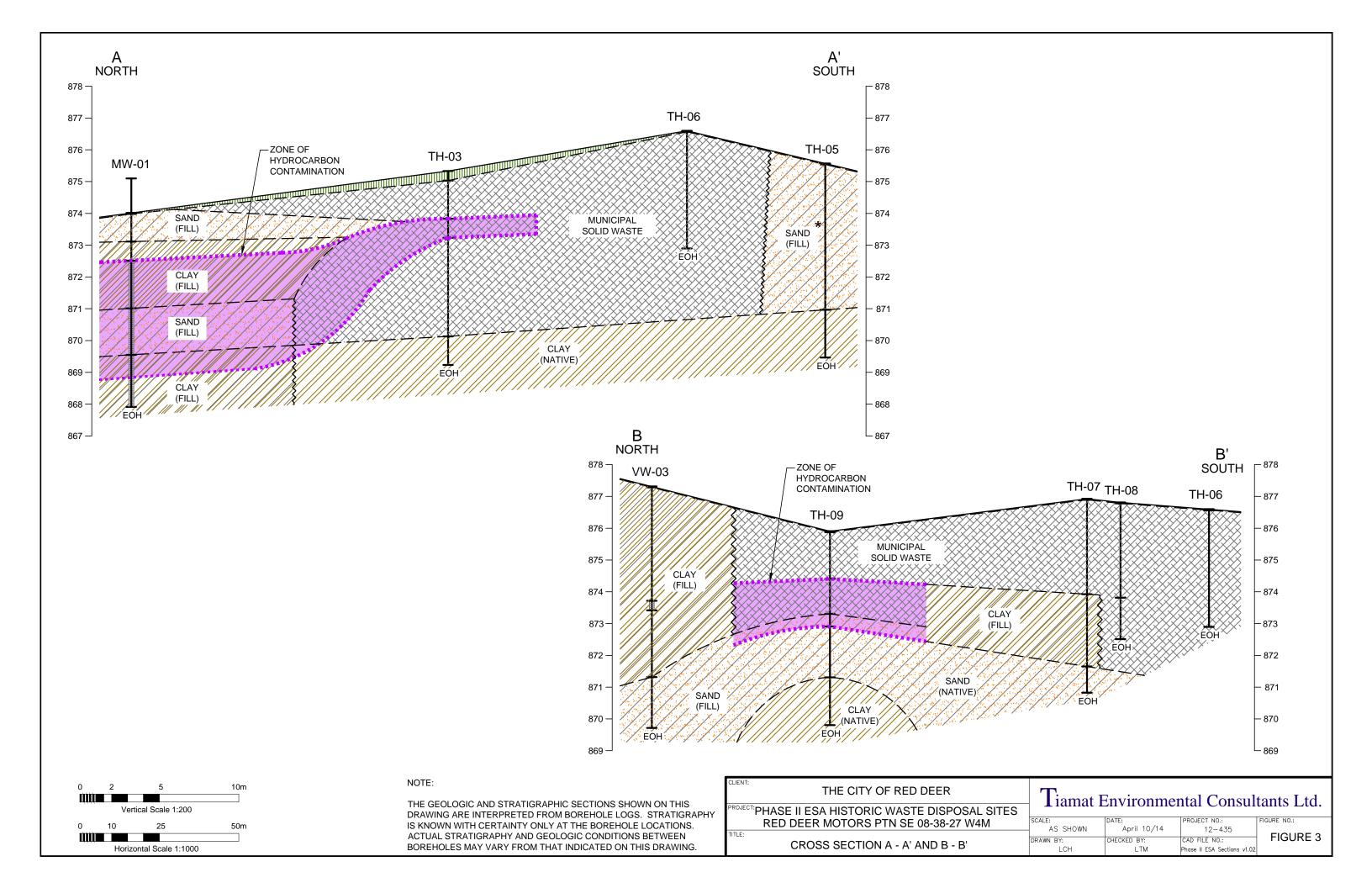
Analytical Results - Soil Vapour - VOCs									
Parameter	Unit	Detection Limit	VW-01	VW-02 08/03/13	VW-03				
Hydrocarbon Fractions				03/03/13					
Aliphatic >C ₅ -C ₆	μg/m ³	5.0 - 480	53,000	332	6.8				
Aliphatic >C ₆ -C ₈	μg/m ³	5.0 - 480	88,300	2,990	34.4				
Aliphatic >C ₈ -C ₁₀	μg/m ³	5.0 - 480	ND	577	73.1				
Aliphatic >C ₁₀ -C ₁₂	$\mu g/m^3$	5.0 - 480	664	345	202				
Aliphatic >C ₁₂ -C ₁₆	μg/m ³	5.0 - 480	ND	106	105				
Aromatic >C ₇ -C ₈ (TEX excluded)	μg/m ³	5.0 - 480	ND	ND	ND				
Aromatic $>$ C ₈ -C ₁₀	$\mu g/m^3$	5.0 - 480	ND	44.8	30.9				
Aromatic $>$ C ₁₀ -C ₁₂ Aromatic $>$ C ₁₂ -C ₁₆	μg/m ³ μg/m ³	5.0 - 480 5.0 - 480	ND ND	78.4 ND	58.1 ND				
·	μд/ш	3.0 - 460	ND	ND	ND				
Select Volatile Gases Acetylene	ppm	0.19 - 0.34	ND	ND	ND				
Ethane	ppm	0.19 - 0.34	1.1	ND ND	ND				
Ethylene Methane	ppm ppm	0.19 - 0.34 5.6 - 6.8	0.67 260,000	ND 67	ND ND				
n-Butane	ppm	0.358 - 0.68	2.4	ND	ND				
n-Pentane	ppm	0.19 - 0.34	14	ND	ND				
Propane Propene	ppm ppm	0.19 - 0.34 0.19 - 0.34	0.34 0.22	ND ND	ND ND				
Propyne	ppm	0.38 - 0.68	ND	ND	ND				
Volatile Organic Compounds									
Dichlorodifluoromethane (FREON 12) 1,2-Dichlorotetrafluoroethane	ppbv ppbv	0.20 - 58 0.17 - 16	ND ND	348 34.4	1.60 0.58				
Chloromethane	ppbv	0.30 - 29	ND	ND	1.03				
Vinyl chloride Chloroethane	ppby	0.18 - 17 0.30 - 29	519 ND	0.51 ND	ND ND				
	ppbv		ND		ND				
1,3-Butadiene Trichlorofluoromethane (FREON 11)	ppbv ppbv	0.50 - 48 0.20 - 19	ND ND	ND 50.6	ND 0.42				
Ethanol (ethyl alcohol)	ppbv	23 - 220	322	180	648				
Trichlorotrifluoroethane 2-propanol	ppbv ppbv	0.15 - 14 3.0 - 290	ND ND	ND 3.6	ND 5.1				
2-Propanone	ppbv	0.80 - 76	ND	36.5	18				
Methyl ethyl ketone (MEK) (2-Butanone)	ppbv	3.0 - 290	ND	ND	5.8				
Methyl isobutyl ketone Methyl butyl ketone (MBK) (2-Hexanone)	ppbv ppbv	3.2 - 300 2.0 - 190	ND ND	ND ND	ND ND				
Methyl t-butyl ether (MTBE)	ppbv	0.20 - 19	ND	ND	ND ND				
Ethyl acetate	ppbv	2.2 - 210	ND	ND	ND				
1,1-Dichloroethylene	ppbv	0.25 - 24	ND	1.41	ND				
cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene	ppbv ppbv	0.19 - 18 0.20 - 19	123 30	13.2 ND	0.42 ND				
Methylene chloride(Dichloromethane)	ppbv	0.80 - 120	ND	1.47	1.06				
Chloroform	ppbv	0.15 - 14	ND	18.2	0.52				
Carbon tetrachloride 1,1-Dichloroethane	ppbv ppbv	0.30 - 29 0.20 - 19	ND ND	ND ND	ND ND				
1,2-Dichloroethane	ppbv	0.20 - 19	ND	ND	ND				
Ethylene dibromide	ppbv	0.17 - 16	ND	ND	ND				
1,1,1-Trichloroethane 1,1,2-Trichloroethane	ppbv ppbv	0.30 - 29 0.15 - 14	ND ND	3.45 ND	ND ND				
1,1,2,2-Tetrachloroethane	ppbv	0.20 - 19	ND	ND	ND				
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ppbv ppbv	0.18 - 17 0.17 - 16	ND ND	ND ND	ND ND				
1,2-Dichloropropane Bromomethane	ppbv ppbv	0.40 - 38 0.18 - 17	ND ND	ND ND	ND ND				
Bromoform	ppbv	0.20 - 19	ND	ND	ND				
Bromodichloromethane Dibromochloromethane	ppbv ppbv	0.20 - 19 0.20 - 19	ND ND	ND ND	ND ND				
Trichloroethylene (TCE)	ppbv	0.30 - 29	ND	81.9	1.32				
Tetrachloroethylene (PCE)	ppbv	0.20 - 19	ND	221	ND				
Benzene Toluene	ppbv ppbv	0.18 - 17 0.20 - 81	ND ND	5.17 4.80	0.79 3.95				
Ethylbenzene	ppbv	0.20 - 27	ND	0.75	0.92				
p+m-xylene	ppbv	0.37 - 99	ND	1.89	3.65				
o-xylene Styrene	ppbv ppbv	0.20 - 19 0.20 - 19	ND 42	1.22 ND	1.67 0.37				
4-ethyltoluene	ppbv	2.2 - 210	ND	ND	ND				
1,3,5-Trimethylbenzene	ppbv	1.9 - 48	ND	4.05	ND				
1,2,4-Trimethylbenzene Chlorobenzene	ppby	0.50 - 48	ND ND	2.31 ND	2.74 ND				
Benzyl chloride	ppbv ppbv	0.20 - 19 1.0 - 95	ND ND	ND ND	ND ND				
1,3-Dichlorobenzene	ppbv	0.40 - 38	ND	ND	ND				
1,4-Dichlorobenzene	ppbv	0.40 - 38	ND	ND	ND				
1,2-Dichlorobenzene 1,2,4-Trichlorobenzene	ppbv ppbv	0.40 - 38 2.0 - 190	ND ND	ND ND	ND ND				
Hexachlorobutadiene	ppbv	3.0 - 290	ND	ND	ND				
Hexane Heptane	ppbv ppbv	1.3 - 29 0.30 - 29	17,800 1,970	142 181	ND 0.58				
Cyclohexane	ppbv	0.20 - 19	4,900	219	0.35				
Tetrahydrofuran	ppbv	0.40 - 38	ND	ND	5.14				
1,4-Dioxane Xylene (Total)	ppbv ppbv	2.0 - 190 0.60 - 99	ND ND	ND 3.11	ND 5.31				
Vinyl bromide	ppbv	0.60 - 99	ND ND	ND	ND				
Propene	ppbv	3.9 - 29	371	ND	ND				
2,2,4-Trimethylpentane Carbon disulfide	ppbv	0.20 - 19 0.50 - 48	ND ND	ND 40.5	0.64 3.21				
Vinyl acetate	ppbv ppbv	0.50 - 48 0.20 - 19	ND ND	40.5 ND	3.21 ND				
Notes:									

Tiamat Environmental Consultants Ltd. Electronic Version 02

Results are from sampling completed on Saturday, August 03, 2013.
 ND - Not Detected, less than the limit of method detection.
 For further information, the reader should refer to the laboratory report in Appendix A.


12-435 Phase II ESA - Red Deer Motors Site Historic Waste Disposal Sites, The City of Red Deer


Table 5D
Analytics Results - Soil Vapour - Siloxanes


	Detection Limit		VW-01		VW-02		VW-03	
Parameter			08/03/13					
	mg/m³	ppm	mg/m³	ppm	mg/m³	ppm	mg/m³	ppm
Trimethylsilyl Fluoride			ND	ND	ND	ND	ND	ND
Tetramethylsilane	0.00010 - 0.0022	0.0001 - 0.0006	ND	ND	ND	ND	ND	ND
Methoxytrimethylsilane	0.0032 - 0.0563	0.0007 - 0.0132	ND	ND	ND	ND	ND	ND
Ethoxytrimethylsilane	0.0031 - 0.0543	0.0006 - 0.0112	ND	ND	ND	ND	ND	ND
Trimethylsilanol			0.0338	0.0092	ND	ND	0.0098	0.0027
Isopropoxytrimethylsilane	0.0013 - 0.0229	0.00020 - 0.0042	ND	ND	ND	ND	ND	ND
Trimethoxymethyl Silane #			ND	ND	ND	ND	ND	ND
Hexamethyl Disiloxane - L2	0.00010 - 0.0021	0.0001 - 0.0003	ND	ND	ND	ND	ND	ND
Propoxytrimethylsilane	0.0035 - 0.0621	0.0006 - 0.0115	ND	ND	ND	ND	ND	ND
1-Methylbutoxytrimethylsilane *			ND	ND	ND	ND	ND	ND
Butoxytrimethylsilane *			ND	ND	ND	ND	ND	ND
Trimethoxyvinyl Silane #			ND	ND	ND	ND	ND	ND
Hexamethyl Cyclotrisiloxane - D3			0.1927	0.0212	0.0844	0.0093	0.0146	0.0016
Octamethyl Trisiloxane - L3	0.0002 - 0.0041	0.0001 - 0.0004	ND	ND	ND	ND	ND	ND
Triethoxyvinyl Silane #			ND	ND	ND	ND	ND	ND
Triethoxyethyl Silane #			ND	ND	ND	ND	ND	ND
Octamethyl Cyclotetrasiloxane - D4			0.0739	0.0061	0.0299	0.0025	0.0234	0.0019
Decamethyl Tetrasiloxane - L4	0.0003 - 0.0053	0.0001 - 0.0004	ND	ND	ND	ND	ND	ND
Tetraethylsilicate #			ND	ND	ND	ND	ND	ND
Decamethyl Cyclopentasiloxane - D5			0.0349	0.0023	0.0321	0.0021	0.0420	0.0028
Dodecamethyl Pentasiloxane - L5	0.0030 - 0.0528	0.0002 - 0.0034	ND	ND	ND	ND	ND	ND
Dodecamethyl Cyclohexasiloxane - D6	0.0531	0.0029	ND	ND	0.1454	0.0080	0.1513	0.0083
Sum			0.6503	0.0870	0.4152	0.0432	0.2559	0.0198

- 1) Soil vapour samples collected on Saturday, August 3, 2013.
- 2) ND Not Detected, less than the limit of method detection.
- 3) - No value established in the detection limit.
- 4) VW-01 V=10.0mL, VW-02 V=25mL, VW-03 V=200 mL, where V is volume of air/gas sampled.
- 5) * Semiquanititative (response factor set at 5).
- 6) # Unstable, poor detectability, commercial standards tested.
- 7) For further information, the reader should refer to the laboratory report in Appendix A.

FIGURES

12-435 Phase II ESA – Red Deer Motors Site Historic Waste Disposal Site, The City of Red Deer

APPENDIX A

FIELD PROTOCOLS AND ANALYTICAL DATA, ASCM INFORMATION AND LABORATORY REPORTS

Field Protocols for Soil, Groundwater and Soil Vapour

Monitoring Headspace Vapours and Liquid Levels

Headspace Vapours

Headspace vapours were measured with an RKI Eagle II portable dual sensor gas meter. The combustible vapour sensor is calibrated to hexane; the volatile vapour sensor is calibrated to isobutylene. The sample pump operates at a flow rate of about 944 ml/minute and the instrument response time is rated at 90% reading within 30 seconds, more or less.

Below is a list of the general headspace vapour monitoring protocol employed by Tiamat staff.

- 1. Allow the combustible and volatile sensors in the RKI Eagle II to stabilize after turning the instrument on. Typically, the instrument will stabilize within 3 to 5 minutes. Check the display voltage for the instrument is within the specified normal operating range. Should the display not show zero in ambient air, verify there are no interfering sources of Volatile Organic Compound (VOC) or combustible vapours and perform an instrument "fresh air zero" in a fresh air environment.
- 2. Prior to measuring headspace vapours, the monitoring well screw caps were loosened just before monitoring was conducted.
- 3. The probe tip of the RKI Eagle II was inserted into the top section of the monitoring well using a gloved hand. The gloved hand is held against the top of the monitoring well to limit influences of air currents at the ground surface mixing with the headspace during the period of measurement. Measurement is for a minimum of 30 seconds and maximum of approximately 2 minutes.
- 4. The highest reading from each sensor of the RKI Eagle was recorded in ppm, unless otherwise noted.
- 5. Should a low oxygen alarm activate during the measurement period, monitor the display and withdraw the probe tip once the reading has peaked. Observe the reading while the probe draws fresh air. Record the maximum reading. Repeat this if necessary.

Liquid Levels

Liquid levels are measured by a Heron electronic oil-water interface meter. The interface probe is lowered into the monitoring well until an audible signal is established by the probe. Liquid readings are taken during the lowering of the probe to minimize effects of surface tension and potential erroneous readings. The measurement is taken to the highest point on the monitoring well pipe.

The interface probe is washed with a detergent solution and thoroughly rinsed with clean water between each monitoring well.

Measurement of Water Quality Indices

Standard water quality parameters (pH, electrical conductivity, temperature, dissolved oxygen, total dissolved solids and redox potential) were field measured by a YSI Pro Plus multi-meter. The multi-meter is calibrated prior to each sampling event. Calibration is performed and documented in-house at Tiamat and re-checked by an independent third-party service provider between every third or fourth in-house instrument calibration event. Calibration and service records are maintained on file.

Groundwater Sampling

Groundwater sampling is conducted using either a disposable polyethylene bailer or portable stainless steel submersible pump. The specific sample pump utilizes a low flow sampling technique to minimize losses of VOCs by degassing during collection of water sample. In circumstances where insufficient water is present in a groundwater monitoring well, a dedicated polyethylene bailer is used.

Sampling by Disposable Polyethylene Bailer

Field procedures to perform groundwater sampling using a disposable polyethylene bailer are as follow:

- 1. Loosen the well screw caps and measure the liquid level with a Heron interface probe. Lower the interface probe to the highest side of the monitoring well pipe and take the first reading when an audible signal is established. The probe is rinsed with a detergent solution and clean water between each well.
- 2. Measure the nylon string to an approximate length of about 1 m or so greater than the expected sampling depth.
- 3. Tie the string to the bailer, make a big loop at the other end of the string and tie it to the sampler's hand.
- 4. Lower the bailer into the well, bail the stagnant water and dispose into a pail. Note subjectively any attributes of the purged ground water such as, odour, colour and phase-separate liquid.
- 5. During and following purging, the water indices (pH, electrical conductivity, temperature, dissolved O₂, total dissolved solids, and redox) are measured by a YSI multi-meter using a sample container and bailer or a flow cell and pump combination.
- 6. Repeat steps 4-5 until pH, electrical conductivity and temperature exhibit less than 10% variation, indicating a stabilized groundwater condition.
- 7. Once the indices indicate a stabilized state, water samples are bottled into laboratory supplied bottles and preservatives as per the laboratory instruction.

Phase II ESA – Red Deer Motors Site Historic Waste Disposal Sites, The City of Red Deer

8. Note the approximate volume of water extracted, the visual quality of water, any unusual odour or discolouration and the water indices at the time of sample collection.

9. New bailer, nylon string and disposable nitrile gloves are used at each well to prevent cross contamination and preserve sample integrity.

Low Flow Sampling

Field procedures to perform low flow sampling are as follow:

- 1. Loosen the well screw caps and measure the liquid level with a Heron interface probe. Lower the interface probe to the highest side of the monitoring well pipe and take the first reading when an audible signal is established. The probe will be rinsed with a detergent solution and clean water between each well.
- 2. Once the liquid level is measured, the distance between the bottom of the monitoring well and the liquid level is calculated. The pump will be set near the middle of the water column in order to avoid stirring of sediments at the bottom of the well.
- 3. The required length of the Teflon tubing is determined by adding the length of the middle water column and an additional length to allow for water discharge into a pail. If the monitoring well is an aboveground casing, the length of the aboveground casing will be added as well.
- 4. New Teflon tubing is used at each well to avoid cross contamination.
- 5. Set up 12 V Monsoon stainless steel submersible pump and flow controller with Teflon tubing. Slowly lower the pump to the middle of the water column.
- 6. Adjust the voltage on the flow controller to acquire the required flow rate. Measure the liquid level using the interface probe from time to time. Minimal drawdown is attained once the liquid level drops and stays within the 10% range of the first measurement.
- 7. Once the required flow rate is achieved, attach the Teflon tubing to the inlet of the flow cell with the YSI multi-meter probe and measure the indices with the YSI multi-meter. Connect a discharge Teflon tube to the outlet of the flow cell to allow for water to discharge from the flow cell into a pail.
- 8. Collect groundwater samples after pH, electrical conductivity and temperature stabilize within 10% variation. Apply preservatives as per the laboratory instruction.
- 9. After collecting samples, transfer the pump into a clean pail filled with clean water and let it run for a moment to remove entrapped sediments. Then run the pump in a second pail to ensure thorough flush following the first rinse.
- 10. To avoid confusion, label pails in the sequence where the pump is rinsed. Replace with clean water in the pail as required.

Phase II ESA – Red Deer Motors Site Historic Waste Disposal Sites, The City of Red Deer

Groundwater Sample Handling

The laboratory requires six (6) 40 ml clear glass vials and two (2) 250 ml amber bottles for analyses of Volatile Organic Compounds (VOCs), Benzene, Toluene, Ethylbenzene, Xylenes (BTEX), petroleum hydrocarbon fractions F1 and F2. Check the white preservative tablets are present in each 40 ml vial and 250 ml amber bottle. As well, once filled and capped, confirm each vial and bottle exhibits no notable headspace. If necessary, discard and resample with new vials and bottles.

A 45 micron filter is used to field filter groundwater for analyses of dissolved metals. The filter outlet is placed on top of a sample bottle while water is decanted through a dedicated Teflon tubing attached to the inlet of the filter. Laboratory provided nitric acid is used to preserve the sample. New filter and Teflon tubing are used for each well location.

During field sampling disposable nitrile gloves are worn during sampling and changed between wells. In the event where suspicious cross-contamination occurs, nitrile gloves and sampling bottles are discarded and replaced. Each set of samples is properly labelled and bagged into a dedicated poly bag to prevent potential cross contamination between sample bottles from different well locations. Samples are stored in a cooler with ice to maintain temperature at about 5° C. The coolers are dropped off at a secure laboratory depot with a completed chain of custody at the end of each sampling day for delivery to the laboratory in Calgary, Alberta.

Soil Sampling During Drilling

Soil samples were collected during the advancement of testholes using solid stem auger, hollow stem auger or ODEX tooling. A Geoprobe or small track or truck-mounted drill rig was determined pending the presence of soft ground and the ability to access test locations in a confined or steep slope (more than 10%).

Solid stem auger was used at most of the sites to enable collection of representative soil samples. However, in cases where the test location lies near the river bank or on top of gravels, hollow stem auger or ODEX was employed to drill through the hard sediments and prevent sloughing and enable the installation of a groundwater or soil vapour monitoring well.

When waste material is noted in soil, the drilling continues to the depth where the waste ends and/or the native soil is encountered to ensure complete profiling of the waste material. Bulk soil samples underlying the waste were collected for laboratory analyses; soil samples from each soil bag were also submitted for laboratory analyses. Pending laboratory results, drill cuttings in the soil bags may be disposed at The City of Red Deer Waste Management Facility.

Sampling Soil Vapour Using Summa Canister®

1. Unlock the steel well casing and remove the brass cap from the vapour probe valve. Connect the lab provided Teflon tubing with Swagelok® fitting to the probe valve. Hand-tighten the fitting plus ¼ additional turn using a 9/16 inch wrench. To avoid damage and

12-435

short circuit of the Swagelok[®], care should be taken to avoid over tightening the Swagelok[®] fitting.

- 2. Connect the probe tip of the RKI Eagle II with the Teflon tubing attached to the vapour probe. Open the vapour valve to allow the vapour to flow into the monitoring instrument.
- 3. Start the stop watch to count the purge time. The purge time is calculated by dividing the volume of the 1 inch PVC pipe with the flow rate of the RKI Eagle II.
- 4. For sites with heavy municipal solid waste (MSW) i.e. Lindsay Thurber Comprehensive High School, McKenzie Trail, Montfort, Red Deer College and Red Deer Motors, a minimum of three (3) equivalent volumes of soil vapour are purged prior to collecting a well vapour sample.
- 5. Record combustible and volatile vapours between the initial 30 seconds to two (2) minutes during purging.
- 6. Using the digital Cole-Palmer absolute pressure gauge, record the ambient and probe barometric pressures. The probe pressure is measured by connecting the gauge tip with the Teflon tubing attached to the vapour probe. The vapour probe and the pressure gauge should be on during the measurement.
- 7. Remove the brass cap from the 1.4 L Summa Canister® valve with a 9/16 inch wrench.
- 8. Attach the flow controller to the canister and remove the brass cap from the gauge adapter. Hand tighten the fittings and tighten another ½ turn using a 9/16 wrench.
- 9. Open the valve, record the canister vacuum (this should read between -29 to -25 in Hg and close the valve.
- 10. Connect the adapter with the Teflon tubing to the vapour probe. Hand-tighten the fitting and tighten another ½ turn using a 9/16 inch wrench.
- 11. Open the vapour probe and open the canister valve. Check the gauge periodically to ensure sample flow rate is acceptable.
- 12. When the vacuum reads about -5 inches Hg, close the vapour probe and the valve, disassemble the flow controller and the Teflon tubing, then place the protective brass cap back on the canister valve. Hand tighten the cap and perform another ½ turn using a 9/16 inch wrench.
- 13. It is always a good practice to maintain some vacuum in the canister following sampling. The residual vacuum serves as a check for the integrity of the canister during transport to the laboratory.

Phase II ESA – Red Deer Motors Site Historic Waste Disposal Sites, The City of Red Deer

- 14. Record the canister and the flow controller serial numbers on the field sheet and the chain of custody.
- 15. A dedicated set of Teflon tubing, Swagelok® fitting and gauge with flow controller assembly must be used at each sample well location to prevent cross contamination.

Sampling Soil Vapour Using Tedlar Bag®

- 1. Place the 1 L Tedlar Bag[®] inside the lung box. Connect the Tedlar Bag[®] nozzle with the tubing attached to the brass nipple inside the lung box.
- 2. Perform a full turn counter clockwise to open the valve and go another ¼ turn clockwise. This is to ensure that the valve is properly opened for sampling.
- 3. Connect the Teflon tubing attached to the vapour probe with the exterior brass nipple on the lung box.
- 4. Connect the other exterior brass nipple of the lung box to the SKC pump. Ensure the lung box is closed to prevent air leak during sampling.
- 5. Open the vapour probe valve and activate the SKC pump. The pump will evacuate the lung box causing the Tedlar Bag[®] to expand drawing a sample of soil vapour.
- 6. The SKC pump was set at a flow rate of 0.5 L/min and the volume of the lung box is 4 L. The estimated sampling time is approximately 8 minutes. Check the Tedlar Bag® at about 8 minutes or periodically to verify the progress of sample collection.
- 7. When the Tedlar Bag[®] is approximately 80% full, close the bag valve by turning it clockwise until it is tight. Then turn off the SKC pump and close the vapour probe. To ensure the bag is sufficiently filled, repeat steps 5-7, if necessary.
- 8. Avoid over filling the Tedlar Bag[®]. This will prevent damage to the bag if exposure to change of temperature, altitude and barometric pressure occurs during transport by ground and/or air.

Validation of Analytical Data

Alberta Environment and Sustainable Resource Development (ESRD), formerly Alberta Environment, implemented a Laboratory Data Quality Assurance Policy in October 2001. This policy requires laboratories providing environmental analytical data to meet the accreditation standards set by ESRD. ALS Canada Ltd. and Maxxam Analytics are each accredited by Standards Council of Canada (SCC), which is administered by the Canadian Association for Laboratory Accreditation Inc. (CALA). This accreditation demonstrates ALS Canada Ltd. Laboratories and Maxxam Analytics have consistent laboratory procedures and quality controls meeting national and international standards for staff training, equipment maintenance and

documentation of parameters. The laboratory protocols must be maintained to demonstrate the in lab quality assurance/quality control (QA/QC) procedures are consistently maintained and are paramount to the integrity and reliability of the reported results.

A data quality review was performed for all analytical results reported. The data quality review comprised of the following actions by Tiamat.

- Ensure the Chain of Custody form are properly completed and signed;
- Ensure the requested analyses were performed and reported for the correct samples;
- Calculate and review relative percent differences (RPD), where available, to assess the laboratory precision and analytical variability for each batch of samples;
- Perform independent review of the internal quality control (QC) and quality assurance (QA) practices for the laboratory;
- Confirm the applicable holding times and extraction times for each sample have been met by the laboratory;
- Identify and resolve additional data quality issues with the laboratory.

The Chain of Custody forms submitted for each work order for this project appeared to be properly completed. The Chain of Custody forms show the sample temperature (where applicable) upon receipt at the laboratory and the appropriate sample custody signatures.

Laboratory QC protocols include surrogate recoveries, laboratory duplicates, method blanks, matrix spikes and reference materials, where applicable. QC results published with the sample report comply with the prescribed laboratory QC limits. Thus, analytical results are deemed to be within acceptable variability and a corresponding acceptable level of precision and accuracy.

Tiamat reviews all QA/QC outcomes published with the respective laboratory reports. Discrepancies are reported to the laboratory for follow-up. The laboratory's analytical processes for the specific testing program for this project appear to be acceptable.

The holding times experienced by all samples submitted met the recommended holding time limit for the specified parameter where applicable. Overall, the review and data validation process indicates the analytical results are valid and reliable.

For the Red Deer Motors Site, a total of 2 groundwater samples, 3 Summa Canisters[®] and 6 Tedlar Bags[®] were collected for this Phase II ESA. Note, duplicate Tedlar Bag[®] samples were collected for QA/QC purposes.

Sample containers were provided by the laboratory. Collected samples are appropriately packed in sample coolers and shipped from Red Deer to Calgary by a third-party courier contracted by

12-435 A-8 of 9

Phase II ESA – Red Deer Motors Site Historic Waste Disposal Sites, The City of Red Deer

the respective laboratory. It is presumed the courier handles the sample coolers with appropriate care. There were no reported issues with the samples upon receipt at the laboratory.

Tiamat applies a uniform field protocol consistent with industry practice to ensure the integrity of each sample collected for laboratory analysis. Coupled with the in-house laboratory control measures implemented by each laboratory, the overall QA/QC objectives are deemed to be satisfied.

Field Duplicate Evaluation

An evaluation of duplicate variation is undertaken to assess the precision of field sampling and laboratory analyses. For comparison, the relative percent difference (RPD) is calculated.

RPD is defined as the absolute difference between two results divided by the average of the two results multiplied by one hundred. Where one result is below detection limit, and its duplicate result is above detection limit, the non-detect concentration is assigned the detection limit for the purposes of calculating RPD.

Groundwater duplicates should be taken during groundwater sampling events at an average of every ten (10) samples or about 10% of the sample set.

For groundwater samples, the objective for RPD values is to be not more than 20%.

Field Blank Assessment

A field blank is a sample of laboratory-supplied reverse osmosis water poured into a laboratory supplied sample container in the field and shipped to the laboratory with the field samples using a unique sample identifier. The purpose of a field blank is to assess potential cross contamination from field conditions during sampling. For this initial assessment, no previous site specific analyte data was available, thus field blanks were not deemed to be necessary.

Trip Blank Assessment

A trip blank is a clean sample container of reverse osmosis water that is taken to the sampling site and transported back to the laboratory for analysis without having been exposed to sampling procedures. The trip blanks prepared by the laboratory are kept within the sample containers at all times and never opened in the field. Analyses of trip blanks indicate whether a sample was contaminated during shipment from the laboratory to the field and from the field to the laboratory. Tiamat's standard sample bottle procedure is to have each set of sample bottles placed into clean new plastic bags. This prevents direct contact between other sample bottles in the sample cooler.

Field Duplicates

Duplicate samples are samples collected sequentially at the time of sampling. Generally the same compounds should be detected in both samples. For this initial assessment, there have been no history of problematic analytical parameters and field duplicates were not warranted.

12-435 A-9 of 9

Phase II ESA – Red Deer Motors Site Historic Waste Disposal Sites, The City of Red Deer

Laboratory Quality Control

The following sections outline the quality control measures which the laboratory implements. Generally, Maxxam's and ALS's QA/QC samples were tested at least once per analytical batch.

<u>Laboratory Duplicate Assessment</u>

Lab duplicates are two separate aliquots of water (from one location but from different vials) that are analysed in the laboratory to assess laboratory analytical precision. For comparison between duplicates a calculation of relative percent difference (RPD) was carried out by the laboratory. No laboratory duplicate had any analytes with an RPD greater than the laboratory control limits. This quantitatively affirms the QA/QC and the precision of a sample result.

Matrix Spike Assessment

A matrix spike is a sample prepared by adding a known mass of a target analyte(s) to a specified amount of sample (matrix). Spiked samples are used to determine the effect of the matrix on a method's recovery efficiency. The laboratory states their control limits based on 99% confidence interval in the quality control report section of the laboratory analytical report. Control limits for recoveries are often statistically determined by the method, but under some conditions may revert to standard method limits.

Generally, matrix spike recoveries for groundwater tests were within laboratory control limits. The results of matrix spike recovery confirm the protocols and the acceptable limits established by the laboratory for precision and accuracy was met.

SURVEYING AND MAPPING DIVISION

Alberta Survey Control Marker (ASCM) Information

MASCOT DSS-1

Published 94-05-24 Revising Project Published Revising Project Published NON COORDINATE REVISIONS 1983-12-08 FIRST MARKER LOCATION DESCRIPTION ENTERED 2003-03-12 "MAPSHEET NAME" AND/OR "MAPSHEET NO" CHANGED	MARKER CONDITION COMME MARKER REPORTED IN GOO COORDINATE HISTORY COM HORZ 94-05-24	OD CONDITION MMENTS	A NAD83 READJUSTMEN		ed Updated 27 1992-12-07
Published 94-05-24 Revising Project Published Revising Project Published	MARKER REPORTED IN GOO	OD CONDITION		_	-
Published 94-05-24 Revising Project Published Revising Project Published				_	-
Published 94-05-24 Revising Project Published Revising Project Published NON COORDINATE REVISIONS 1983-12-08 FIRST MARKER LOCATION DESCRIPTION ENTERED				_	-
Published 94-05-24 Revising Project Published Revising Project Published	 MARKER CONDITION COMME	ENTS		 Inspecte	ed Updated
Published 94-05-24 Revising Project Published Revising Project Published					
Published 94-05-24 Revising Project Published Revising Project					
Published 94-05-24 Revising Project Published					
Published 94-05-24					
Revising Project NAD83					
Originating Project 75029 75029 Published 83-12-09 83-12-09	57 AVE; 1.9M S OF E PF			110101	
COORDINATE HISTORY HORZ VERT	ON E/S OF 57 AVE AT WAR	ATSON ST; IN BLVD IN	PARK; 4.1M E OF E	-	1. 1903-12-00
Prime Vert Defl,ETA(+E) 4.7 s 2 s Geoid_Ellip Separation -18.19 m 1 m			ANDSCAPED.		 d: 1983-12-08
Meridian Defl,XI(+N) 2.0 s 2 s	ASC BRASS TABLET ON A				
Component Magnitude Std Dev	MARKER TYPE				d: 1992-12-07
GEOID DATA (GSD95) Updated: 96-01-06	229419 790+12.56 237446 790+12.09.1	572.020 1 33 600.034 1 2	3/2 0.999767 344 7/1 0.999766 289	33 16.08 50 41.32	2.8 0.02 2.3 0.01
Station Combined Factor 0.999766	56838 074197 453613 790+12.62 91850 790+12.57 58404 790+12.11.7 229419 790+12.56	540.720 1 30	0/2 0.999766 326	09 21.88	2.5 0.01
Convergence 0 08 05.52 dms Station Ellipsoid Factor 0.999865	453613 790+12.62 91850 790+12 57	351.297 1 33 511.362 1 33	1/1 0.999766 155	00 52.50	2.6 -0.01
Northing 5790983.749 m Easting 11646.310 m	56838 074197	(m)(cm) 255.723 1 53	1/2 0.999765 355	(dms) 18 47.47	(s) (s) 3.0 0.01
Scale Factor 0.999900 At Ref Mer 114		Distance Dev Ord	der Factor	Bearing	Dev Corr
3TM COORDINATES	ADJACENT MARKERS (calc				d: 2008-11-21
Elevation 881.665 m Vert Class INTEGRATED , SPIRIT LEVELS	For current information cal (780) 427-3143 FAX:	(780) 427-1493	Marker Condition	GOOD	92-11-27
Vert Datum CVD28 Updated: 1983-12-09	Last Updated 20		Mapsheet Name Mapsheet Number		
nord order introduction , one in	Date Printed 20		Tablet Markings	790+12.5	50
Longitude 113 49 45.98215 dms Horz Class INTEGRATED , ORDER 2	Marker Installed				
Horz Datum NAD83 Updated: 1994-05-24 Latitude 52 15 12.55999 dms Longitude 113 49 45.98215 dms Horz Class INTEGRATED , ORDER 2	Marker Installed	74-03	ASCM	269191	

HISTORY 57903 12 50

SURVEYING AND MAPPING DIVISION

Alberta Survey Control Marker (ASCM) Information

MASCOT DSS-1

	MASCOI DSS-I	
Horz Datum NAD83 Updated: 1995-04-03	ASCM 376	673
Latitude 52 14 19.56624 dms	Marker Installed 92-11	
Longitude 113 49 10.32912 dms	Tablet Markings 3766	73
Horz Class INTEGRATED , ORDER 2	Date Printed 2013-08-21	
	Last Updated 2006-08-31 Mapsheet Name RED 1	
Vert Datum CVD28	-	+ 016
	For current information call Geodetic Survey	00 11 07
Vert Class INTEGRATED , SPIRIT LEVELS	(780) 427-3143 FAX: (780) 427-1493 Marker Condition GOOD	92-11-27
3TM COORDINATES		ated: 2006-08-31
Scale Factor 0.999900 At Ref Mer 114	ACCM Tablet	id Std T-t
Scale Factor 0.999900 At Rel Mer 114	ASCM Tablet Horizontal Std PPM/ Grid/ Grnd Gr To Markings Distance Dev Order Factor Beari:	ng Dev Corr
Northing 5789347.575 m	(m)(cm) (dm	
Easting 12326.633 m	112219 787+16.27 418.697 1 29/1 0.999768 86 31 40.	
Convergence 0 08 33.61 dms	205575 787+16.22 492.211 1 28/2 0.999767 48 12 19.	65 2.3 0.01
Station Ellipsoid Factor 0.999865	358986 358986 665.236 1 24/1 0.999767 8 56 33.	21 2.0 0.02
Station Combined Factor 0.999767	205575 787+16.22 492.211 1 28/2 0.999767 48 12 19. 358986 358986 665.236 1 24/1 0.999767 8 56 33. 72926 075182 691.469 1 20/1 0.999766 210 02 43.	81 1.8 -0.02
	27391 787+16.24 785.463 1 20/1 0.999766 26 09 43.	22 1.7 0.02
GEOID DATA (GSD95) Updated: 96-01-06	271460 790+16.175 1123.727 1 16/1 0.999767 17 52 34.	
Component Magnitude Std Dev	MARKER TYPE Upd:	 ated: 1994-09-19
Component Magnitude Std Dev	MARKER TIPE OPU	aceu: 1994-09-19
Meridian Defl,XI(+N) 2.1 s 2 s	ASC CAP ON 5 CM SQ HEAVY WALL STEEL PIPE 4.2 M LONG WITH HELIX BAS	E
Prime Vert Defl,ETA(+E) 4.4 s 2 s	3CM BGL; NO GP	
Geoid_Ellip Separation -18.19 m 1 m		
	MARKER LOCATION Upda	ated: 1994-09-19
COORDINATE HISTORY HORZ VERT		
	NEAR SE COR OF TAYLOR DRIVE AND 22 ST; IN GRASS BLVD; 4.9M S OF S	F.O.C. 22 ST;
Originating Project 92056 92056	16.6M E OF E F.O.C. TAYLOR DRIVE.	
Published 95-04-03 95-04-03		
Revising Project		
Published		
Revising Project		
Published Revising Project		
Published		
Published		
NON COORDINATE REVISIONS		
non coolidamia navadation		
1994-09-19 FIRST MARKER LOCATION	MARKER CONDITION COMMENTS Insp	ected Updated
DESCRIPTION ENTERED	•	•
2003-03-12 "MAPSHEET NAME" AND/OR		
"MAPSHEET NO" CHANGED		
1994-09-19 INSTALLATION DATE AND TABLET		
MARKINGS ENTERED		
	COORDINATE HISTORY COMMENTS	
	HORZ	
HISTORICAL/OTHER MARKER NAMES		
	VERT	

SURVEYING AND MAPPING DIVISION

Alberta Survey Control Marker (ASCM) Information

MASCOT DSS-1

Warra Daham M2D02	MASCOT DSS-1	7.00M 204F00	
Horz Datum NAD83 Updated: 1994-05-24 Latitude 52 16 32.45563 dms	Marker Installed	ASCM 384792	
Longitude 113 48 50.96112 dms	Marker installed	Tablet Markings 793+16.124	
Horz Class INTEGRATED , ORDER 2	Date Printed 2	_	
HOLZ CLUBB INTEGRATED , ORDER Z	Last Updated 2		
Vert Datum CVD28 Updated: 1986-10-08	East opaatea 2	Mapsheet Number 5793 + 016	
Elevation 857.582 m	For current information ca		
Vert Class INTEGRATED , SPIRIT LEVELS		(780) 427-1493 Marker Condition GOOD 86-01	-29
3TM COORDINATES	ADJACENT MARKERS (cal	culated) Updated: 1994-0	6-07
Scale Factor 0.999900 At Ref Mer 114	ASCM Tablet	Horizontal Std PPM/ Grid/ Grnd Grid Std Distance Dev Order Factor Bearing Dev Co	T-t
	To Markings	Distance Dev Order Factor Bearing Dev Co	orr
Northing 5793455.559 m		(m)(cm) (dms) (s)	(s)
Easting 12683.580 m	489674 793+16.122	186.788 1 48/2 0.999773 0 22 23.11 3.8 0 193.627 1 41/2 0.999769 68 22 57.56 3.3 0 208.391 1 48/2 0.999770 180 05 38.59 4.0 -0 220.501 1 63/2 0.999772 295 39 08.08 5.3 0 291.491 1 38/2 0.999769 227 40 15.66 3.2 -0	.01
Convergence 0 08 49.19 dms	425314 793+16.123	193.627 1 41/2 0.999769 68 22 57.56 3.3 0	.00
Station Ellipsoid Factor 0.999869	329060 793+16.125	208.391 1 48/2 0.999770 180 05 38.59 4.0 -0	.01
Station Combined Factor 0.999771	231654 793+16.5.6	220.501 1 63/2 0.999772 295 39 08.08 5.3 0	.00
	122424 793+16.5.3	291.491 1 38/2 0.999769 227 40 15.66 3.2 -0	.01
GEOID DATA (GSD95) Updated: 96-01-06		307.374 1 36/2 0.999772 32 06 11.21 2.9 0	
Component Magnitude Std Dev		Updated: 1986-1	
Meridian Defl,XI(+N) 2.1 s 2 s	ASC BRASS TABLET IN C	ONIC .	
Prime Vert Defl,ETA(+E) 4.6 s 2 s	TIGO BIGIGO TIBBELL IN C	240	
Geoid_Ellip Separation -18.24 m 1 m			
	MARKER LOCATION	Updated: 1986-1	0-08
COORDINATE HISTORY HORZ VERT		<u>-</u>	
	NEAR SW COR 50 (GAETZ	AVE RIVER BRIDGE; IN SIDEWALK ON ABUTMENT;	
Originating Project 85050 85050	1.000M E OF METAL HAN	DRAIL; 1.400M W OF CONC BARRIER; 6.300M N OF	
Published 86-10-08 86-10-08	S LIMIT OF METAL HAND	RAIL	
Revising Project NAD83			
Published 94-05-24			
Revising Project			
Published			
Revising Project			
Published			
NON COORDINATE REVISIONS			
1986-10-08 FIRST MARKER LOCATION	MARKER CONDITION COMM	ENTS Inspected Upda	ated
DESCRIPTION ENTERED			
2003-03-12 "MAPSHEET NAME" AND/OR			
"MAPSHEET NO" CHANGED			
		AMENITIC	
	COORDINATE HISTORY CO		
	HORZ 94-05-24	ALBERTA NAD83 READJUSTMENT	
HISTORICAL/OTHER MARKER NAMES			
	VERT		
	VERI		
OLD ASC # 57933 16 124	VERI		

HISTORY 57933 16 124

12-435 Phase II ESA – Red Deer Motors Site Historic Waste Disposal Site, The City of Red Deer

SOIL REPORTS

TIAMAT ENVIRONMENTAL ATTN: LEON MAH UNIT 107, 2719 - 7TH AVENUE NE

CALGARY AB T2A 2L9

Date Received: 28-JUN-13 Report Date:

16-JUL-13 14:53 (MT)

Version:

FINAL

Client Phone: 403-640-9009

Certificate of Analysis

Lab Work Order #: L1324834

Project P.O. #:

NOT SUBMITTED

Job Reference:

12-435

C of C Numbers:

10-317479

Legal Site Desc:

Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

Lab ID	Sample ID	Test Description	Result	Qualifier	D.L.	Units	Extracted	Analyzed	Ву
L1324834-3	RDM TH-01@9'-10'						: :		
Sample Date:	JAL/ LTM on 26-JUN-13								
Matrix:	SOIŁ		i						
	Class II Landfill Pkg	w/ Paint Filter							
	Mercury (Hg)-L	•	<0.010		0.01	mg/L		08-JUL-13	SHT
	Paint Filter Tes		PASS	:				06-JUL-13	NPA
	Flash Point	^	>75	:	30	Deg. C		06-JUL-13	NPA
			!				;	1	i
	pН		7,71	:	0.1	pН		08-JUL-13	KJAY
	TCLP Leachable			·				50 UU 30	
	Silver (Ag)-Lea		<0.50	i	0.5	mg/L		06-JUL-13	LGR
	Arsenic (As)-Le		<0.20		0.2 5	mg/L	:	06-JUL-13	LGR
	Boron (B)-Leac Barium (Ba)-Le		<5.0 <5.0		5	mg/L mg/L	, ;	06-JUL-13 06-JUL-13	LGR LGR
	Beryllium (Be)-l		<0.50		0.5	mg/L		06-JUL-13	LGR
	Cadmium (Cd)-		<0.050	:	0.05	mg/L		06-JUL-13	LGR
	Cobalt (Co)-Lea		<5.0		5	mg/L		06-JUL-13	LGR
	Chromium (Cr)-		<0.50		0.5	mg/L		06-JUL-13	LGR
	Copper (Cu)-Le		<5.0		5	mg/L		06-JUL-13	LGR
	Iron (Fe)-Leach	nable	<5.0		5	mg/L		06-JUL-13	LGR
	Nickel (Ni)-Lead	chable	< 0.50		0.5	mg/L		06-JUL-13	LGR
	Lead (Pb)-Lead	chable	<0.50		0.5	mg/L		06-JUL-13	LGR
	Antimony (Sb)-	Leachable	<5.0		5	mg/L		06-JUL-13	LGR
	Selenium (Se)-	Leachable	<0.20		0.2	mg/L		06-JUL-13	LGR
	Thallium (TI)-Le	eachable	<0.50		0.5	mg/L		06-JUL-13	LGR
	Uranium (U)-Le		<1.0		1	mg/L		06-JUL-13	LGR
	Vanadium (V)-l		<5.0		5	mg/L		06-JUL-13	LGR
	Zinc (Zn)-Leach		<5.0		5	. mg/L	· :	06-JUL-13	LGR
	Zirconium (Zr)-l		<5.0		5	mg/L		06-JUL-13	LGR
	TCLP Leachable	BTEX	:						
	Benzene		<0.0050	i	0.005	mg/L	06-JUL-13	06-JUL-13	VVS
	Toluene		<0.0050		0.005 0.005	mg/L	06-JUL-13 06-JUL-13	06-JUL-13 06-JUL-13	VVS
	Ethylbenzene Xylenes		<0.0050 <0.0050		0.005	mg/L mg/L	: 06-JUL-13	06-JUL-13	VVS
			. <0.0030		0.003	. myrc	. 00-00f-19	100-301-13	+
L1324834-4	RDM TH-01@17'		1		:		:		!
•	JAL/ LTM on 26-JUN-13		:			:		i	1
Matrix:	SOIL					* :			
	Metals in Soil by IC	PMS (Alberta Tier 1)					l	!	
	Metals in Soil by	CRC ICPMS	1		:	!			
	Antimony (Sb)		0.44		0.2	mg/kg		07-JUL-13	BOC
	Arsenic (As)		7.18	İ	0.2	mg/kg	07-JUL-13	07-JUL-13	BOC
	Barium (Ba)		242		5	mg/kg	07-JUL-13	07-JUL-13	BOC
	Beryllium (Be)		<1.0		1	mg/kg	07-JUL-13	07-JUL-13	BOC
	Cadmium (Cd)		<0.50		0.5	mg/kg	0.7-JUL-13	07-JUL-13	BOC
	Chromium (Cr)		35.7		0.5	mg/kg	07-JUL-13	07-JUL-13	BOC
	Cobalt (Co)		7.8		1	mg/kg	07-JUL-13 07-JUL-13	07-JUL-13	BOC
	Copper (Cu) Lead (Pb)		18.3 8.0		2 5	mg/kg mg/kg	07-JUL-13 07-JUL-13	07-JUL-13 07-JUL-13	BOC
	Molybdenum (N	Ma)	1.2		1 1	mg/kg	07-JUL-13	07-30L-13 07-JUL-13	BOC
	Nickel (Ni)	,	28.6	i	2	mg/kg	i	07-JUL-13	BOC
	Selenium (Se)		<0.50	i	0.5	mg/kg	07-JUL-13	07-JUL-13	BOC
	Silver (Ag)		<1.0		1	mg/kg	07-JUL-13	07-JUL-13	BOC
	Thallium (TI)		<0.50		0.5	mg/kg	07-JUL-13	07-JUL-13	BOC
	Tin (Sn)		<2.0		2	mg/kg		07-JUL-13	BOC
	` '			1	:	!			3

Lab ID	Sample 1D	Test Description	Result	Qualifier	D.L.	Units	Extracted	Analyzed	Ву
L1324834-4	RDM TH-01@17'		:						
Sample Date: .	AL/ LTM on 26-JUN-13.		: !		: :)	:	İ	:
Matrix: \$	SOIL		!		:	:	:		:
	Metals In Soil by ICF	MS /Alberta Tier 1\					:		
	Metals in Soil by (•		İ	:				:
	Uranium (U)	ONO TOT INO	<2.0		2	mg/kg	07-JUL-13	07-JUL-13	BOC
	Vanadium (V)		38.4		1	mg/kg	07-JUL-13	07-JUL-13	ВОС
	Zinc (Zn)		63		10	mg/kg	07-JUL-13	07-JUL-13	BOC
	Mercury In Soil by	CVAAS				:	:		:
	Mercury (Hg)	,	<0.050		0.05	mg/kg	07-JUL-13	08-JUL-13	QA
							:	30 1111 30	
	Boron (B), Hot \	Water Ext.	1.26		0.1	mg/kg	1	16-JUL-13	AMCB
	% Saturation		74.0		1	%		08-JUL-13	KJAY
	Nitrite-N		<1.0	!	1	mg/L	,	09-JUL-13	RMMS
	Nitrate (as N)		<1.0		1	mg/L		09-JUL-13	RMMS
	Hexavalent Chro	omium	<0.10		0.1	mg/kg	10-JUL-13	10-JUL-13	JΤV
	Chloride (CI)		255	DŁA	20	mg/L	:	03-JUL-13	SCL
	% Moisture		14.5		0.1	%	. 29-JUN-13	02-JUL-13	GRP
	Salinity in mg/kg		,					:	
	Chloride (CI)		188		15	mg/kg	:	09-JUL-13	
	Nitrate-N		<0.74		0.74	mg/kg	:	09-JUL-13	
	Nitrite-N		< 0.74		0.74	mg/kg	:	09-JUL-13	:
	EPA 8260 Volatile	Organics						:	
	Dichloredifluoro	•	< 0.010		0.01	mg/kg	02-JUL-13	03-JUL-13	CFB
	Chloromethane		<0.10		0.1	mg/kg	02-JUL-13	03-JUL-13	CFB
	Vinyl chloride		<0:20	!	0.2	mg/kg	02-JUL-13	03-JUL-13	CFB
	Bromomethane		<0.10		0.1	mg/kg	02-JUL-13	03-JUL-13	CFB
	Chloroethane		<0.10		0.1	mg/kg	02-JUL-13	03-JUL-13	CFB
	Trichlorofluorom		<0.010		0.01	mg/kg	02-JUL-13	03-JUL-13	CFB
	1,1-Dichloroethe		<0.010		0.01	mg/kg	02-JUL-13	03-JUL-13	CFB
	Methylene chlor		<0.010		0.01	mg/kg	02-JUL-13	03-JUL-13	CFB
	trans-1,2-Dichlo		<0.010	:	0.01	mg/kg	02-JUL-13 02-JUL-13	03-JUL-13 03-JUL-13	CFB CFB
	1,1-Dichłoroetha 2,2-Dichłoroproj		<0.010 <0.010		0.01	mg/kg mg/kg	02-JUL-13	03-JUL-13	CFB
	cis-1,2-Dichloro		< 0.010	<i>:</i>	0.01	mg/kg	02-JUL-13	03-30L-13	CFB
	Chtoroform	GIIGING	<0.010		0.01	mg/kg	02-JUL-13	03-JUL-13	CFB
	Bromochlorome	ethane	<0.010	}	0.01	mg/kg	02-JUL-13	03√JUL-13	CFB
	1,2-Dichloroetha	ane	<0.010	:	0.01	mg/kg	02-JUL-13	03-JUL-13	CFB
	1,1,1-Trichloroe		< 0.010	:	0.01	mg/kg	02-JUL-13	03-JUL-13	: CFB
	1,1-Dichloroprop		<0.010		10.0	mg/kg	02-JUL-13	03-JUL-13	CFB
	Carbon tetrachle		<0.010		0.01	mg/kg	02-JUL-13	03-JUL-13	CFB
	Benzene		< 0.010	;	0.01	mg/kg	02-JUL-13	03-JUL-13	CFB
	Trichloroethene		<0.010		0.01	mg/kg	02-JUL-13	03-JUL-13	CFB
	1,2-Dichloroprop		< 0.010	:	0.01	mg/kg	02-JUL-13	03-JUL-13	CFB
	Bromodichloron		<0.010) :	0.01	mg/kg	02-JUL-13	03-JUL-13	CFB
	Dibromomethan		<0.010	:	0.01	mg/kg	02-JUL-13	03-JUL-13	CFB
	cis-1,3-Dichloro		<0.010	;	0.01	mg/kg		03-JUL-13	CFB
	trans-1,3-Dichlo	propropene	<0.010	:	0.01	mg/kg		03-JUL-13	CFB
	Toluene	thane	<0.010 <0.010	:	0.01	mg/kg mg/kg	02-JUL-13 02-JUL-13	03-JUL-13 03-JUL-13	CFB CFB
	1,1,2-Trichloroe 1,3-Dichloroprop		<0.010	:	0.01	mg/kg	02-30L-13	03-JUL-13	CFB
	Tetrachloroethe	•	<0.010	:	0.01	mg/kg	02-JUL-13	03-JUL-13	CFB
	Dibromochloron		< 0.010		0.01	mg/kg	02-JUL-13	03-JUL-13	CFB
	DISTORTOGRASSON	rises (MIPW	30.075	1	2.01			122 232 70	1

ab ID	Sample ID Test Description	Result	Qualifier		Units	Extracted	Analyzed	Ву
24834-4 F	RDM TH-01@17"		i :		:			:
iple Date: JAL/	LTM on 26-JUN-13	1			1			
rix: SOIL	-	!			:	:	:	:
		:			:	1		
	EPA 8260 Volatile Organics					:	İ	
	1,2-Dibromoethane	< 0.010		0.01	mg/kg	02-JUL-13	03-JUL-13	CF
	Chlorobenzene	<0.010		0.01	mg/kg	02-JUL-13	03-JUL-13	CF
	Ethylbenzene	<0.010		0.01	mg/kg	02-JUL-13	03-JUL-13	CF
	1,1,1,2-Tetrachloroethane	< 0.010	1	0.01	mg/kg	02-JUL-13	03-JUL-13	CF
	m+p-Xylenes	< 0.010		0.01	mg/kg	02-JUL-13	03-JUL-13	CF
	o-Xylene	< 0.010	1	0.01	mg/kg	02-JUL-13	03-JUL-13	CI
	Styrene	< 0.010	1	0.01	mg/kg	02-JUL-13	03-JUL-13	CI
	Bromoform	< 0.010		0.01	mg/kg	02-JUL-13	03-JUL-13	CF
	Isopropylbenzene	< 0.010	1	0.01	mg/kg	02-JUL-13	03-JUL-13	CF
	1,1,2,2-Tetrachloroethane	< 0.050		0.05	mg/kg	02-JUL-13	03-JUL-13	CF
	1,2,3-Trichloropropane	< 0.020		0.02	mg/kg	02-JUL-13	03-JUL-13	CF
	n-Propylbenzene	< 0.010		0.01	mg/kg	02-JUL-13	03-JUL-13	CF
	Bromobenzene	< 0.010] ;	0.01	mg/kg	02-JUL-13	03-JUL-13	CF
	1,3,5-Trimethylbenzene	< 0.010		0.01	mg/kg	02-JUL-13	03-JUL-13	CF
	2-Chlorotoluene	<0.010		0.01	mg/kg	02-JUL-13	03-JUL-13	CF
	4-Chlorotoluene	<0.010		0.01	mg/kg	02-JUL-13	03-JUL-13	CF
	tert-Butylbenzene	<0.010		0.01	mg/kg	02-JUL-13	03-JUL-13	Cf
	1,2,4-Trimethylbenzene	0.013		0.01	mg/kg	02-JUL-13	03-JUL-13	CF
	sec-Butylbenzene	<0.010		0.01	mg/kg	02-JUL-13	03-JUL-13	CF
	p-Isopropyltoluene	< 0.010	: :	0.01	mg/kg	02-JUL-13	03-JUL-13	: CF
	1,3-Dichlorobenzene	< 0.010		0.01	mg/kg	02-JUL-13	03-JUL-13	CF
	1,4-Dichlorobenzene	<0.010		0.01	mg/kg	02-JUL-13	03-JUL-13	CF
	n-Butylbenzene	<0.010	1	0.01	mg/kg	02-JUL-13	03-JUL-13	CF
	1,2-Dichlorobenzene	<0.010		0.01	mg/kg	02-JUL-13	03-JUL-13	: CF
	1,2-Dibromo-3-chloropropane	< 0.010	;	0.01	mg/kg	02-JUL-13	03-JUL-13	CF
	1,2,4-Trichlorobenzene	< 0.010	:	0.01	mg/kg	02-JUL-13	03-JUL-13	: CF
	Hexachlorobutadiene	< 0.010		0.01	mg/kg	02-JUL-13	03-JUL-13	: CF
	1,2,3-Trichlorobenzene	< 0.010	1	0.01	mg/kg	02-JUL-13	03-JUL-13	CF
Surrogate:	1,4-Difluorobenzene	106.4	:	N/A	%	02-JUL-13	03-JUL-13	CF
Surrogate:	4-Bromofluorobenzene	104.0		N/A	%	02-JUL-13	03-JUL-13	CF
Surrogate:	3,4-Dichlorotoluene	94.8		N/A	: %	02-JUL-13	03-JUL-13	CF
-	CCME BTEX + Styrene, F1 TO F4		;					: -
	CCME Total Hydrocarbons	;			:			
	F1 (C6-C10)	<10		10	mg/kg	:	03-JUL-13	
	F1-BTEX	<10		10	mg/kg	:	03-JUL-13	
	F2 (C10-C16)	<25	1	25	mg/kg		03-JUL-13	:
	F3 (C16-C34)	117	:	50	mg/kg	!	03-JUL-13	:
	F4 (C34-G50)	<50		50	mg/kg	1	03-JUL-13	
	Total Hydrocarbons (C6-C50)	117		50	mg/kg	:	03-JUL-13	1
	Chromatogram to baseline at nC50	YES		•	. marka		03-JUL-13	
					:	i	00 002 10	1
	CCME F2-4 Hydrocarbons Prep/Analysis Dates					29-JUN-13	02-JUL-13	JD
Surrogate:	2-Bromobenzotritluoride	102.1	:	N/A	%	29-JUN-13	02-JUL-13	JD
contigate.		102.1		1817	. 10	: 23-00IN-13	06-006-10	: 04
	BTEX, Styrene and F1 (C6-C10)	0.0050		0.005	i i	00 (18) 40	00 11 2 40	:
	Benzene	<0.0050		0.005	mg/kg	29-JUN-13	02-JUL-13	CF
	Toluene	<0.050		0.05	mg/kg	1	02-JUL-13	CF
	Ethylbenzene o-Xylene	<0.015		0.015 0.05	mg/kg	29-JUN-13	02-JUL-13	CF
	•	<0.050	:		mg/kg	:	02-JUL-13	CF
	m+p-Xylene	< 0.050	1	0.05	mg/kg	29-JUN-13	02-JUL-13	: CF

b ID Sample ID Test Description	Result Q	ualifier D.L.	+	Extracted	Analyzed	↓ Ву
4834-4 RDM TH-01@17'		:				:
ple Date: JAL/ LTM on 26-JUN-13		:		:	1	;
ix: SOIL		;		:		:
					7	:
CCME BTEX + Styrene, F1 TO F4		:	:	:		
BTEX, Styrene and F1 (C6-C10)		i	:			í
Xylenes	<0.10	0.1		29-JUN-13	02-JUL-13	CF
Styrene	<0.050	0.05	mg/kg	29-JUN-13	02-JUL-13	CF
Surrogate: Chlorobenzene	87.9	N/A	%	29-JUN-13	02-JUL-13	CF
					+	÷
				!	1	•
		i	:			:
	:	į.		:	:	:
			:	İ	İ	İ
		į		!	1	
		j	!	į		İ
		ļ	•		!	
		ļ	:	! !		į
		İ		!		
			:	:		:
		:	:			
		i .	!		:	!
		:	:	i		i
		:			:	!
			:	!		!
		}		į	i	
)				!
		:		:		
		1	:	:	i	i
		:	:	:	:	
		£	•	:		:
		}				
		1		:	:	!
			1			:
	!	:				
	!			ł		:
				:	÷	
			1	•		1
		i				1
		İ		:		}
		İ		:		į.
	:			:		
	j		:			1
			:	:	i	
			:			1
						i
					!	
			:	:	i	!
		į	į		i	
			:		!	l
					:	
	: :	:	i			
	1		ļ		İ	
	1	j	:	:	!	:
		:	!		!	
	the state of the s					

Methodology Reference

Test Description Methodology Reference (In-House Standard **ALS Test Code** Operating Procedures which Generally Follow:) NO2-SAR-CL Nitrite-N APHA 4110 B - ION CHROMATOGRAPHY **HG-TCLP-CL** Mercury (Hg) - TCLP APHA 3112 B-AAS Cold Vapor F2-4-TMB-CL CCME F2-4 Hydrocarbons CCME CWS-PHC Dec-2000 - Pub# 1310 HG-200.2-CVAA-ED Mercury in Soil by CVAAS EPA 200.2/245.1 NO3-SAR-CL Nitrate-N APHA 4110 B - IC SAL-MG/KG-CALC-CL Salinity in mg/kg Manual Calculation SAT-PCNT-CL % Saturation CSSS 18.2-Calculation BTX-TCLP-CL TCLP Leachable BTEX EPA 5030/8015& 8260-P&T GC-MS/FID CL-SAR-CL Chloride (CI) (Saturated Paste) CSSS CH15/EPA300.1 C-TOT-ORG-LECO-SK Organic Carbon by combustion method SSSA (1996) p. 973 FLASH-PMCC-AUTO-CL Pensky-Martens Closed Cup Flashpoint ASTM D-93-10a Flash point tester MET-200.2-CCMS-ED Metals in Soil by CRC ICPMS EPA 200.2/6020A PREP-200.2-ED Acid Digestion Prep for Metals in Soil EPA 200.2 PREP-MOISTURE-CL % Moisture Oven dry 105C-Gravimetric VOC-8260-CL EPA 8260 Volatile Organics SW 846 8260-GC-MS PAINT FILTER-CL Paint Filter Test EPA SW846-9095 PH-1:2-CL pH (1:2 Soil:Water Extraction) CSSS 16.3 - pH of 1:2 water extract BTEX, Styrene and F1 (C6-C10) BTXS.F1-CL CCME CWS-PHC Dec-2000 - Pub# 1310 MET-TCLP-ICP-CL TCLP Leachable Metals EPA SW846 METHODS 1311 AND 6010B B-HOTW-CL Available Boron, Hot Water APHA 3120/CSSS 9.2.2-ICP-OES CR-CR6-3060-ED Chromium, Hexavalent (Cr +6) APHA 3500-CR C, EPA 3060A ALKALINE

Sample Parameter Qualifier key listed:

CCME Total Hydrocarbons

F1-4-CALC-CL

Qualifier	Description	
DLA	Detection Limit adjusted for required dilution	

CCME CWS-PHC Dec-2000 - Pub# 1310

12-435 Phase II ESA – Red Deer Motors Site Historic Waste Disposal Site, The City of Red Deer

GROUNDWATER REPORTS

Your C.O.C. #: A078666

Attention: JESSICA LEE

TIAMAT ENVIRONMENTAL CONSULTANTS Unit #107, 2719-7 Avenue NE CALGARY, AB CANADA T2A 2L9

Report Date: 2013/08/13

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B367706 Received: 2013/08/06, 07:40

Sample Matrix: Water # Samples Received: 2

		Date	Date	
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Analytical Method
Acetic Acid, Formic Acid, Propionic Acid	2	N/A	2013/08/08 CAL SOP-00063	Dionex #031181, R05
Alkalinity @25C (pp, total), CO3,HCO3,OH	2	N/A	2013/08/06 AB SOP-00005	SM 2320-B
Organic Halogen (Adsorbable) (1)	1	N/A	2013/08/09 EINDSOP-00056	Coulometric - Titr.
Organic Halogen (Adsorbable) (1)	1	N/A	2013/08/11 EINDSOP-00056	Coulometric - Titr.
Biochemical Oxygen Demand	2	2013/08/06	2013/08/11 AB SOP-00017	SM 5210 B
BTEX/F1 in Water by HS GC/MS	2	N/A	2013/08/08 AB SOP-00039	CCME, EPA 8260C
Cadmium - low level CCME - Dissolved	2	N/A	2013/08/12 AB SOP-00043	EPA 200.8
Cadmium - low level CCME (Total)	2	2013/08/06	2013/08/12 AB SOP-00043	EPA 200.8
Chloride by Automated Colourimetry	2	N/A	2013/08/09 AB SOP-00020	SSMA 4500 CL- E
Chemical Oxygen Demand	2	N/A	2013/08/11 AB SOP-00016	SM 5220-D
Conductivity @25C	2	N/A	2013/08/06 AB SOP-00005	SM 2510-B
CCME Hydrocarbons in Water (F2; C10-C16)	2	2013/08/09	2013/08/09 AB SOP-00040	EPA3510C/CCME PHCCWS
			AB SOP-00037	
Hardness	2	N/A	2013/08/10 AB WI-00065	SM 2340B
Elements by ICP - Dissolved	2	N/A	2013/08/09 AB SOP-00042	EPA 200.7
Elements by ICP - Total	2	2013/08/08	2013/08/08 AB SOP-00042	EPA 200.7
Elements by ICPMS - Dissolved	2	N/A	2013/08/09 AB SOP-00043	EPA 200.8
Elements by ICPMS - Total	2	2013/08/08		EPA 200.8
Ion Balance	2	N/A	2013/08/07 AB WI-00065	SM 1030E
Sum of cations, anions	2	N/A	2013/08/10 AB WI-00065	SM 1030E
Nitrogen (total), Calc. TKN, NO3, NO2	2	N/A	2013/08/07 AB WI-00065	SM 4500-N A
Ammonia-N (Total)	2	N/A	2013/08/07 AB SOP-00007	EPA 350.1
Nitrate and Nitrite	2	N/A	2013/08/07 AB SOP-00023	SM4110B
Nitrate + Nitrite-N (calculated)	2	N/A	2013/08/07 AB SOP-00023	SM 4110-B
Nitrogen, (Nitrite, Nitrate) by IC	2	N/A	2013/08/07 AB SOP-00023	SM 4110-B
pH @25°C (Alkalinity titrator)	2	N/A	2013/08/06 AB SOP-00005	SM 4500-H+B
Sulphate by Automated Colourimetry	2	N/A	2013/08/09 AB SOP-00018	EPA 375.4
Total Dissolved Solids (Calculated)	2	N/A	2013/08/10 AB WI-00065	SM 1030E
Total Trihalomethanes Calculation	2	N/A	2013/08/08 CAL SOP-00104	EPA 8260 C
Total Kjeldahl Nitrogen	2	2013/08/07	2013/08/07 AB SOP-00008	EPA 351.1, 351.2
Carbon (Total Organic)	2	N/A	2013/08/09 CAL SOP-00077	MMCW 119
Total Phosphorus	2		2013/08/08 AB SOP-00024	SM 4500-P
VOCs in Water by HS GC/MS (Std List)	2	N/A	2013/08/07 CAL SOP-00227	EPA 8260 C

Remarks:

All Blank values are reported. Associated data are not blank corrected.

Your C.O.C. #: A078666

Attention: JESSICA LEE

TIAMAT ENVIRONMENTAL CONSULTANTS Unit #107 2719-7 Avenue NF CALGARY, AB T2A 2L9 CANADA

Report Date: 2013/08/13

CERTIFICATE OF ANALYSIS -2-

'MDL' = Method Detection Limit, '<' = Less than MDL, '---' Not Analyzed

Solids results are based on dry weight except Biota Analyses & Special Waste Oil & Grease

Organic analyses are not corrected for extraction recovery standards except for Isotope Dilution methods, (i.e. CARB 429 PAH, all PCDD/F and DBD/DBF analyses)

All CCME results met required criteria unless otherwise stated in the report. All data on final reports are validated by technical personnel. Signature on file at the laboratory. Deviations from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method:

F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction

All Groundwater samples except BTEX/VOC's or Purgeable Hydrocarbons are decanted and/or filtered prior to analysis unless otherwise mandated by regulatory agency

All analysis data reported was generated when the analytical methods were in statistical control and criteria for spike recoveries, reference material recoveries, method blanks data and duplicate precision were met unless otherwise stated This report shall not be reproduced except in full, without the written approval of the laboratory

Reporting results to two significant figures at the RDL is to permit statistical evaluation and is not intended to be an indication of analytical precision.

Methods used by Maxxam are based upon those found in 'Standard Methods for the Examination of Water and Wastewater', 22nd Edition, published by the American Public Health Association, or on US EPA, protocols found in the ' Test Methods for Evaluating Solid Waste, Physical/Chemical Method, SW846, 3rd Edition. Other procedures are based on the methodologies accepted by the appropriate regulatory agency. Methodology briefs are available by written request.

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies, quality assurance and quality control procedures except where otherwise agreed to by the client and testing company in writing. Liability for any and all use of these test results shall be limited to the actual cost of the pertinent analysis done. There is no other warranty expressed or implied. Your samples will be retained at Maxxam for a period of 60 days from receipt of data or as per contract.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Edmonton Petroleum

Your C.O.C. #: A078666

Attention: JESSICA LEE

TIAMAT ENVIRONMENTAL CONSULTANTS Unit #107, 2719-7 Avenue NE CALGARY, AB T2A 2L9 CANADA

Report Date: 2013/08/13

CERTIFICATE OF ANALYSIS -3-

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Kayla Brassard, Project Manager Email: KBrassard@maxxam.ca Phone# (403) 735-2258

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		HC4978			HC4979		
Sampling Date		2013/08/04			2013/08/04		
COC Number		17:00 A078666			17:00 A078666		
OGO IVAINSEI	UNITS	MW-01 (RDM)	RDL	QC Batch		RDL	QC Batch
				1	<u> </u>	1	-
Calculated Parameters							
Anion Sum	meq/L	24	N/A	7048349	12	N/A	7048349
Cation Sum	meq/L	25	N/A	7048349	12	N/A	7048349
Hardness (CaCO3)	mg/L	840	0.50	7048347	540	0.50	7048347
Ion Balance	N/A	1.1	0.010	7048348	1.0	0.010	7048348
Dissolved Nitrate (NO3)	mg/L	0.085	0.013	7048350	0.057	0.013	7048350
Nitrate plus Nitrite (N)	mg/L	0.019	0.0030	7048351	<0.015	0.015	7048351
Dissolved Nitrite (NO2)	mg/L	<0.0099	0.0099	7048350	<0.049	0.049	7048350
Total Dissolved Solids	mg/L	1300	10	7048352	590	10	7048352
Demand Parameters							
Biochemical Oxygen Demand	mg/L	11	2.0	7051569	2.0	2.0	7051569
Total Chemical Oxygen Demand	mg/L	350	5.0	7068140	16	5.0	7068140
Misc. Inorganics							
Conductivity	uS/cm	2400	1.0	7051034	1100	1.0	7051034
рН	N/A	7.20	N/A	7051035	7.51	N/A	7051035
Total Organic Carbon (C)	mg/L	10	0.50	7064388	3.5	0.50	7064388
Low Level Elements							
Dissolved Cadmium (Cd)	ug/L	0.037	0.0050	7048345	0.025	0.0050	7048345
Total Cadmium (Cd)	ug/L	3.4	0.0050	7049781	0.025	0.0050	7049781
Anions							
Alkalinity (PP as CaCO3)	mg/L	<0.50	0.50	7051032	<0.50	0.50	7051032
Alkalinity (Total as CaCO3)	mg/L	570	0.50	7051032	490	0.50	7051032
Bicarbonate (HCO3)	mg/L	700	0.50	7051032	600	0.50	7051032
Carbonate (CO3)	mg/L	<0.50	0.50	7051032	<0.50	0.50	7051032
Hydroxide (OH)	mg/L	<0.50	0.50	7051032	<0.50	0.50	7051032
Dissolved Sulphate (SO4)	mg/L	100	1.0	7065319	48	1.0	7065319
Dissolved Chloride (CI)	mg/L	360 (1)	5.0	7065318	36	1.0	7065318
Nutrients							
Total Ammonia (N)	mg/L	9.0 (1)	0.50	7053981	0.10	0.050	7056132
Total Nitrogen (N)	mg/L	12	0.050	7050600	0.26	0.050	7050600
Total Phosphorus (P)	mg/L	4.6 (1)	0.15	7058811	0.015	0.0030	7058811
Total Total Kjeldahl Nitrogen	mg/L	12 (2)	0.50	7057741	0.25	0.050	7057741

RDL = Reportable Detection Limit

⁽¹⁾ Detection limits raised due to dilution to bring analyte within the calibrated range.

⁽²⁾ Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		HC4978			HC4979		
Sampling Date		2013/08/04			2013/08/04		
		17:00			17:00		
COC Number		A078666			A078666		
	UNITS	MW-01 (RDM)	RDL	QC Batch	MW-02 (N)-RDM	RDL	QC Batch

Dissolved Nitrite (N)	mg/L	<0.0030	0.0030	7051380	<0.015 (1)	0.015	7051380
Dissolved Nitrate (N)	mg/L	0.019	0.0030	7051380	0.013	0.0030	7051380
Organic Acids							
Acetic Acid	mg/L	<50	50	7049414	<50	50	7049414
Formic Acid	mg/L	<50	50	7049414	<50	50	7049414
Propionic Acid	mg/L	<50	50	7049414	<50	50	7049414
Misc. Organics							
Adsorbable Organic halogen	mg/L	0.29	0.02	7029167	0.016	0.004	7029167

RDL = Reportable Detection Limit

⁽¹⁾ Detection limits raised due to matrix interference.

PETROLEUM HYDROCARBONS (CCME)

OCO INGINIDEI	UNITS	MW-01 (RDM)		RDI	QC Batch
COC Number		A078666	A078666		
		17:00	17:00		
Sampling Date		2013/08/04	2013/08/04		
Maxxam ID		HC4978	HC4979		

mg/L	<0.10	<0.10	0.10	7057596
%	92	91		7057596
-				

RDL = Reportable Detection Limit

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		HC4978		HC4979		
Sampling Date		2013/08/04	2013/08/04			
		17:00		17:00		
COC Number		A078666		A078666		
	UNITS	MW-01 (RDM)	RDL	MW-02 (N)-RDM	RDL	QC Batch

Elements							
Dissolved Aluminum (AI)	mg/L	0.017	0.0030	0.011	0.0030	7060719	
Total Aluminum (AI)	mg/L	34	0.0030	0.29	0.0030	7060434	
Dissolved Antimony (Sb)	mg/L	<0.00060	0.00060	<0.00060	0.00060	7060719	
Total Antimony (Sb)	mg/L	0.0017	0.00060	<0.00060	0.00060	7060434	
Dissolved Arsenic (As)	mg/L	0.023	0.00020	<0.00020	0.00020	7060719	
Total Arsenic (As)	mg/L	0.085	0.00020	0.00072	0.00020	7060434	
Dissolved Barium (Ba)	mg/L	0.68	0.010	0.13	0.010	7060828	
Total Barium (Ba)	mg/L	1.8	0.010	0.15	0.010	7060449	
Dissolved Beryllium (Be)	mg/L	<0.0010	0.0010	<0.0010	0.0010	7060719	
Total Beryllium (Be)	mg/L	0.0024	0.0010	<0.0010	0.0010	7060434	
Dissolved Boron (B)	mg/L	0.074	0.020	0.063	0.020	7060828	
Total Boron (B)	mg/L	0.11	0.020	0.065	0.020	7060449	
Dissolved Calcium (Ca)	mg/L	160	0.30	140	0.30	7060828	
Total Calcium (Ca)	mg/L	330	0.30	150	0.30	7060449	
Dissolved Chromium (Cr)	mg/L	<0.0010	0.0010	<0.0010	0.0010	7060719	
Total Chromium (Cr)	mg/L	0.11	0.0010	<0.0010	0.0010	7060434	
Dissolved Cobalt (Co)	mg/L	0.012	0.00030	0.0017	0.00030	7060719	
Total Cobalt (Co)	mg/L	0.078	0.00030	0.0022	0.00030	7060434	
Dissolved Copper (Cu)	mg/L	0.00078	0.00020	0.0020	0.00020	7060719	
Total Copper (Cu)	mg/L	0.16	0.00020	0.0023	0.00020	7060434	
Dissolved Iron (Fe)	mg/L	27	0.060	0.11	0.060	7060828	
Total Iron (Fe)	mg/L	180	0.060	0.98	0.060	7060449	
Dissolved Lead (Pb)	mg/L	<0.00020	0.00020	<0.00020	0.00020	7060719	
Total Lead (Pb)	mg/L	0.10	0.00020	0.00057	0.00020	7060434	
Dissolved Lithium (Li)	mg/L	0.051	0.020	0.049	0.020	7060828	
Total Lithium (Li)	mg/L	0.12	0.020	0.051	0.020	7060449	
Dissolved Magnesium (Mg)	mg/L	110	0.20	49	0.20	7060828	
Total Magnesium (Mg)	mg/L	170	0.20	52	0.20	7060449	
Dissolved Manganese (Mn)	mg/L	1.9	0.0040	1.8	0.0040	7060828	
Total Manganese (Mn)	mg/L	5.6	0.0040	1.8	0.0040	7060449	
Dissolved Molybdenum (Mo)	mg/L	0.0015	0.00020	0.00026	0.00020	7060719	
Total Molybdenum (Mo)	mg/L	0.0071	0.00020	0.00034	0.00020	7060434	
RDL = Reportable Detection Limit							

RDL = Reportable Detection Limit

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Dissolved Nickel (Ni) mg/L 0.022 0.00050 0.0020 0.00050 70607 Total Nickel (Ni) mg/L 0.20 0.00050 0.0034 0.00050 70604 Dissolved Phosphorus (P) mg/L <0.10 0.10 <0.10 0.10 70608 Total Phosphorus (P) mg/L 3.4 0.10 <0.10 0.10 70604 Dissolved Potassium (K) mg/L 14 0.30 6.6 0.30 70608 Total Potassium (K) mg/L 22 0.30 6.6 0.30 70604 Dissolved Selenium (Se) mg/L <0.00020 0.00020 <0.00020 0.00020 70607 Total Selenium (Se) mg/L 0.0026 0.00020 <0.00020 0.00020 70607 Total Selenium (Se) mg/L 15 0.10 9.1 0.10 70608 Total Silicon (Si) mg/L 100 (t) 0.50 9.9 0.10 70604 Dissolved Silver (Ag) mg/L <0.00010 0.00010 <0.00010 0.00010 70607 Total Silver (Ag) mg/L 140 0.50 17 (2) 0.50 70608 Total Sodium (Na) mg/L 140 0.50 16 0.50 70608 Total Sodium (Na) mg/L 1.6 0.020 0.98 (2) 0.020 70608 Total Strontium (Sr) mg/L 32 0.20 15 0.20 70608 Total Sulphur (S) mg/L 32 0.20 15 0.20 70608 Total Sulphur (S) mg/L 32 0.20 15 0.20 70608 Total Sulphur (S) mg/L 0.00097 0.00020 0.00020 70607 Total Thallium (TI) mg/L 0.00097 0.00020 0.00020 70607 Total Transium (Ti) mg/L 0.00097 0.00020 0.00020 70607 Total Transium (Ti) mg/L 0.00097 0.00010 0.0010 70607 Total Transium (Ti) mg/L 0.0010 0.0010 0.0010 70607 Total Transium (Ti) mg/L 0.0010 0.0010 0.0010 70607 Total Transium (Ti) mg/L 0.0010 0.0010 0.0010 70607 Total Transium (Ti) mg/L 0.0010 0.0010 0.0010 70607 Total Transium (Ti) mg/L 0.0011 0.0010 0.0010 0.0010 70607 Total Transium (U) mg/L 0.0011 0.0010 0.0010 70607 Total Transium (U) mg/L 0.0010 0.0010 0.0010 70607 Total Transium (U) mg/L 0.0010 0.0010 0.0010 70607 Total Transium (U) mg/L 0.0010 0.00010 0.	Maxxam ID		HC4978		HC4979		
Dissolved Nickel (Ni) mg/L 0.022 0.00050 0.0020 0.00050 70607	Sampling Date						
Dissolved Nickel (Ni) mg/L 0.022 0.00050 0.0020 0.00050 70607	COC Number						
Dissolved Nickel (Ni) mg/L 0.022 0.00050 0.0020 0.00050 70607 Total Nickel (Ni) mg/L 0.20 0.00050 0.0034 0.00050 70604 Dissolved Phosphorus (P) mg/L <0.10	COC Number	UNITS		RDL		RDL	QC Batch
Total Nickel (Ni) mg/L 0.20 0.00050 0.0034 0.00050 70604 Dissolved Phosphorus (P) mg/L <0.10 0.10 <0.10 0.10 70608 Total Phosphorus (P) mg/L 3.4 0.10 <0.10 0.10 70604 Dissolved Potassium (K) mg/L 14 0.30 6.6 0.30 70604 Total Potassium (K) mg/L 22 0.30 6.6 0.30 70604 Dissolved Selenium (Se) mg/L <0.00020 0.00020 <0.00020 0.00020 70604 Dissolved Silicon (Si) mg/L <0.0026 0.00020 <0.00020 0.00020 70604 Dissolved Silicon (Si) mg/L 15 0.10 9.1 0.10 70604 Dissolved Silver (Ag) mg/L <0.00010 0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010							
Dissolved Phosphorus (P) mg/L <0.10 0.10 <0.10 70608 Total Phosphorus (P) mg/L 3.4 0.10 <0.10	Dissolved Nickel (Ni)	mg/L	0.022	0.00050	0.0020	0.00050	7060719
Total Phosphorus (P) mg/L 3.4 0.10 <0.10 70604 Dissolved Potassium (K) mg/L 14 0.30 6.6 0.30 70608 Total Potassium (K) mg/L 22 0.30 6.6 0.30 70604 Dissolved Selenium (Se) mg/L <0.00020	Total Nickel (Ni)	mg/L	0.20	0.00050	0.0034	0.00050	7060434
Dissolved Potassium (K) mg/L 14 0.30 6.6 0.30 70608	Dissolved Phosphorus (P)	mg/L	<0.10	0.10	<0.10	0.10	7060828
Total Potassium (K) mg/L 22 0.30 6.6 0.30 70604 Dissolved Selenium (Se) mg/L <0.00020	Total Phosphorus (P)	mg/L	3.4	0.10	<0.10	0.10	7060449
Dissolved Selenium (Se) mg/L <0.00020 0.00020 <0.00020 0.00020 70607 Total Selenium (Se) mg/L 0.0026 0.00020 <0.00020	Dissolved Potassium (K)	mg/L	14	0.30	6.6	0.30	7060828
Total Selenium (Se) mg/L 0.0026 0.00020 <0.00020 70604 Dissolved Silicon (Si) mg/L 15 0.10 9.1 0.10 70604 Total Silicon (Si) mg/L 100 (f) 0.50 9.9 0.10 70604 Dissolved Silver (Ag) mg/L <0.00010	Total Potassium (K)	mg/L	22	0.30	6.6	0.30	7060449
Dissolved Silicon (Si) mg/L 15 0.10 9.1 0.10 70608 Total Silicon (Si) mg/L 100 (1) 0.50 9.9 0.10 70604 Dissolved Silver (Ag) mg/L <0.00010	Dissolved Selenium (Se)	mg/L	<0.00020	0.00020	<0.00020	0.00020	7060719
Total Silicon (Si) mg/L 100 (1) 0.50 9.9 0.10 70604 Dissolved Silver (Ag) mg/L <0.00010	Total Selenium (Se)	mg/L	0.0026	0.00020	<0.00020	0.00020	7060434
Dissolved Silver (Ag) mg/L <0.00010 0.00010 <0.00010 0.00010 70607 Total Silver (Ag) mg/L 0.00058 0.00010 <0.00010	Dissolved Silicon (Si)	mg/L	15	0.10	9.1	0.10	7060828
Total Silver (Ag) mg/L 0.00058 0.00010 <0.00010 0.00010 70604 Dissolved Sodium (Na) mg/L 140 0.50 17 (2) 0.50 70608 Total Sodium (Na) mg/L 140 0.50 16 0.50 70604 Dissolved Strontium (Sr) mg/L 1.6 0.020 0.98 (2) 0.020 70608 Total Strontium (Sr) mg/L 1.8 0.020 0.97 0.020 70604 Dissolved Sulphur (S) mg/L 32 0.20 15 0.20 70608 Total Sulphur (S) mg/L 32 0.20 15 0.20 70604 Dissolved Thallium (Ti) mg/L <0.00020	Total Silicon (Si)	mg/L	100 (1)	0.50	9.9	0.10	7060449
Dissolved Sodium (Na) mg/L 140 0.50 17 (2) 0.50 70608 Total Sodium (Na) mg/L 140 0.50 16 0.50 70604 Dissolved Strontium (Sr) mg/L 1.6 0.020 0.98 (2) 0.020 70608 Total Strontium (Sr) mg/L 1.8 0.020 0.97 0.020 70604 Dissolved Sulphur (S) mg/L 32 0.20 15 0.20 70604 Dissolved Thallium (TI) mg/L <0.00020	Dissolved Silver (Ag)	mg/L	<0.00010	0.00010	<0.00010	0.00010	7060719
Total Sodium (Na) mg/L 140 0.50 16 0.50 70604 Dissolved Strontium (Sr) mg/L 1.6 0.020 0.98 (2) 0.020 70608 Total Strontium (Sr) mg/L 1.8 0.020 0.97 0.020 70604 Dissolved Sulphur (S) mg/L 32 0.20 15 0.20 70604 Total Sulphur (S) mg/L 32 0.20 15 0.20 70604 Dissolved Thallium (TI) mg/L <0.00020	Total Silver (Ag)	mg/L	0.00058	0.00010	<0.00010	0.00010	7060434
Dissolved Strontium (Sr) mg/L 1.6 0.020 0.98 (2) 0.020 70608 Total Strontium (Sr) mg/L 1.8 0.020 0.97 0.020 70604 Dissolved Sulphur (S) mg/L 32 0.20 15 0.20 70608 Total Sulphur (S) mg/L 32 0.20 15 0.20 70604 Dissolved Thallium (TI) mg/L <0.00020	Dissolved Sodium (Na)	mg/L	140	0.50	17 (2)	0.50	7060828
Total Strontium (Sr) mg/L 1.8 0.020 0.97 0.020 70604 Dissolved Sulphur (S) mg/L 32 0.20 15 0.20 70608 Total Sulphur (S) mg/L 32 0.20 15 0.20 70604 Dissolved Thallium (TI) mg/L <0.00020	Total Sodium (Na)	mg/L	140	0.50	16	0.50	7060449
Dissolved Sulphur (S) mg/L 32 0.20 15 0.20 70608 Total Sulphur (S) mg/L 32 0.20 15 0.20 70604 Dissolved Thallium (TI) mg/L <0.00020	Dissolved Strontium (Sr)	mg/L	1.6	0.020	0.98 (2)	0.020	7060828
Total Sulphur (S) mg/L 32 0.20 15 0.20 70604 Dissolved Thallium (TI) mg/L <0.00020	Total Strontium (Sr)	mg/L	1.8	0.020	0.97	0.020	7060449
Dissolved Thallium (TI) mg/L <0.00020 0.00020 <0.00020 0.00020 70607 Total Thallium (TI) mg/L 0.00097 0.00020 <0.00020	Dissolved Sulphur (S)	mg/L	32	0.20	15	0.20	7060828
Total Thallium (TI) mg/L 0.00097 0.00020 <0.00020 0.00020 70604 Dissolved Tin (Sn) mg/L <0.0010	Total Sulphur (S)	mg/L	32	0.20	15	0.20	7060449
Dissolved Tin (Sn) mg/L <0.0010 0.0010 <0.0010 0.0010 70607 Total Tin (Sn) mg/L 0.0029 0.0010 <0.0010	Dissolved Thallium (TI)	mg/L	<0.00020	0.00020	<0.00020	0.00020	7060719
Total Tin (Sn) mg/L 0.0029 0.0010 <0.0010 0.0010 70604 Dissolved Titanium (Ti) mg/L <0.0010	Total Thallium (TI)	mg/L	0.00097	0.00020	<0.00020	0.00020	7060434
Dissolved Titanium (Ti) mg/L <0.0010 0.0010 <0.0010 0.0010 70607 Total Titanium (Ti) mg/L 0.71 0.0010 0.015 0.0010 70604 Dissolved Uranium (U) mg/L 0.0011 0.00010 0.0092 0.00010 70607 Total Uranium (U) mg/L 0.0060 0.00010 0.0097 0.00010 70604	Dissolved Tin (Sn)	mg/L	<0.0010	0.0010	<0.0010	0.0010	7060719
Total Titanium (Ti) mg/L 0.71 0.0010 0.015 0.0010 70604 Dissolved Uranium (U) mg/L 0.0011 0.00010 0.0092 0.00010 70607 Total Uranium (U) mg/L 0.0060 0.00010 0.0097 0.00010 70604	Total Tin (Sn)	mg/L	0.0029	0.0010	<0.0010	0.0010	7060434
Dissolved Uranium (U) mg/L 0.0011 0.00010 0.0092 0.00010 70607 Total Uranium (U) mg/L 0.0060 0.00010 0.0097 0.00010 70604	Dissolved Titanium (Ti)	mg/L	<0.0010	0.0010	<0.0010	0.0010	7060719
Total Uranium (U) mg/L 0.0060 0.00010 0.0097 0.00010 70604	Total Titanium (Ti)	mg/L	0.71	0.0010	0.015	0.0010	7060434
	Dissolved Uranium (U)	mg/L	0.0011	0.00010	0.0092	0.00010	7060719
Dissolved Vanadium (V) mg/L <0.0010 0.0010 <0.0010 0.0010 70607	Total Uranium (U)	mg/L	0.0060	0.00010	0.0097	0.00010	7060434
	Dissolved Vanadium (V)	mg/L	<0.0010	0.0010	<0.0010	0.0010	7060719
Total Vanadium (V) mg/L 0.17 0.0010 0.0015 0.0010 70604	Total Vanadium (V)	mg/L	0.17	0.0010	0.0015	0.0010	7060434
Dissolved Zinc (Zn) mg/L 0.0067 0.0030 0.0062 0.0030 70607	Dissolved Zinc (Zn)	mg/L	0.0067	0.0030	0.0062	0.0030	7060719
Total Zinc (Zn) mg/L 0.41 0.0030 0.0097 0.0030 70604	Total Zinc (Zn)	mg/L	0.41	0.0030	0.0097	0.0030	7060434

RDL = Reportable Detection Limit

Detection limits raised due to dilution to bring analyte within the calibrated range.
 Dissolved greater than total. Results within acceptable limits of precision.

VOLATILE ORGANICS BY GC-MS (WATER)

Maxxam ID		HC4978	HC4979		
Sampling Date		2013/08/04 17:00	2013/08/04 17:00		
COC Number		A078666	A078666		
	UNITS	MW-01 (RDM)	MW-02 (N)-RDM	RDL	QC Batch
Volatiles					
Total Trihalomethanes	ug/L	<2.0	<2.0	2.0	7049207
Bromodichloromethane	ug/L	<0.50	<0.50	0.50	7054234
Bromoform	ug/L	<0.50	<0.50	0.50	7054234
Bromomethane	ug/L	<2.0	<2.0	2.0	7054234
Carbon tetrachloride	ug/L	<0.50	<0.50	0.50	7054234
Chlorobenzene	ug/L	<0.50	<0.50	0.50	7054234
Chlorodibromomethane	ug/L	<1.0	<1.0	1.0	7054234
Chloroethane	ug/L	<1.0	<1.0	1.0	7054234
Chloroform	ug/L	<0.50	<0.50	0.50	7054234
Chloromethane	ug/L	<2.0	<2.0	2.0	7054234
1,2-dibromoethane	ug/L	<0.50	<0.50	0.50	7054234
1,2-dichlorobenzene	ug/L	<0.50	<0.50	0.50	7054234
1,3-dichlorobenzene	ug/L	<0.50	<0.50	0.50	7054234
1,4-dichlorobenzene	ug/L	<0.50	<0.50	0.50	7054234
1,1-dichloroethane	ug/L	<0.50	<0.50	0.50	7054234
1,2-dichloroethane	ug/L	<0.50	<0.50	0.50	7054234
1,1-dichloroethene	ug/L	<0.50	<0.50	0.50	7054234
cis-1,2-dichloroethene	ug/L	33	<0.50	0.50	7054234
trans-1,2-dichloroethene	ug/L	3.4	<0.50	0.50	7054234
Dichloromethane	ug/L	<2.0	<2.0	2.0	7054234
1,2-dichloropropane	ug/L	<0.50	<0.50	0.50	7054234
cis-1,3-dichloropropene	ug/L	<0.50	<0.50	0.50	7054234
trans-1,3-dichloropropene	ug/L	<0.50	<0.50	0.50	7054234
Methyl methacrylate	ug/L	<0.50	<0.50	0.50	7054234
Methyl-tert-butylether (MTBE)	ug/L	<0.50	<0.50	0.50	7054234
Styrene	ug/L	<0.50	<0.50	0.50	7054234
1,1,1,2-tetrachloroethane	ug/L	<2.0	<2.0	2.0	7054234
1,1,2,2-tetrachloroethane	ug/L	<2.0	<2.0	2.0	7054234
Tetrachloroethene	ug/L	<0.50	<0.50	0.50	7054234
1,2,3-trichlorobenzene	ug/L	<1.0	<1.0	1.0	7054234
1,2,4-trichlorobenzene	ug/L	<1.0	<1.0	1.0	7054234
1,3,5-trichlorobenzene	ug/L	<0.50	<0.50	0.50	7054234
RDL = Reportable Detection Limit					

VOLATILE ORGANICS BY GC-MS (WATER)

Maxxam ID		HC4978	HC4979		
Sampling Date		2013/08/04	2013/08/04		
		17:00	17:00		
COC Number		A078666	A078666		
	UNITS	MW-01 (RDM)	MW-02 (N)-RDM	RDL	QC Batch
			T	_	1
1,1,1-trichloroethane	ug/L	<0.50	<0.50	0.50	7054234
1,1,2-trichloroethane	ug/L	<0.50	<0.50	0.50	7054234
Trichloroethene	ug/L	<0.50	<0.50	0.50	7054234
Trichlorofluoromethane	ug/L	<0.50	<0.50	0.50	7054234
1,2,4-trimethylbenzene	ug/L	4.0	<0.50	0.50	7054234
1,3,5-trimethylbenzene	ug/L	1.8	<0.50	0.50	7054234
Vinyl chloride	ug/L	3.0	<0.50	0.50	7054234
Surrogate Recovery (%)					
1,4-Difluorobenzene (sur.)	%	103	100		7054234
4-BROMOFLUOROBENZENE (sur.)	%	93	98		7054234
	%	104	99		7054234

7058506

Maxxam Job #: B367706 Report Date: 2013/08/13

VOLATILE ORGANICS BY GC-MS (WATER)

_					
Maxxam ID		HC4978	HC4979		
Sampling Date		2013/08/04	2013/08/04		
		17:00	17:00		
COC Number		A078666	A078666		
	UNITS	MW-01 (RDM)	MW-02 (N)-RDM	RDL	QC Batch
Volatiles					
Benzene	ug/L	1.5	<0.40	0.40	7058506
Toluene	ug/L	<0.40	<0.40	0.40	7058506
Ethylbenzene	ug/L	<0.40	<0.40	0.40	7058506
m & p-Xylene	ug/L	1.2	<0.80	0.80	7058506
o-Xylene	ua/l	0.58	<0.40	0.40	7058506

o-Xylene ug/L 7058506 Xylenes (Total) ug/L 1.8 < 0.80 0.80 7058506 F1 (C6-C10) - BTEX 7058506 ug/L <100 <100 100 (C6-C10) <100 100 7058506 ug/L <100 Surrogate Recovery (%) 1,4-Difluorobenzene (sur.) 7058506 % 112 107 4-BROMOFLUOROBENZENE (sur.) 105 7058506 % 108

105

103

RDL = Reportable Detection Limit

D4-1,2-DICHLOROETHANE (sur.)

TIAMAT ENVIRONMENTAL CONSULTANTS

Package 1	3.7°C
Package 2	2.0°C

Each temperature is the average of up to three cooler temperatures taken at receipt

RESULTS OF CHEMICAL ANALYSES OF WATER Comments

Sample HC4978-02 Acetic Acid, Formic Acid, Propionic Acid: Detection limits raised due to sample matrix.

Sample HC4979-02 Acetic Acid, Formic Acid, Propionic Acid: Detection limits raised due to sample matrix.

Results relate only to the items tested.

TIAMAT ENVIRONMENTAL CONSULTANTS Attention: JESSICA LEE

Client Project #:

P.O. #: Site Location:

Quality Assurance Report Maxxam Job Number: CB367706

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
7029167 MN2	QC Standard	Adsorbable Organic halogen	2013/08/09		86	%	84 - 111
	Method Blank	Adsorbable Organic halogen	2013/08/09	< 0.5		mg/L	
7049414 FM0	Matrix Spike	Acetic Acid	2013/08/08		103	%	70 - 130
		Formic Acid	2013/08/08		112	%	70 - 130
		Propionic Acid	2013/08/08		91	%	70 - 130
	Spiked Blank	Acetic Acid	2013/08/08		117	%	70 - 130
		Formic Acid	2013/08/08		109	%	70 - 130
		Propionic Acid	2013/08/08		104	%	70 - 130
	Method Blank	Acetic Acid	2013/08/08	< 0.50		mg/L	
		Formic Acid	2013/08/08	< 0.50		mg/L	
		Propionic Acid	2013/08/08	< 0.50		mg/L	
	RPD	Acetic Acid	2013/08/08	NC		%	40
		Formic Acid	2013/08/08	NC		%	40
		Propionic Acid	2013/08/08	NC		%	40
7051032 FT2	Spiked Blank	Alkalinity (Total as CaCO3)	2013/08/06		93	%	80 - 120
	Method Blank	Alkalinity (PP as CaCO3)	2013/08/06	< 0.50		mg/L	
		Alkalinity (Total as CaCO3)	2013/08/06	< 0.50		mg/L	
		Bicarbonate (HCO3)	2013/08/06	< 0.50		mg/L	
		Carbonate (CO3)	2013/08/06	< 0.50		mg/L	
		Hydroxide (OH)	2013/08/06	< 0.50		mg/L	
	RPD	Alkalinity (PP as CaCO3)	2013/08/06	NC		%	20
		Alkalinity (Total as CaCO3)	2013/08/06	1.3		%	20
		Bicarbonate (HCO3)	2013/08/06	1.3		%	20
		Carbonate (CO3)	2013/08/06	NC		%	20
		Hydroxide (OH)	2013/08/06	NC		%	20
7051034 FT2	Spiked Blank	Conductivity	2013/08/06		100	%	90 - 110
	Method Blank	Conductivity	2013/08/06	<1.0		uS/cm	
	RPD	Conductivity	2013/08/06	1.8		%	20
7051035 FT2	Spiked Blank	pH	2013/08/06		100	%	97 - 102
	RPD .	Hq	2013/08/06	1.3		%	5
7051380 DA4	Matrix Spike	Dissolved Nitrite (N)	2013/08/06		NC	%	80 - 120
	'	Dissolved Nitrate (N)	2013/08/06		NC	%	80 - 120
	Spiked Blank	Dissolved Nitrite (N)	2013/08/06		102	%	90 - 110
		Dissolved Nitrate (N)	2013/08/06		102	%	90 - 110
	Method Blank	Dissolved Nitrite (N)	2013/08/06	< 0.0030	_	mg/L	
		Dissolved Nitrate (N)	2013/08/06	< 0.0030		mg/L	
	RPD	Dissolved Nitrite (N)	2013/08/06	1.1		%	20
		Dissolved Nitrate (N)	2013/08/06	0.6		%	20
7051569 LS0	Spiked Blank	Biochemical Oxygen Demand	2013/08/11		88	%	85 - 115
	Method Blank	Biochemical Oxygen Demand	2013/08/11	<2.0		mg/L	
	RPD	Biochemical Oxygen Demand	2013/08/11	10.2		%	20
7053981 IA0	Matrix Spike	Total Ammonia (N)	2013/08/07		101 (1)	%	80 - 120
	Spiked Blank	Total Ammonia (N)	2013/08/07		99	%	80 - 120
	Method Blank	Total Ammonia (N)	2013/08/07	< 0.050		mg/L	
	RPD	Total Ammonia (N)	2013/08/07	NC		%	20
7054234 MJ0	Matrix Spike	1,4-Difluorobenzene (sur.)	2013/08/07		114	%	70 - 130
700 120 1 11100	мани орно	4-BROMOFLUOROBENZENE (sur.)	2013/08/07		110	%	70 - 130
		D4-1,2-DICHLOROETHANE (sur.)	2013/08/07		123	%	70 - 130
		Bromodichloromethane	2013/08/07		98	%	70 - 130
		Bromoform	2013/08/07		97	%	70 - 130
		Bromomethane	2013/08/07		82	%	70 - 130 70 - 130
		Carbon tetrachloride	2013/08/07		102	%	70 - 130
		Chlorobenzene	2013/08/07		89	%	70 - 130
		Chlorodibromomethane	2013/08/07		93	%	70 - 130 70 - 130
		Chloroethane	2013/08/07		83	%	70 - 130
		Smoroculario	2013/00/01		00	/0	70 - 130

Attention: JESSICA LEE

Client Project #:

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: CB367706

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
7054234 MJ0	Matrix Spike	Chloroform	2013/08/07		95	%	70 - 130
	·	Chloromethane	2013/08/07		79	%	70 - 130
		1,2-dibromoethane	2013/08/07		90	%	70 - 130
		1,2-dichlorobenzene	2013/08/07		87	%	70 - 130
		1,3-dichlorobenzene	2013/08/07		85	%	70 - 130
		1,4-dichlorobenzene	2013/08/07		85	%	70 - 130
		1,1-dichloroethane	2013/08/07		92	%	70 - 130
		1,2-dichloroethane	2013/08/07		96	%	70 - 130
		1,1-dichloroethene	2013/08/07		96	%	70 - 130
		cis-1,2-dichloroethene	2013/08/07		93	%	70 - 130
		trans-1,2-dichloroethene	2013/08/07		92	%	70 - 130
		Dichloromethane	2013/08/07		92	%	70 - 130
		1,2-dichloropropane	2013/08/07		94	%	70 - 130
		cis-1,3-dichloropropene	2013/08/07		95	%	70 - 130
		trans-1,3-dichloropropene	2013/08/07		95	%	70 - 130
		Methyl methacrylate	2013/08/07		98	%	70 - 130
		Methyl-tert-butylether (MTBE)	2013/08/07		87	%	70 - 130
		Styrene	2013/08/07		97	%	70 - 130
		1,1,1,2-tetrachloroethane	2013/08/07		94	%	70 - 130
		1,1,2,2-tetrachloroethane	2013/08/07		87	%	70 - 130
		Tetrachloroethene	2013/08/07		95	%	70 - 130
		1,2,3-trichlorobenzene	2013/08/07		96	%	70 - 130
		1,2,4-trichlorobenzene	2013/08/07		96	%	70 - 130
		1,3,5-trichlorobenzene	2013/08/07		96	%	70 - 130
		1,1,1-trichloroethane	2013/08/07		95	%	70 - 130
		1,1,2-trichloroethane	2013/08/07		97	%	70 - 130
		Trichloroethene	2013/08/07		92	%	70 - 130
		Trichlorofluoromethane	2013/08/07		87	%	70 - 130
		1,2,4-trimethylbenzene	2013/08/07		97	%	70 - 130
		1,3,5-trimethylbenzene	2013/08/07		99	%	70 - 130
		Vinyl chloride	2013/08/07		71	%	70 - 130
	Spiked Blank	1,4-Difluorobenzene (sur.)	2013/08/07		115	%	70 - 130
		4-BROMOFLUOROBENZENE (sur.)	2013/08/07		106	%	70 - 130
		D4-1,2-DICHLOROETHANE (sur.)	2013/08/07		111	%	70 - 130
		Bromodichloromethane	2013/08/07		103	%	70 - 130
		Bromoform	2013/08/07		104	%	70 - 130
		Bromomethane	2013/08/07		87	%	70 - 130
		Carbon tetrachloride	2013/08/07		106	%	70 - 130
		Chlorobenzene	2013/08/07		93	%	70 - 130
		Chlorodibromomethane	2013/08/07		99	%	70 - 130
		Chloroethane	2013/08/07		86	%	70 - 130
		Chloroform	2013/08/07		99	%	70 - 130
		Chloromethane	2013/08/07		83	%	70 - 130
		1,2-dibromoethane	2013/08/07		95	%	70 - 130
		1,2-dichlorobenzene	2013/08/07		90	%	70 - 130
		1,3-dichlorobenzene	2013/08/07		87	%	70 - 130
		1,4-dichlorobenzene	2013/08/07		89	%	70 - 130
		1,1-dichloroethane	2013/08/07		96	%	70 - 130
		1,2-dichloroethane	2013/08/07		101	%	70 - 130
		1,1-dichloroethene	2013/08/07		98	%	70 - 130
		cis-1,2-dichloroethene	2013/08/07		97	%	70 - 130
		trans-1,2-dichloroethene	2013/08/07		96	%	70 - 130
		Dichloromethane	2013/08/07		97	%	70 - 130
		1,2-dichloropropane	2013/08/07		98	%	70 - 130
		cis-1,3-dichloropropene	2013/08/07		100	%	70 - 130
		· ·					

Attention: JESSICA LEE

Client Project #:

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: CB367706

QA/QC			Date				
Batch	00 T	Development	Analyzed	\	D	LINUTO	00111-
Num Init	QC Type	Parameter 4 2 dishlarananan	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
7054234 MJ0	Spiked Blank	trans-1,3-dichloropropene	2013/08/07		96 106	%	70 - 130
		Methyl methacrylate	2013/08/07		106	% %	70 - 130
		Methyl-tert-butylether (MTBE)	2013/08/07		92	% %	70 - 130
		Styrene	2013/08/07		101 98	% %	70 - 130 70 - 130
		1,1,1,2-tetrachloroethane	2013/08/07		96 92	% %	
		1,1,2,2-tetrachloroethane Tetrachloroethene	2013/08/07 2013/08/07		92 98	% %	70 - 130 70 - 130
		1,2,3-trichlorobenzene	2013/08/07		99	% %	70 - 130
					98	% %	70 - 130
		1,2,4-trichlorobenzene	2013/08/07 2013/08/07		99	% %	70 - 130
		1,3,5-trichlorobenzene 1,1,1-trichloroethane	2013/08/07		98	%	70 - 130 70 - 130
		1,1,2-trichloroethane	2013/08/07		102	% %	70 - 130
		Trichloroethene	2013/08/07		94	% %	70 - 130
		Trichlorofluoromethane			90	% %	70 - 130
			2013/08/07			% %	
		1,2,4-trimethylbenzene	2013/08/07		100	% %	70 - 130
		1,3,5-trimethylbenzene	2013/08/07		101		70 - 130
	Mathad Dlank	Vinyl chloride 1,4-Difluorobenzene (sur.)	2013/08/07		75 99	%	70 - 130
	Method Blank	,	2013/08/07			%	70 - 130
		4-BROMOFLUOROBENZENE (sur.)	2013/08/07		96	%	70 - 130
		D4-1,2-DICHLOROETHANE (sur.)	2013/08/07	0.50	97	%	70 - 130
		Bromodichloromethane	2013/08/07	< 0.50		ug/L	
		Bromoform	2013/08/07	<0.50		ug/L	
		Bromomethane	2013/08/07	<2.0		ug/L	
		Carbon tetrachloride	2013/08/07	< 0.50		ug/L	
		Chlorobenzene	2013/08/07	<0.50		ug/L	
		Chlorodibromomethane	2013/08/07	<1.0		ug/L	
		Chloroethane	2013/08/07	<1.0		ug/L	
		Chloroform	2013/08/07	< 0.50		ug/L	
		Chloromethane	2013/08/07	<2.0		ug/L	
		1,2-dibromoethane	2013/08/07	< 0.50		ug/L	
		1,2-dichlorobenzene	2013/08/07	<0.50		ug/L	
		1,3-dichlorobenzene	2013/08/07	< 0.50		ug/L	
		1,4-dichlorobenzene	2013/08/07	<0.50		ug/L	
		1,1-dichloroethane	2013/08/07	<0.50		ug/L	
		1,2-dichloroethane	2013/08/07	< 0.50		ug/L	
		1,1-dichloroethene	2013/08/07	<0.50		ug/L	
		cis-1,2-dichloroethene	2013/08/07	<0.50		ug/L	
		trans-1,2-dichloroethene	2013/08/07	<0.50		ug/L	
		Dichloromethane	2013/08/07	<2.0		ug/L	
		1,2-dichloropropane	2013/08/07	< 0.50		ug/L	
		cis-1,3-dichloropropene	2013/08/07	< 0.50		ug/L	
		trans-1,3-dichloropropene	2013/08/07	< 0.50		ug/L	
		Methyl methacrylate	2013/08/07	< 0.50		ug/L	
		Methyl-tert-butylether (MTBE)	2013/08/07	< 0.50		ug/L	
		Styrene	2013/08/07	<0.50		ug/L	
		1,1,1,2-tetrachloroethane	2013/08/07	<2.0		ug/L	
		1,1,2,2-tetrachloroethane	2013/08/07	<2.0		ug/L	
		Tetrachloroethene	2013/08/07	< 0.50		ug/L	
		1,2,3-trichlorobenzene	2013/08/07	<1.0		ug/L	
		1,2,4-trichlorobenzene	2013/08/07	<1.0		ug/L	
		1,3,5-trichlorobenzene	2013/08/07	< 0.50		ug/L	
		1,1,1-trichloroethane	2013/08/07	< 0.50		ug/L	
		1,1,2-trichloroethane	2013/08/07	< 0.50		ug/L	
		Trichloroethene	2013/08/07	< 0.50		ug/L	
		Trichlorofluoromethane	2013/08/07	< 0.50		ug/L	

Attention: JESSICA LEE

Client Project #:

P.O. #:

Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: CB367706

1.3,5-trimethylbenzene	QA/QC			Date				
Num Init OC Type	Batch			Analyzed				
Method Blank 1,2,4-trimethythenzene 2013/08/07 -0,50 ug/L 1,3,5-trimethythenzene 2013/08/07 -0,50 ug/L ug/L 1,2-dibromethane 2013/08/07 -0,50 ug/L 1,2-dibromethane 2013/08/07 -0,50 ug/L 1,2-dibromethane 2013/08/07 -0,50 ug/L 1,2-dibromethane 2013/08/07 -0,50 ug/L 1,2-dibromethane 2013/08/07 -0,50 ug/L 1,2-dibromethane 2013/08/07 -0,50 ug/L 1,2-dibromethane 2013/08/07 -0,50 ug/L 1,2-dibromethane 2013/08/07 -0,40 -0,50 1,2-dibromethane 2013/08/07 -0,50 ug/L 1,2-dibromethane 2013/08/08 -0,50 ug/L 1,2-dibromethane 2013/08/08 -0,50 ug/L 1,	Num Init	QC Type	Parameter		Value	Recovery	UNITS	QC Limits
RPD	7054234 MJ0	Method Blank	1,2,4-trimethylbenzene		<0.50		ug/L	
RPD			1,3,5-trimethylbenzene	2013/08/07	< 0.50			
RPD			Vinyl chloride	2013/08/07	< 0.50			
1,2 dichloroethane		RPD	1,2-dibromoethane	2013/08/07	NC			40
Marix Spike Marix Spike Total Ammonia (N)			· ·				%	40
Spiked Blank Total Ammonia (N) 2013/08/07 0.050 mg/L	7056132 SK9	Matrix Spike	· ·			93		_
Method Blank Total Ammonia (N) 2013/08/07 <0.050 mg/L								
RPD		•	` ,		< 0.050			
Matrix Spike			` ,					20
	7057596 IP0		rotal / trimonia (14)	2010/00/01	110		70	20
F2 (C10-C16 Hydrocarbons)	7007000 01 0		O-TERPHENYL (sur.)	2013/08/09		102	%	50 - 130
Spiked Blank		[110-1070-07]	` ,					
Method Blank		Snikad Blank	` ,					
Method Blank O-TERPHENY (sur.) 2013/08/09 96 % 50 - 130		Spiked Dialik						
RPD		Mothed Blank						
RPD		Metriod Diarik	` ,		-0.10	90		30 - 130
Matrix Spike Matrix Spike Total Total Kjeldahl Nitrogen 2013/08/07 92 % 75 - 128		DDD						40
QC Standard Total Total Kjeldahl Nitrogen 2013/08/07 92 % 75 - 125	70F7744 CKO				NC	400		
Spiked Blank Total Total Kjeldahl Nitrogen 2013/08/07 2.0.050 mg/L	7057741 SK9	•						
Method Blank RPD			,					
RPD			,			86		80 - 120
7058506 WZ0 Matrix Spike								
A-BROMOFLUCROBENZENE (sur.) 2013/08/08 101 % 70 - 130					2.2			
D4-1,2-DICHLOROETHANE (sur.) 2013/08/08 106 % 70 - 130	7058506 WZ0	Matrix Spike						
Benzene			` ,					
Toluene								
Ethylbenzene								
m & p-Xylene								
O-Xylene (C6-C10) 2013/08/08 96 % 70 - 130 (C6-C10) 2013/08/08 91 % 70 - 130 (C6-C10) 2013/08/08 1118 % 70 - 130 (C6-C10) 2013/08/08 91 % 70 - 130 (C6-C10) 2013/08/08 99 % 70 - 130 (C6-C10) 2013/08/08 99 % 70 - 130 (C6-C10) 2013/08/08 99 % 70 - 130 (C6-C10) 2013/08/08 91 % 70 - 130 (C6-C10) 2013/08/08 91 % 70 - 130 (C6-C10) 2013/08/08 91 % 70 - 130 (C6-C10) 2013/08/08 91 % 70 - 130 (C6-C10) 2013/08/08 95 % 95 % 70 - 130 (C6-C10) 2013/08/08 95 % 95 % 70 - 130 (C6-C10) 2013/08/08 95 % 95 % 70 - 130 (C6-C10) 2013/08/08 95 % 95 % 70 - 130 (C6-C10) 2013/08/08 95 % 95 % 70 - 130 (C6-C10) 2013/08/08 95 % 95 % 70 - 130 (C6-C10) 2013/08/08 95 % 95 % 70 - 130 (C6-C10) 2013/08/08 95 % 95 % 70 - 130 (C6-C10) 95 % 95 % 95 % 95 % 95 % 95 % 95 % 95			•					
CG-C10				2013/08/08				
Spiked Blank				2013/08/08				
4-BROMOFLUOROBENZENE (sur.) 2013/08/08 99 % 70 - 130			(C6-C10)	2013/08/08		91		70 - 130
D4-1,2-DICHLOROETHANE (sur.) 2013/08/08 106 % 70 - 130		Spiked Blank	1,4-Difluorobenzene (sur.)	2013/08/08				70 - 130
Benzene			4-BROMOFLUOROBENZENE (sur.)	2013/08/08		99	%	70 - 130
Toluene 2013/08/08 91 % 70 - 130 Ethylbenzene 2013/08/08 82 % 70 - 130 m & p-Xylene 2013/08/08 85 % 70 - 130 o-Xylene 2013/08/08 78 % 70 - 130 (C6-C10) 2013/08/08 95 % 70 - 130 Method Blank 1,4-Difluorobenzene (sur.) 2013/08/08 118 % 70 - 130 4-BROMOFLUOROBENZENE (sur.) 2013/08/08 1118 % 70 - 130 D4-1,2-DICHLOROETHANE (sur.) 2013/08/08 101 % 70 - 130 Benzene 2013/08/08 <0.40 ug/L Toluene 2013/08/08 <0.40 ug/L Ethylbenzene 2013/08/08 <0.40 ug/L Ethylbenzene 2013/08/08 <0.40 ug/L O-Xylene 2013/08/08 <0.40 ug/L Xylenes (Total) 2013/08/08 <0.80 ug/L Xylenes (Total) 2013/08/08 <0.80 ug/L F1 (C6-C10) - BTEX 2013/08/08 <100 ug/L (C6-C10) 2013/08/08 <100 ug/L RPD Benzene 2013/08/08 <100 ug/L RPD Benzene 2013/08/08 NC % 40 Ethylbenzene 2013/08/08 NC % 40 Ethylbenzene 2013/08/08 NC % 40 Ethylbenzene 2013/08/08 NC % 40 Ethylbenzene 2013/08/08 NC % 40			D4-1,2-DICHLOROETHANE (sur.)	2013/08/08		106	%	70 - 130
Ethylbenzene			Benzene	2013/08/08		76	%	70 - 130
m & p-Xylene 2013/08/08 85 % 70 - 130 o-Xylene 2013/08/08 78 % 70 - 130 (C6-C10) 2013/08/08 95 % 70 - 130 Method Blank 1,4-Difluorobenzene (sur.) 2013/08/08 118 % 70 - 130 4-BROMOFLUOROBENZENE (sur.) 2013/08/08 101 % 70 - 130 D4-1,2-DICHLOROETHANE (sur.) 2013/08/08 104 % 70 - 130 Benzene 2013/08/08 < 0.40			Toluene	2013/08/08		91	%	70 - 130
o-Xylene (C6-C10) 2013/08/08 78 % 70 - 130 (C6-C10) 2013/08/08 95 % 70 - 130 (C6-C10) 2013/08/08 95 % 70 - 130 (C6-C10) 2013/08/08 1118 % 70 - 130 (C6-C10) 2013/08/08 101 % 70 - 130 (C6-C10) 2013/08/08 101 % 70 - 130 (C6-C10) 2013/08/08 104 % 70 - 130 (C6-C10) 2013/08/08 40.40 ug/L (C6-C10) 2013/08/08 40.40 ug/L (C6-C10) 2013/08/08 40.40 ug/L (C6-C10) 2013/08/08 40.40 ug/L (C6-C10) 2013/08/08 40.40 ug/L (C6-C10) 2013/08/08 40.40 ug/L (C6-C10) 2013/08/08 40.40 ug/L (C6-C10) 2013/08/08 40.40 ug/L (C6-C10) 2013/08/08 40.40 ug/L (C6-C10) 2013/08/08 40.40 ug/L (C6-C10) 2013/08/08 40.40 ug/L (C6-C10) 2013/08/08 40.40 ug/L (C6-C10) 2013/08/08 40.40 ug/L (C6-C10) 2013/08/08 40.40 ug/L (C6-C10) 2013/08/08 40.40 ug/L (C6-C10) 2013/08/08 40.40 ug/L (C6-C10) 2013/08/08 40.40 ug/L (C6-C10) 2013/08/08 40.40 ug/L (C6-C10) 2013/08/08 40.40 ug/L (C6-C10) 40.40 (C6-C			Ethylbenzene	2013/08/08		82	%	70 - 130
Method Blank			m & p-Xylene	2013/08/08		85	%	70 - 130
Method Blank 1,4-Diffuorobenzene (sur.) 2013/08/08 118 % 70 - 130 4-BROMOFLUOROBENZENE (sur.) 2013/08/08 101 % 70 - 130 D4-1,2-DICHLOROETHANE (sur.) 2013/08/08 104 % 70 - 130 Benzene 2013/08/08 <0.40			o-Xylene	2013/08/08		78	%	70 - 130
4-BROMOFLUOROBENZENE (sur.) 2013/08/08 101 % 70 - 130 D4-1,2-DICHLOROETHANE (sur.) 2013/08/08 104 % 70 - 130 Benzene 2013/08/08 < 0.40 ug/L			(C6-C10)	2013/08/08		95	%	70 - 130
4-BROMOFLUOROBENZENE (sur.) 2013/08/08 101 % 70 - 130 D4-1,2-DICHLOROETHANE (sur.) 2013/08/08 104 % 70 - 130 Benzene 2013/08/08 < 0.40 ug/L		Method Blank	1,4-Difluorobenzene (sur.)	2013/08/08		118	%	70 - 130
D4-1,2-DICHLOROETHANE (sur.) Benzene 2013/08/08 20.40 Ug/L Toluene 2013/08/08 20.40 Ug/L Ethylbenzene 2013/08/08 20.40 Ug/L Ethylbenzene 2013/08/08 20.40 Ug/L 0-Xylene 2013/08/08 20.40 Ug/L Xylenes (Total) 2013/08/08 20.80 Ug/L Xylenes (Total) 2013/08/08 20.80 Ug/L 2013/08/08 20.80 Ug/L 2013/08/08 20.80 Ug/L 2013/08/08 20.80 Ug/L 2013/08/08 20.80 Ug/L 2013/08/08 20.80 Ug/L 2013/08/08 20.80 Ug/L 2013/08/08 2013/08/				2013/08/08		101	%	70 - 130
Benzene 2013/08/08 <0.40 ug/L Toluene 2013/08/08 <0.40 ug/L Ethylbenzene 2013/08/08 <0.40 ug/L m & p-Xylene 2013/08/08 <0.80 ug/L o-Xylene 2013/08/08 <0.80 ug/L Xylenes (Total) 2013/08/08 <0.80 ug/L F1 (C6-C10) - BTEX 2013/08/08 <100 ug/L (C6-C10) 2013/08/08 <100 ug/L RPD Benzene 2013/08/08 NC % 40 Toluene 2013/08/08 NC % 40 Ethylbenzene 2013/08/08 NC % 40			D4-1,2-DICHLOROETHANE (sur.)	2013/08/08		104		70 - 130
Toluene 2013/08/08 <0.40 ug/L Ethylbenzene 2013/08/08 <0.40 ug/L m & p-Xylene 2013/08/08 <0.80 ug/L o-Xylene 2013/08/08 <0.40 ug/L Xylenes (Total) 2013/08/08 <0.80 ug/L F1 (C6-C10) - BTEX 2013/08/08 <100 ug/L (C6-C10) 2013/08/08 <100 ug/L RPD Benzene 2013/08/08 NC % 40 Toluene 2013/08/08 NC % 40 Ethylbenzene 2013/08/08 NC % 40			• • • • • • • • • • • • • • • • • • • •		< 0.40		ug/L	
Ethylbenzene 2013/08/08 <0.40 ug/L m & p-Xylene 2013/08/08 <0.80 ug/L o-Xylene 2013/08/08 <0.80 ug/L ug/L								
m & p-Xylene 2013/08/08 <0.80 ug/L o-Xylene 2013/08/08 <0.40 ug/L Ug/L Xylenes (Total) 2013/08/08 <0.80 ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L U								
o-Xylene 2013/08/08 <0.40 ug/L Xylenes (Total) 2013/08/08 <0.80 ug/L F1 (C6-C10) - BTEX 2013/08/08 <100 ug/L (C6-C10) 2013/08/08 <100 ug/L RPD Benzene 2013/08/08 NC % 40 Toluene 2013/08/08 NC % 40 Ethylbenzene 2013/08/08 NC % 40			•					
Xylenes (Total) 2013/08/08 <0.80 ug/L F1 (C6-C10) - BTEX 2013/08/08 <100 ug/L (C6-C10) 2013/08/08 <100 ug/L RPD Benzene 2013/08/08 NC % 40 Toluene 2013/08/08 NC % 40 Ethylbenzene 2013/08/08 NC % 40								
F1 (C6-C10) - BTEX 2013/08/08 <100 ug/L (C6-C10) 2013/08/08 <100 ug/L RPD Benzene 2013/08/08 NC % 40 Toluene 2013/08/08 NC % 40 Ethylbenzene 2013/08/08 NC % 40			•					
(C6-C10) 2013/08/08 <100 ug/L RPD Benzene 2013/08/08 NC % 40 Toluene 2013/08/08 NC % 40 Ethylbenzene 2013/08/08 NC % 40			, ,					
RPD Benzene 2013/08/08 NC % 40 Toluene 2013/08/08 NC % 40 Ethylbenzene 2013/08/08 NC % 40								
Toluene 2013/08/08 NC % 40 Ethylbenzene 2013/08/08 NC % 40		RPD	,					40
Ethylbenzene 2013/08/08 NC % 40		IN D						
111 a p-Ayletie 2013/00/00 NO % 40								
			m α ρ-λylene	2013/00/00	INC		/0	40

Attention: JESSICA LEE

Client Project #:

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: CB367706

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
7058506 WZ0	RPD	o-Xylene	2013/08/08	NC		%	40
		Xylenes (Total)	2013/08/08	NC		%	40
		F1 (C6-C10) - BTEX	2013/08/08	NC		%	40
		(C6-C10)	2013/08/08	NC		%	40
7058811 IA0	Matrix Spike	Total Phosphorus (P)	2013/08/08		108	%	80 - 120
	QC Standard	Total Phosphorus (P)	2013/08/08		96	%	80 - 120
	Spiked Blank	Total Phosphorus (P)	2013/08/08		102	%	83 - 111
	Method Blank	Total Phosphorus (P)	2013/08/08	< 0.0030		mg/L	
	RPD	Total Phosphorus (P)	2013/08/08	0.6		%	20
7060434 TDB	Matrix Spike	Total Aluminum (Al)	2013/08/08		NC	%	80 - 120
	•	Total Antimony (Sb)	2013/08/08		108	%	80 - 120
		Total Arsenic (As)	2013/08/08		95	%	80 - 120
		Total Beryllium (Be)	2013/08/08		93	%	80 - 120
		Total Chromium (Cr)	2013/08/08		100	%	80 - 120
		Total Cobalt (Co)	2013/08/08		96	%	80 - 120
		Total Copper (Cu)	2013/08/08		94	%	80 - 120
		Total Lead (Pb)	2013/08/08		91	%	80 - 120
		Total Molybdenum (Mo)	2013/08/08		109	%	80 - 120
		Total Nickel (Ni)	2013/08/08		96	%	80 - 120
		Total Selenium (Se)	2013/08/08		81	%	80 - 120
		Total Silver (Ag)	2013/08/08		97	%	80 - 120
		Total Thallium (TI)	2013/08/08		89	%	80 - 120
		Total Tin (Sn)	2013/08/08		102	%	80 - 120
		Total Titr (OII)	2013/08/08		106	%	80 - 120
		Total Uranium (U)	2013/08/08		97	%	80 - 120
		Total Vanadium (V)	2013/08/08		102	%	80 - 120
		Total Zinc (Zn)	2013/08/08		95	%	80 - 120
	Spiked Blank	Total Aluminum (AI)	2013/08/08		106	%	80 - 120
	Spiked Dialik	Total Antimony (Sb)	2013/08/08		103	%	80 - 120
		Total Arsenic (As)	2013/08/08		97	%	80 - 120
		Total Beryllium (Be)	2013/08/08		99	%	80 - 120
		Total Chromium (Cr)	2013/08/08		104	%	80 - 120
		Total Cobalt (Co)	2013/08/08		100	% %	80 - 120
		Total Copper (Cu)	2013/08/08		102	%	80 - 120
		Total Lead (Pb)	2013/08/08		96	% %	80 - 120
		Total Lead (Fb) Total Molybdenum (Mo)	2013/08/08		101	% %	80 - 120
		Total Nickel (Ni)	2013/08/08		101	% %	80 - 120
		Total Selenium (Se)	2013/08/08		92	% %	80 - 120
		Total Selement (Se)	2013/08/08		100	% %	80 - 120
		Total Thallium (TI)	2013/08/08		95	%	80 - 120
		Total Triallium (Tr) Total Tin (Sn)	2013/08/08		98	% %	80 - 120
		Total Till (311) Total Titanium (Ti)	2013/08/08		102	%	80 - 120 80 - 120
							80 - 120 80 - 120
		Total Uranium (U)	2013/08/08		100	%	
		Total Vanadium (V)	2013/08/08		102	%	80 - 120
	Mothed Disale	Total Zinc (Zn)	2013/08/08	-0.000	101	% ~~/!	80 - 120
	Method Blank	Total Aluminum (Al)	2013/08/08 2013/08/08	< 0.0030		mg/L	
		Total Artimony (Sb)		<0.00060		mg/L	
		Total Arsenic (As)	2013/08/08	<0.00020		mg/L	
		Total Beryllium (Be)	2013/08/08	<0.0010		mg/L	
		Total Chromium (Cr)	2013/08/08	<0.0010		mg/L	
		Total Cobalt (Co)	2013/08/08	<0.00030		mg/L	
		Total Copper (Cu)	2013/08/08	<0.00020		mg/L	
		Total Lead (Pb)	2013/08/08	<0.00020		mg/L	
		Total Molybdenum (Mo)	2013/08/08	<0.00020		mg/L	
		Total Nickel (Ni)	2013/08/08	<0.00050		mg/L	

Attention: JESSICA LEE

Client Project #:

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: CB367706

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery UNITS	QC Limits
7060434 TDB	Method Blank	Total Selenium (Se)	2013/08/08	< 0.00020	mg/L	
		Total Silver (Ag)	2013/08/08	< 0.00010	mg/L	
		Total Thallium (TI)	2013/08/08	< 0.00020	mg/L	
		Total Tin (Sn)	2013/08/08	< 0.0010	mg/L	
		Total Titanium (Ti)	2013/08/08	< 0.0010	mg/L	
		Total Uranium (U)	2013/08/08	< 0.00010	mg/L	
		Total Vanadium (V)	2013/08/08	< 0.0010	mg/L	
		Total Zinc (Zn)	2013/08/08	< 0.0030	mg/L	
	RPD	Total Aluminum (AI)	2013/08/08	18.9	g/ _ %	20
	THE D	Total Antimony (Sb)	2013/08/08	NC	%	20
		Total Arsenic (As)	2013/08/08	NC NC	/8 %	20
		()	2013/08/08	NC	% %	20
		Total Beryllium (Be)				
		Total Chromium (Cr)	2013/08/08	NC	%	20
		Total Cobalt (Co)	2013/08/08	NC	%	20
		Total Copper (Cu)	2013/08/08	9.5	%	20
		Total Lead (Pb)	2013/08/08	NC	%	20
		Total Molybdenum (Mo)	2013/08/08	0.8	%	20
		Total Nickel (Ni)	2013/08/08	NC	%	20
		Total Selenium (Se)	2013/08/08	NC	%	20
		Total Silver (Ag)	2013/08/08	NC	%	20
		Total Thallium (TI)	2013/08/08	NC	%	20
		Total Tin (Sn)	2013/08/08	NC	%	20
		Total Titanium (Ti)	2013/08/08	16.4	%	20
		Total Uranium (U)	2013/08/08	NC	%	20
		Total Vanadium (V)	2013/08/08	NC	%	20
		Total Zinc (Zn)	2013/08/08	NC	%	20
7060449 YK1	Matrix Spike	Total Barium (Ba)	2013/08/08		97 %	80 - 120
	mann opino	Total Boron (B)	2013/08/08		114 %	80 - 120
		Total Calcium (Ca)	2013/08/08		102 %	80 - 120
		Total Iron (Fe)	2013/08/08		106 %	80 - 120
		Total Lithium (Li)	2013/08/08		99 %	80 - 120
		Total Magnesium (Mg)	2013/08/08		102 %	80 - 120
		Total Magnesium (Mg) Total Manganese (Mn)	2013/08/08		102 %	80 - 120
			2013/08/08		100 %	80 - 120
		Total Phosphorus (P)				
		Total Potassium (K)	2013/08/08		101 %	80 - 120
		Total Silicon (Si)	2013/08/08		132 (2) %	80 - 120
		Total Sodium (Na)	2013/08/08		NC %	80 - 120
		Total Strontium (Sr)	2013/08/08		97 %	80 - 120
	Spiked Blank	Total Barium (Ba)	2013/08/08		92 %	80 - 120
		Total Boron (B)	2013/08/08		107 %	80 - 120
		Total Calcium (Ca)	2013/08/08		97 %	80 - 120
		Total Iron (Fe)	2013/08/08		94 %	80 - 120
		Total Lithium (Li)	2013/08/08		92 %	80 - 120
		Total Magnesium (Mg)	2013/08/08		96 %	80 - 120
		Total Manganese (Mn)	2013/08/08		96 %	80 - 120
		Total Phosphorus (P)	2013/08/08		93 %	80 - 120
		Total Potassium (K)	2013/08/08		92 %	80 - 120
		Total Silicon (Si)	2013/08/08		119 %	80 - 120
		Total Sodium (Na)	2013/08/08		97 %	80 - 120
		Total Strontium (Sr)	2013/08/08		92 %	80 - 120
	Method Blank	Total Barium (Ba)	2013/08/08	< 0.010	mg/L	33 120
	Motriod Diarik	Total Bandin (Ba)	2013/08/08	<0.010	mg/L	
		Total Calcium (Ca)	2013/08/08	<0.020	_	
		` ,			mg/L	
		Total Iron (Fe)	2013/08/08	< 0.060	mg/L	
		Total Lithium (Li)	2013/08/08	<0.020	mg/L	

Attention: JESSICA LEE

Client Project #:

P.O. #:

Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: CB367706

QA/QC			Date				
Batch			Analyzed		_		
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
7060449 YK1	Method Blank	Total Magnesium (Mg)	2013/08/08	<0.20		mg/L	
		Total Manganese (Mn)	2013/08/08	<0.0040		mg/L	
		Total Phosphorus (P)	2013/08/08	<0.10		mg/L	
		Total Potassium (K)	2013/08/08	< 0.30		mg/L	
		Total Silicon (Si)	2013/08/08	<0.10		mg/L	
		Total Sodium (Na)	2013/08/08	< 0.50		mg/L	
		Total Strontium (Sr)	2013/08/08	<0.020		mg/L	
		Total Sulphur (S)	2013/08/08	<0.20		mg/L	
	RPD	Total Barium (Ba)	2013/08/08	0.3		%	20
		Total Boron (B)	2013/08/08	0.7		%	20
		Total Calcium (Ca)	2013/08/08	0.8		%	20
		Total Iron (Fe)	2013/08/08	NC		%	20
		Total Lithium (Li)	2013/08/08	NC		%	20
		Total Magnesium (Mg)	2013/08/08	NC		%	20
		Total Manganese (Mn)	2013/08/08	NC		%	20
		Total Phosphorus (P)	2013/08/08	NC		%	20
		Total Potassium (K)	2013/08/08	NC		%	20
		Total Silicon (Si)	2013/08/08	0.2		%	20
		Total Sodium (Na)	2013/08/08	0.4		%	20
		Total Strontium (Sr)	2013/08/08	NC		%	20
		Total Sulphur (S)	2013/08/08	0.03		%	20
7060719 TDB	Matrix Spike	Dissolved Aluminum (AI)	2013/08/09		101	%	80 - 120
		Dissolved Antimony (Sb)	2013/08/09		88	%	80 - 120
		Dissolved Arsenic (As)	2013/08/09		101	%	80 - 120
		Dissolved Beryllium (Be)	2013/08/09		95	%	80 - 120
		Dissolved Chromium (Cr)	2013/08/09		95	%	80 - 120
		Dissolved Cobalt (Co)	2013/08/09		90	%	80 - 120
		Dissolved Copper (Cu)	2013/08/09		88	%	80 - 120
		Dissolved Lead (Pb)	2013/08/09		90	%	80 - 120
		Dissolved Molybdenum (Mo)	2013/08/09		104	%	80 - 120
		Dissolved Nickel (Ni)	2013/08/09		91	%	80 - 120
		Dissolved Selenium (Se)	2013/08/09		107	%	80 - 120
		Dissolved Silver (Ag)	2013/08/09		93	%	80 - 120
		Dissolved Thallium (TI)	2013/08/09		92	%	80 - 120
		Dissolved Tin (Sn)	2013/08/09		93	%	80 - 120
		Dissolved Titanium (Ti)	2013/08/09		96	%	80 - 120
		Dissolved Uranium (U)	2013/08/09		100	%	80 - 120
		Dissolved Vanadium (V)	2013/08/09		98	%	80 - 120
		Dissolved Zinc (Zn)	2013/08/09		94	%	80 - 120
	Spiked Blank	Dissolved Aluminum (AI)	2013/08/09		99	%	80 - 120
	орікса Віалік	Dissolved Antimony (Sb)	2013/08/09		84	%	80 - 120
		Dissolved Arkimony (OB) Dissolved Arkimony (OB)	2013/08/09		96	%	80 - 120
		Dissolved Arsenic (As) Dissolved Beryllium (Be)	2013/08/09		96	%	80 - 120
		Dissolved Beryllidiff (Be) Dissolved Chromium (Cr)	2013/08/09		94	% %	80 - 120
		Dissolved Childhidhi (Cr) Dissolved Cobalt (Co)	2013/08/09		92	% %	80 - 120
		Dissolved Copper (Cu) Dissolved Lead (Pb)	2013/08/09 2013/08/09		96 93	% %	80 - 120
		Dissolved Lead (Pb) Dissolved Molybdenum (Mo)					80 - 120 80 - 120
		, , ,	2013/08/09		95 06	%	80 - 120
		Dissolved Nickel (Ni)	2013/08/09		96 07	%	80 - 120
		Dissolved Selenium (Se)	2013/08/09		97	%	80 - 120
		Dissolved Silver (Ag)	2013/08/09		88	%	80 - 120
		Dissolved Thallium (TI)	2013/08/09		93	%	80 - 120
		Dissolved Tin (Sn)	2013/08/09		91	%	80 - 120
		Dissolved Titanium (Ti)	2013/08/09		94	%	80 - 120
		Dissolved Uranium (U)	2013/08/09		101	%	80 - 120

Attention: JESSICA LEE

Client Project #:

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: CB367706

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
7060719 TDB	Spiked Blank	Dissolved Vanadium (V)	2013/08/09		95	%	80 - 120
		Dissolved Zinc (Zn)	2013/08/09		97	%	80 - 120
	Method Blank	Dissolved Aluminum (AI)	2013/08/09	< 0.0030		mg/L	
		Dissolved Antimony (Sb)	2013/08/09	< 0.00060		mg/L	
		Dissolved Arsenic (As)	2013/08/09	< 0.00020		mg/L	
		Dissolved Beryllium (Be)	2013/08/09	< 0.0010		mg/L	
		Dissolved Chromium (Cr)	2013/08/09	< 0.0010		mg/L	
		Dissolved Cobalt (Co)	2013/08/09	< 0.00030		mg/L	
		Dissolved Copper (Cu)	2013/08/09	< 0.00020		mg/L	
		Dissolved Lead (Pb)	2013/08/09	< 0.00020		mg/L	
		Dissolved Molybdenum (Mo)	2013/08/09	< 0.00020		mg/L	
		Dissolved Nickel (Ni)	2013/08/09	< 0.00050		mg/L	
		Dissolved Selenium (Se)	2013/08/09	< 0.00020		mg/L	
		Dissolved Silver (Ag)	2013/08/09	< 0.00010		mg/L	
		Dissolved Thallium (TI)	2013/08/09	< 0.00020		mg/L	
		Dissolved Tin (Sn)	2013/08/09	< 0.0010		mg/L	
		Dissolved Titanium (Ti)	2013/08/09	< 0.0010		mg/L	
		Dissolved Uranium (U)	2013/08/09	< 0.00010		mg/L	
		Dissolved Vanadium (V)	2013/08/09	< 0.0010		mg/L	
		Dissolved Zinc (Zn)	2013/08/09	< 0.0030		mg/L	
	RPD	Dissolved Aluminum (AI)	2013/08/09	NC		%	20
		Dissolved Antimony (Sb)	2013/08/09	NC		%	20
		Dissolved Arsenic (As)	2013/08/09	NC		%	20
		Dissolved Beryllium (Be)	2013/08/09	NC		%	20
		Dissolved Chromium (Cr)	2013/08/09	NC		%	20
		Dissolved Cobalt (Co)	2013/08/09	NC		%	20
		Dissolved Copper (Cu)	2013/08/09	1.4		%	20
		Dissolved Lead (Pb)	2013/08/09	NC		%	20
		Dissolved Molybdenum (Mo)	2013/08/09	1.9		%	20
		Dissolved Nickel (Ni)	2013/08/09	NC		%	20
		Dissolved Selenium (Se)	2013/08/09	NC		%	20
		Dissolved Silver (Ag)	2013/08/09	NC		%	20
		Dissolved Thallium (TI)	2013/08/09	NC		%	20
		Dissolved Tin (Sn)	2013/08/09	NC		%	20
		Dissolved Titanium (Ti)	2013/08/09	NC		%	20
		Dissolved Uranium (U)	2013/08/09	0.2		%	20
		Dissolved Vanadium (V)	2013/08/09	NC		%	20
		Dissolved Zinc (Zn)	2013/08/09	NC		%	20
7060828 STI	Matrix Spike	Dissolved Barium (Ba)	2013/08/09		100	%	80 - 120
		Dissolved Boron (B)	2013/08/09		103	%	80 - 120
		Dissolved Calcium (Ca)	2013/08/09		NC	%	80 - 120
		Dissolved Iron (Fe)	2013/08/09		NC	%	80 - 120
		Dissolved Lithium (Li)	2013/08/09		105	%	80 - 120
		Dissolved Magnesium (Mg)	2013/08/09		93	%	80 - 120
		Dissolved Manganese (Mn)	2013/08/09		NC	%	80 - 120
		Dissolved Phosphorus (P)	2013/08/09		99	%	80 - 120
		Dissolved Potassium (K)	2013/08/09		101	%	80 - 120
		Dissolved Silicon (Si)	2013/08/09		NC	%	80 - 120
		Dissolved Sodium (Na)	2013/08/09		NC	%	80 - 120
		Dissolved Strontium (Sr)	2013/08/09		97	%	80 - 120
	Spiked Blank	Dissolved Barium (Ba)	2013/08/09		105	%	80 - 120
	•	Dissolved Boron (B)	2013/08/09		107	%	80 - 120
		Dissolved Calcium (Ca)	2013/08/09		102	%	80 - 120
		Dissolved Iron (Fe)	2013/08/09		109	%	80 - 120
		Dissolved Lithium (Li)	2013/08/09		108	%	80 - 120
		· <i>,</i>					

TIAMAT ENVIRONMENTAL CONSULTANTS Attention: JESSICA LEE

Client Project #:

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: CB367706

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Lim
7060828 STI	Spiked Blank	Dissolved Magnesium (Mg)	2013/08/09		99	%	80 - 1
		Dissolved Manganese (Mn)	2013/08/09		104	%	80 - 13
		Dissolved Phosphorus (P)	2013/08/09		102	%	80 - 1
		Dissolved Potassium (K)	2013/08/09		104	%	80 - 1
		Dissolved Silicon (Si)	2013/08/09		103	%	80 - 1
		Dissolved Sodium (Na)	2013/08/09		102	%	80 - 1
		Dissolved Strontium (Śr)	2013/08/09		105	%	80 - 1
	Method Blank	Dissolved Barium (Ba)	2013/08/09	< 0.010		mg/L	
		Dissolved Boron (B)	2013/08/09	< 0.020		mg/L	
		Dissolved Calcium (Ca)	2013/08/09	<0.30		mg/L	
		Dissolved Iron (Fe)	2013/08/09	< 0.060		mg/L	
		Dissolved Lithium (Li)	2013/08/09	<0.020		mg/L	
		Dissolved Magnesium (Mg)	2013/08/09	<0.20		mg/L	
		Dissolved Magnesium (Mg) Dissolved Manganese (Mn)	2013/08/09	<0.0040		mg/L	
		Dissolved Manganese (Will) Dissolved Phosphorus (P)	2013/08/09	<0.10		mg/L	
		Dissolved Potassium (K)	2013/08/09	<0.10		U	
		` ,	2013/08/09	<0.30		mg/L	
		Dissolved Silicon (Si)				mg/L	
		Dissolved Sodium (Na)	2013/08/09	< 0.50		mg/L	
		Dissolved Strontium (Sr)	2013/08/09	<0.020		mg/L	
		Dissolved Sulphur (S)	2013/08/09	<0.20		mg/L	
	RPD	Dissolved Barium (Ba)	2013/08/09	NC		%	
		Dissolved Boron (B)	2013/08/09	1.9		%	
		Dissolved Calcium (Ca)	2013/08/09	0.4		%	
		Dissolved Iron (Fe)	2013/08/09	0.7		%	
		Dissolved Lithium (Li)	2013/08/09	NC		%	
		Dissolved Magnesium (Mg)	2013/08/09	0.7		%	
		Dissolved Manganese (Mn)	2013/08/09	0.4		%	
		Dissolved Phosphorus (P)	2013/08/09	NC		%	
		Dissolved Potassium (K)	2013/08/09	0.8		%	
		Dissolved Silicon (Si)	2013/08/09	0.3		%	
		Dissolved Sodium (Na)	2013/08/09	0.4		%	
		Dissolved Strontium (Sr)	2013/08/09	0.7		%	
		Dissolved Sulphur (S)	2013/08/09	0.2		%	
64388 RW8	Matrix Spike	Total Organic Carbon (C)	2013/08/09	0.2	120	%	80 -
04000 11110	Spiked Blank	Total Organic Carbon (C)	2013/08/09		113	%	80 -
	Method Blank	Total Organic Carbon (C)	2013/08/09	< 0.50	113	mg/L	00
	RPD	Total Organic Carbon (C)	2013/08/09	NC		111g/L %	
065318 ZI	Matrix Spike	Dissolved Chloride (Cl)		NC	111	% %	80 -
J05316 ZI	•	` ,	2013/08/09				
	Spiked Blank	Dissolved Chloride (CI)	2013/08/09	4.0	109	%	80 -
	Method Blank	Dissolved Chloride (CI)	2013/08/09	<1.0		mg/L	
	RPD	Dissolved Chloride (CI)	2013/08/09	NC		%	
065319 ZI	Matrix Spike	Dissolved Sulphate (SO4)	2013/08/09		NC	%	80 -
	Spiked Blank	Dissolved Sulphate (SO4)	2013/08/09		104	%	80 -
	Method Blank	Dissolved Sulphate (SO4)	2013/08/09	<1.0		mg/L	
	RPD	Dissolved Sulphate (SO4)	2013/08/09	1.3		%	
068140 TSJ	Matrix Spike	Total Chemical Oxygen Demand	2013/08/11		98	%	80 - 1
	Spiked Blank	Total Chemical Oxygen Demand	2013/08/11		99	%	80 -
	Method Blank	Total Chemical Oxygen Demand	2013/08/11	<5.0		mg/L	
	RPD	Total Chemical Oxygen Demand	2013/08/11	12.1		%	

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate methoc accuracy.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method

TIAMAT ENVIRONMENTAL CONSULTANTS Attention: JESSICA LEE Client Project #: P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: CB367706

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

- (1) Dissolved greater than total. Reanalysis yields similar results.
- (2) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Validation Signature Page

Maxxam Job #: B367706

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s). Janet Gao, Senior Analyst, Organics Department Luba Shymushovska, Senior Analyst, Organic Department Peng Liang, Analyst II Rebecca Nguyen, Analyst II

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Calgany: 4000 19st St. NE, T2E 6P8. Ph: (403) 291-3077, Fax: (403) 735-2240, Toll free: (800) 386-7247 Edmonton: 9331 - 48 Street, T68 2R4. Ph: (780) 577-7100, Fax: (780) 450-4187, Toll free: (877) 465-8889

Same as Invoice

Report Distribution (E-Ma

jessica & tra

Report To:

C/O Report Address

Invoice To:

Company:

200

20297661 @2010, RR Dor

Chain of C	AUT8666
	Page: of
ill): nattroup of attgroup of	REGULATORY GUIDELINES: AT1 CCME Regulated Drinking Water Other:

Other Analysis

>					F	F/P	-				3				1	*			F/F
									LAB	USE	ONL'	Y							,
Recei	ved	By:	,			Date			Tim				Max	xam .	Job#				
	H	era	pu	Hk:	h'	20	13/	0 8	10	741	5		(#000000 00	tody eal		Ten	npera	ature	Ice
Lab C													٨	J	3	, 4	1	7	4

CONSEROS GO331 FORD 2010/05 ANALYSIS.

Special Instructions: PLS NOTE THAT MORE WATER SAMPLES WILL

BE SUBMITTED FOR MW-01 to MW-03 CCONVENT HILL

Tomor fow DUE TO SLOW WATER RECHARGE. PLS

Relinquished By (Signature/Print):

Maxxam Analytics International Corporation o/a Maxxam Analytics

Time (24:00):

of Jars Used & Not

Page 24 of 25

of Containers Submitted

HOLD - Do not Analyze

Pls see

matruetrons

12-435 Phase II ESA – Red Deer Motors Site Historic Waste Disposal Site, The City of Red Deer

SOIL VAPOUR REPORTS

Your Project #: 12-435 Your C.O.C. #: 18283

Attention: Leon T. Mah
Tiamat Environmental
107, 2719-7 Ave. NE
Calgary, AB
CANADA T2A 2L9

Report Date: 2013/08/25

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B3C8546 Received: 2013/08/07, 10:11

Sample Matrix: AIR # Samples Received: 3

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
BTEX Fractionation in Air (TO-15mod)	2	N/A	2013/08/14 BRL SOP-00304	EPA TO-15mod
BTEX Fractionation in Air (TO-15mod)	1	N/A	2013/08/15 BRL SOP-00304	EPA TO-15mod
Canister Pressure (TO-15)	2	N/A	2013/08/14 BRL SOP-00304	EPA TO-15
Canister Pressure (TO-15)	1	N/A	2013/08/15 BRL SOP-00304	EPA TO-15
Light Hydrocarbons	3	N/A	2013/08/21 CAM SOP-00227	GC/FID
Matrix Gases	3	N/A	2013/08/22 CAM SOP-00225, CA	M ASTM D1946-90
			SOP-00209	
Volatile Organics in Air (TO-15) (1)	2	N/A	2013/08/14 BRL SOP-00304	EPA TO-15
Volatile Organics in Air (TO-15) (1)	1	N/A	2013/08/15 BRL SOP-00304	EPA TO-15

(1) Air sampling canisters have been cleaned in accordance with U.S. EPA Method TO14A. At the end of the cleaning, evacuation, and pressurization cycles, one canister was selected and was pressurized with Zero Air. This canister was then analyzed via TO14A on a GC/MS. The canister must have been found to contain <0.2 ppbv concentration of all target analytes in order for the batch to have been considered clean. Each canister also underwent a leak check prior to shipment.

Please Note: SUMMA® canister samples will be retained by Maxxam for a period of 5 calendar days or as contractually agreed from the date of this report, after which time they will be cleaned for reuse. If you require a longer sample storage period, please contact your service representative.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Theresa Stephenson, Project Manager Email: TStephenson@maxxam.ca Phone# (905) 817-5763

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section

Your Project #: 12-435 Your C.O.C. #: 18283

Attention: Leon T. Mah Tiamat Environmental 107, 2719-7 Ave. NE Calgary, AB **CANADA** T2A 2L9

Report Date: 2013/08/25

CERTIFICATE OF ANALYSIS -2-

5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam Analytics Inc. is a NELAC accredited laboratory. Certificate # CANA001. Use of the NELAC logo however does not insure that Maxxam is accredited for all of the methods indicated. This certificate shall not be reproduced except in full, without the written approval of Maxxam Analytics Inc. Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section.

Total cover pages: 2

Tiamat Environmental Client Project #: 12-435

Sampler Initials: JAL

RESULTS OF ANALYSES OF AIR

Mayyam ID	1	SN8303	Т		CNIO2O4	Т	1	CNIOSOE		
Maxxam ID		011000	1		SN8304	+		SN8305		
Sampling Date		2013/08/02	-		2013/08/02			2013/08/02		
COC Number		18283	<u> </u>		18283	<u></u>		18283	<u></u>	
	Units	VW-01	RDL	QC Batch	VW-01	RDL	QC Batch	VW-03	RDL	QC Batch
		(CONVENT			(RDM)			(RDM) / 1929		
		HILL) / 1360			/ 00291					
Gas										
Acetylene	ppm	ND	0.21	3322553	ND	0.19	3322553	ND	0.34	3322553
Ethane	ppm	ND	0.21	3322553	1.1	0.19	3322553	ND	0.34	3322553
Ethylene	ppm	ND	0.21	3322553	0.67	0.19	3322553	ND	0.34	3322553
Methane	ppm	14	4.2	3322553				ND	6.8	3322553
n-Butane	ppm	ND	0.42	3322553	2.4	0.38	3322553	ND	0.68	3322553
n-Pentane	ppm	ND	0.21	3322553	14	0.19	3322553	ND	0.34	3322553
Propane	ppm	ND	0.21	3322553	0.34	0.19	3322553	ND	0.34	3322553
Propene	ppm	ND	0.21	3322553	0.22	0.19	3322553	ND	0.34	3322553
Propyne	ppm	ND	0.42	3322553	ND	0.38	3322553	ND	0.68	3322553
Volatile Organics										
Pressure on Receipt	psig	(-3.3)	N/A	3317031	(-1.4)	N/A	3320530	(-3.4)	N/A	3317031

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Tiamat Environmental Client Project #: 12-435

Sampler Initials: JAL

COMPRESSED GAS PARAMETERS (AIR)

	Units	VW-01 (CONVENT HILL) / 1360	VW-01 (RDM) / 00291	RDL	VW-03 (RDM) / 1929	RDL	QC Batch
COC Number		18283	18283		18283		
Sampling Date		2013/08/02	2013/08/02		2013/08/02		
Maxxam ID		SN8303	SN8304		SN8305		

Fixed Gases							
Oxygen	% v/v	8.9	8.4	0.2	19.8	0.3	3324319
Nitrogen	% v/v	81.9	52.5	0.2	78.3	0.3	3324319
Carbon Monoxide	% v/v	ND	ND	0.2	ND	0.3	3324319
Methane	% v/v	ND	26.0	0.2	ND	0.3	3324319
Carbon Dioxide	% v/v	9.1	13.1	0.2	1.9	0.3	3324319

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Tiamat Environmental Client Project #: 12-435

Sampler Initials: JAL

VOLATILE ORGANIC HYDROCARBONS BY GC/MS (AIR)

Maxxam ID		SN8303			SN8304			SN8305		
Sampling Date		2013/08/02			2013/08/02			2013/08/02		
COC Number		18283			18283			18283		
	Units	VW-01	RDL	QC Batch	VW-01	RDL	QC Batch	VW-03	RDL	QC Batch
		(CONVENT			(RDM)			(RDM) / 1929		
		HILL) / 1360			/ 00291					
		•								•

Volatile Organics										
Aliphatic >C5-C6	ug/m3	ND	5.5	3319686	53000	480	3320596	6.8	5.0	3319686
Aliphatic >C6-C8	ug/m3	18.7	5.5	3319686	88300	480	3320596	34.4	5.0	3319686
Aliphatic >C8-C10	ug/m3	57.4	5.5	3319686	ND	480	3320596	73.1	5.0	3319686
Aliphatic >C10-C12	ug/m3	92.1	5.5	3319686	664	480	3320596	202	5.0	3319686
Aliphatic >C12-C16	ug/m3	710	5.5	3319686	ND	480	3320596	105	5.0	3319686
Aromatic >C7-C8 (TEX Excluded)	ug/m3	ND	5.5	3319686	ND	480	3320596	ND	5.0	3319686
Aromatic >C8-C10	ug/m3	36.1	5.5	3319686	ND	480	3320596	30.9	5.0	3319686
Aromatic >C10-C12	ug/m3	44.5	5.5	3319686	ND	480	3320596	58.1	5.0	3319686
Aromatic >C12-C16	ug/m3	ND	5.5	3319686	ND	480	3320596	ND	5.0	3319686

ND = Not detected RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Tiamat Environmental Client Project #: 12-435

Sampler Initials: JAL

VOLATILE ORGANICS BY GC/MS (AIR)

Maxxam ID		SN8303				
Sampling Date		2013/08/02				
COC Number		18283				
	Units	VW-01	RDL	ug/m3	DL (ug/m3)	QC Batch
		(CONVENT		_		
		HILL) / 1360				

		HILL) / 1360				
Volatile Organics			1			
Dichlorodifluoromethane (FREON 12)	ppbv	0.92	0.22	4.53	1.09	3317067
1,2-Dichlorotetrafluoroethane	ppbv	<0.19	0.19	<1.31	1.31	3317067
Chloromethane	ppbv	0.76	0.33	1.56	0.681	3317067
Vinyl Chloride	ppbv	<0.20	0.20	<0.506	0.506	3317067
Chloroethane	ppbv	<0.33	0.33	<0.871	0.871	3317067
1,3-Butadiene	ppbv	<0.55	0.55	<1.22	1.22	3317067
Trichlorofluoromethane (FREON 11)	ppbv	0.22	0.22	1.26	1.24	3317067
Ethanol (ethyl alcohol)	ppbv	43.5	2.5	81.9	4.77	3317067
Trichlorotrifluoroethane	ppbv	<0.17	0.17	<1.26	1.26	3317067
2-propanol	ppbv	3.5	3.3	8.67	8.11	3317067
2-Propanone	ppbv	11.4	0.88	27.0	2.09	3317067
Methyl Ethyl Ketone (2-Butanone)	ppbv	3.7	3.3	10.9	9.73	3317067
Methyl Isobutyl Ketone	ppbv	<3.5	3.5	<14.4	14.4	3317067
Methyl Butyl Ketone (2-Hexanone)	ppbv	<2.2	2.2	<9.01	9.01	3317067
Methyl t-butyl ether (MTBE)	ppbv	<0.22	0.22	<0.793	0.793	3317067
Ethyl Acetate	ppbv	<2.4	2.4	<8.72	8.72	3317067
1,1-Dichloroethylene	ppbv	<0.28	0.28	<1.09	1.09	3317067
cis-1,2-Dichloroethylene	ppbv	<0.21	0.21	<0.829	0.829	3317067
trans-1,2-Dichloroethylene	ppbv	<0.22	0.22	<0.872	0.872	3317067
Methylene Chloride(Dichloromethane)	ppbv	1.33	0.88	4.61	3.06	3317067
Chloroform	ppbv	0.24	0.17	1.16	0.806	3317067
Carbon Tetrachloride	ppbv	<0.33	0.33	<2.08	2.08	3317067
1,1-Dichloroethane	ppbv	<0.22	0.22	<0.890	0.890	3317067
1,2-Dichloroethane	ppbv	<0.22	0.22	<0.890	0.890	3317067
Ethylene Dibromide	ppbv	<0.19	0.19	<1.44	1.44	3317067
1,1,1-Trichloroethane	ppbv	<0.33	0.33	<1.80	1.80	3317067
1,1,2-Trichloroethane	ppbv	<0.17	0.17	<0.900	0.900	3317067
1,1,2,2-Tetrachloroethane	ppbv	<0.22	0.22	<1.51	1.51	3317067
cis-1,3-Dichloropropene	ppbv	<0.20	0.20	<0.899	0.899	3317067
trans-1,3-Dichloropropene	ppbv	<0.19	0.19	<0.849	0.849	3317067
1,2-Dichloropropane	ppbv	<0.44	0.44	<2.03	2.03	3317067
Bromomethane	ppbv	<0.20	0.20	<0.769	0.769	3317067

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Tiamat Environmental Client Project #: 12-435

Sampler Initials: JAL

VOLATILE ORGANICS BY GC/MS (AIR)

Maxxam ID		SN8303				
Sampling Date		2013/08/02				
COC Number	Units	18283 VW-01	RDL	ug/m3	DL (ug/m3)	QC Batch
	Onits	(CONVENT	INDE	ug/iiio	DE (ug/ma)	QO Batem
		HILL) / 1360				
Bromoform	ppbv	<0.22	0.22	<2.27	2.27	3317067
Bromodichloromethane	ppbv	<0.22	0.22	<1.47	1.47	3317067
Dibromochloromethane	ppbv	<0.22	0.22	<1.87	1.87	3317067
Trichloroethylene	ppbv	0.88	0.33	4.72	1.77	3317067
Tetrachloroethylene	ppbv	<0.22	0.22	<1.49	1.49	3317067
Benzene	ppbv	1.21	0.20	3.88	0.633	3317067
Toluene	ppbv	5.40	0.22	20.3	0.828	3317067
Ethylbenzene	ppbv	1.19	0.22	5.17	0.955	3317067
p+m-Xylene	ppbv	4.25	0.41	18.5	1.77	3317067
o-Xylene	ppbv	1.73	0.22	7.51	0.955	3317067
Styrene	ppbv	0.45	0.22	1.91	0.937	3317067
4-ethyltoluene	ppbv	<2.4	2.4	<11.9	11.9	3317067
1,3,5-Trimethylbenzene	ppbv	<1.5	1.5	<7.32	7.32	3317067
1,2,4-Trimethylbenzene	ppbv	2.51	0.55	12.4	2.70	3317067
Chlorobenzene	ppbv	<0.22	0.22	<1.01	1.01	3317067
Benzyl chloride	ppbv	<1.1	1.1	<5.69	5.69	3317067
1,3-Dichlorobenzene	ppbv	<0.44	0.44	<2.65	2.65	3317067
1,4-Dichlorobenzene	ppbv	<0.44	0.44	<2.65	2.65	3317067
1,2-Dichlorobenzene	ppbv	<0.44	0.44	<2.65	2.65	3317067
1,2,4-Trichlorobenzene	ppbv	<2.2	2.2	<16.3	16.3	3317067
Hexachlorobutadiene	ppbv	<3.3	3.3	<35.2	35.2	3317067
Hexane	ppbv	1.34	0.33	4.73	1.16	3317067
Heptane	ppbv	0.45	0.33	1.84	1.35	3317067
Cyclohexane	ppbv	<0.22	0.22	<0.757	0.757	3317067
Tetrahydrofuran	ppbv	2.61	0.44	7.69	1.30	3317067
1,4-Dioxane	ppbv	<2.2	2.2	<7.93	7.93	3317067
Xylene (Total)	ppbv	5.98	0.66	26.0	2.87	3317067
Vinyl Bromide	ppbv	<0.22	0.22	<0.962	0.962	3317067
Propene	ppbv	<1.6	1.6	<2.75	2.75	3317067
2,2,4-Trimethylpentane	ppbv	0.28	0.22	1.30	1.03	3317067
Carbon Disulfide	ppbv	2.52	0.55	7.84	1.71	3317067
Vinyl Acetate	ppbv	<0.22	0.22	<0.775	0.775	3317067
Surrogate Recovery (%)						
Bromochloromethane	%	88		N/A	N/A	3317067
N/A - Not Applicable						

N/A = Not Applicable

QC Batch = Quality Control Batch

Tiamat Environmental Client Project #: 12-435

Sampler Initials: JAL

VOLATILE ORGANICS BY GC/MS (AIR)

Maxxam ID		SN8303				
Sampling Date		2013/08/02				
COC Number		18283				
	Units	VW-01	RDL	ug/m3	DL (ug/m3)	QC Batch
		(CONVENT				
		HILL) / 1360				

D5-Chlorobenzene	%	77	N/A	N/A	3317067
Difluorobenzene	%	90	N/A	N/A	3317067

N/A = Not Applicable

QC Batch = Quality Control Batch

Tiamat Environmental Client Project #: 12-435

Sampler Initials: JAL

VOLATILE ORGANICS BY GC/MS (AIR)

Maxxam ID		SN8304				
Sampling Date		2013/08/02				
COC Number		18283				
	Units	VW-01	RDL	ug/m3	DL (ug/m3)	QC Batch
		(RDM)		_		
		/ 00291				

		/ 00291				
Volatile Organics						
Dichlorodifluoromethane (FREON 12)	ppbv	<58	58	<285	285	3315967
1,2-Dichlorotetrafluoroethane	ppbv	<16	16	<113	113	3315967
Chloromethane	ppbv	<29	29	<58.9	58.9	3315967
Vinyl Chloride	ppbv	519	17	1330	43.7	3315967
Chloroethane	ppbv	<29	29	<75.2	75.2	3315967
1,3-Butadiene	ppbv	<48	48	<105	105	3315967
Trichlorofluoromethane (FREON 11)	ppbv	<19	19	<107	107	3315967
Ethanol (ethyl alcohol)	ppbv	322	220	606	412	3315967
, ,	 	<14	14		109	
Trichlorotrifluoroethane	ppbv			<109		3315967
2-propanol	ppbv	<290	290	<701	701	3315967
2-Propanone	ppbv	<76	76	<181	181	3315967
Methyl Ethyl Ketone (2-Butanone)	ppbv	<290	290	<841	841	3315967
Methyl Isobutyl Ketone	ppbv	<300	300	<1250	1250	3315967
Methyl Butyl Ketone (2-Hexanone)	ppbv	<190	190	<778	778	3315967
Methyl t-butyl ether (MTBE)	ppbv	<19	19	<68.5	68.5	3315967
Ethyl Acetate	ppbv	<210	210	<753	753	3315967
1,1-Dichloroethylene	ppbv	<24	24	<94.2	94.2	3315967
cis-1,2-Dichloroethylene	ppbv	123	18	486	71.6	3315967
trans-1,2-Dichloroethylene	ppbv	30	19	118	75.3	3315967
Methylene Chloride(Dichloromethane)	ppbv	<120	120	<433	433	3315967
Chloroform	ppbv	<14	14	<69.6	69.6	3315967
Carbon Tetrachloride	ppbv	<29	29	<179	179	3315967
1,1-Dichloroethane	ppbv	<19	19	<76.9	76.9	3315967
1,2-Dichloroethane	ppbv	<19	19	<76.9	76.9	3315967
Ethylene Dibromide	ppbv	<16	16	<124	124	3315967
1,1,1-Trichloroethane	ppbv	<29	29	<155	155	3315967
1,1,2-Trichloroethane	ppbv	<14	14	<77.7	77.7	3315967
1,1,2,2-Tetrachloroethane	ppbv	<19	19	<130	130	3315967
cis-1,3-Dichloropropene	ppbv	<17	17	<77.6	77.6	3315967
trans-1,3-Dichloropropene	ppbv	<16	16	<73.3	73.3	3315967
1,2-Dichloropropane	ppbv	<38	38	<176	176	3315967
Bromomethane	ppbv	<17	17	<66.4	66.4	3315967

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Tiamat Environmental Client Project #: 12-435

Sampler Initials: JAL

VOLATILE ORGANICS BY GC/MS (AIR)

Maxxam ID		SN8304				
Sampling Date		2013/08/02				
COC Number	Units	18283 VW-01 (RDM) / 00291	RDL	ug/m3	DL (ug/m3)	QC Batch
Bromoform	nnhy	<19	19	<196	196	3315967
Bromodichloromethane	ppbv	_	-			
	ppbv	<19	19	<127	127	3315967
Dibromochloromethane	ppbv	<19	19	<162	162	3315967
Trichloroethylene	ppbv	<29	29	<153	153	3315967
Tetrachloroethylene	ppbv	<19	19	<129	129	3315967
Benzene	ppbv	<17	17	<54.6	54.6	3315967
Toluene	ppbv	<81	81	<304	304	3315967
Ethylbenzene	ppbv	<27	27	<119	119	3315967
p+m-Xylene	ppbv	<99	99	<428	428	3315967
o-Xylene	ppbv	<19	19	<82.5	82.5	3315967
Styrene	ppbv	42	19	181	80.9	3315967
4-ethyltoluene	ppbv	<210	210	<1030	1030	3315967
1,3,5-Trimethylbenzene	ppbv	<48	48	<233	233	3315967
1,2,4-Trimethylbenzene	ppbv	<48	48	<233	233	3315967
Chlorobenzene	ppbv	<19	19	<87.5	87.5	3315967
Benzyl chloride	ppbv	<95	95	<492	492	3315967
1,3-Dichlorobenzene	ppbv	<38	38	<228	228	3315967
1,4-Dichlorobenzene	ppbv	<38	38	<228	228	3315967
1,2-Dichlorobenzene	ppbv	<38	38	<228	228	3315967
1,2,4-Trichlorobenzene	ppbv	<190	190	<1410	1410	3315967
Hexachlorobutadiene	ppbv	<290	290	<3040	3040	3315967
Hexane	ppbv	17800	29	62700	100	3315967
Heptane	ppbv	1970	29	8060	117	3315967
Cyclohexane	ppbv	4900	19	16900	65.4	3315967
Tetrahydrofuran	ppbv	<38	38	<112	112	3315967
1,4-Dioxane	ppbv	<190	190	<685	685	3315967
Xylene (Total)	ppbv	<99	99	<429	429	3315967
Vinyl Bromide	ppbv	<19	19	<83.1	83.1	3315967
Propene	ppbv	371	29	639	49.1	3315967
2,2,4-Trimethylpentane	ppbv	<19	19	<88.8	88.8	3315967
Carbon Disulfide	ppbv	<48	48	<148	148	3315967
Vinyl Acetate	ppbv	<19	19	<66.9	66.9	3315967
Surrogate Recovery (%)			1			
Bromochloromethane	%	80		N/A	N/A	3315967

N/A = Not Applicable

QC Batch = Quality Control Batch

Tiamat Environmental Client Project #: 12-435

Sampler Initials: JAL

VOLATILE ORGANICS BY GC/MS (AIR)

Maxxam ID		SN8304				
Sampling Date		2013/08/02				
COC Number		18283				
	Units	Units VW-01		ug/m3	DL (ug/m3)	QC Batch
		(RDM)		_		
		/ 00291				

D5-Chlorobenzene	%	77	N/A	N/A	3315967
Difluorobenzene	%	84	N/A	N/A	3315967

N/A = Not Applicable

QC Batch = Quality Control Batch

Tiamat Environmental Client Project #: 12-435

Sampler Initials: JAL

VOLATILE ORGANICS BY GC/MS (AIR)

Maxxam ID	Т	SN8305	1	1		T
Sampling Date	+	2013/08/02				
COC Number	†	18283				
	Units	VW-03	RDL	ug/m3	DL (ug/m3)	QC Batch
		(RDM) / 1929				
Volatile Organics	1					
Volatile Organics	1					

		(RDM) / 1929				
Volatile Organics						
Dichlorodifluoromethane (FREON 12)	ppbv	1.60	0.20	7.92	0.989	3317067
1,2-Dichlorotetrafluoroethane	ppbv	0.58	0.17	4.07	1.19	3317067
Chloromethane	ppbv	1.03	0.30	2.12	0.620	3317067
Vinyl Chloride	ppbv	<0.18	0.18	<0.460	0.460	3317067
Chloroethane	ppbv	<0.30	0.30	<0.792	0.792	3317067
1,3-Butadiene	ppbv	<0.50	0.50	<1.11	1.11	3317067
Trichlorofluoromethane (FREON 11)	ppbv	0.42	0.20	2.35	1.12	3317067
Ethanol (ethyl alcohol)	ppbv	648	23	1220	43.3	3317067
Trichlorotrifluoroethane	ppbv	<0.15	0.15	<1.15	1.15	3317067
2-propanol	ppbv	5.1	3.0	12.4	7.37	3317067
2-Propanone	ppbv	18.0	0.80	42.9	1.90	3317067
Methyl Ethyl Ketone (2-Butanone)	ppbv	5.8	3.0	17.2	8.85	3317067
Methyl Isobutyl Ketone	ppbv	<3.2	3.2	<13.1	13.1	3317067
Methyl Butyl Ketone (2-Hexanone)	ppbv	<2.0	2.0	<8.19	8.19	3317067
Methyl t-butyl ether (MTBE)	ppbv	<0.20	0.20	<0.721	0.721	3317067
Ethyl Acetate	ppbv	<2.2	2.2	<7.93	7.93	3317067
1,1-Dichloroethylene	ppbv	<0.25	0.25	<0.991	0.991	3317067
cis-1,2-Dichloroethylene	ppbv	0.42	0.19	1.68	0.753	3317067
trans-1,2-Dichloroethylene	ppbv	<0.20	0.20	<0.793	0.793	3317067
Methylene Chloride(Dichloromethane)	ppbv	1.06	0.80	3.67	2.78	3317067
Chloroform	ppbv	0.52	0.15	2.55	0.732	3317067
Carbon Tetrachloride	ppbv	<0.30	0.30	<1.89	1.89	3317067
1,1-Dichloroethane	ppbv	<0.20	0.20	<0.809	0.809	3317067
1,2-Dichloroethane	ppbv	<0.20	0.20	<0.809	0.809	3317067
Ethylene Dibromide	ppbv	<0.17	0.17	<1.31	1.31	3317067
1,1,1-Trichloroethane	ppbv	<0.30	0.30	<1.64	1.64	3317067
1,1,2-Trichloroethane	ppbv	<0.15	0.15	<0.818	0.818	3317067
1,1,2,2-Tetrachloroethane	ppbv	<0.20	0.20	<1.37	1.37	3317067
cis-1,3-Dichloropropene	ppbv	<0.18	0.18	<0.817	0.817	3317067
trans-1,3-Dichloropropene	ppbv	<0.17	0.17	<0.772	0.772	3317067
1,2-Dichloropropane	ppbv	<0.40	0.40	<1.85	1.85	3317067
Bromomethane	ppbv	<0.18	0.18	<0.699	0.699	3317067

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Tiamat Environmental Client Project #: 12-435

Sampler Initials: JAL

VOLATILE ORGANICS BY GC/MS (AIR)

Maxxam ID		SN8305				
Sampling Date		2013/08/02				
COC Number	Units	18283 VW-03	RDL	ug/m3	DL (ug/m3)	QC Batch
	Units	(RDM) / 1929	KDL	ug/iiis	DL (ug/III3)	QC Balcii
	· ·					•
Bromoform	ppbv	<0.20	0.20	<2.07	2.07	3317067
Bromodichloromethane	ppbv	<0.20	0.20	<1.34	1.34	3317067
Dibromochloromethane	ppbv	<0.20	0.20	<1.70	1.70	3317067
Trichloroethylene	ppbv	1.32	0.30	7.08	1.61	3317067
Tetrachloroethylene	ppbv	<0.20	0.20	<1.36	1.36	3317067
Benzene	ppbv	0.79	0.18	2.51	0.575	3317067
Toluene	ppbv	3.95	0.20	14.8	0.753	3317067
Ethylbenzene	ppbv	0.92	0.20	3.98	0.868	3317067
p+m-Xylene	ppbv	3.65	0.37	15.8	1.61	3317067
o-Xylene	ppbv	1.67	0.20	7.23	0.868	3317067
Styrene	ppbv	0.37	0.20	1.57	0.852	3317067
4-ethyltoluene	ppbv	<2.2	2.2	<10.8	10.8	3317067
1,3,5-Trimethylbenzene	ppbv	<1.9	1.9	<9.29	9.29	3317067
1,2,4-Trimethylbenzene	ppbv	2.74	0.50	13.5	2.46	3317067
Chlorobenzene	ppbv	<0.20	0.20	<0.921	0.921	3317067
Benzyl chloride	ppbv	<1.0	1.0	<5.18	5.18	3317067
1,3-Dichlorobenzene	ppbv	<0.40	0.40	<2.40	2.40	3317067
1,4-Dichlorobenzene	ppbv	<0.40	0.40	<2.40	2.40	3317067
1,2-Dichlorobenzene	ppbv	<0.40	0.40	<2.40	2.40	3317067
1,2,4-Trichlorobenzene	ppbv	<2.0	2.0	<14.8	14.8	3317067
Hexachlorobutadiene	ppbv	<3.0	3.0	<32.0	32.0	3317067
Hexane	ppbv	<1.3	1.3	<4.65	4.65	3317067
Heptane	ppbv	0.58	0.30	2.39	1.23	3317067
Cyclohexane	ppbv	0.35	0.20	1.19	0.688	3317067
Tetrahydrofuran	ppbv	5.14	0.40	15.2	1.18	3317067
1,4-Dioxane	ppbv	<2.0	2.0	<7.21	7.21	3317067
Xylene (Total)	ppbv	5.31	0.60	23.1	2.61	3317067
Vinyl Bromide	ppbv	<0.20	0.20	<0.875	0.875	3317067
Propene	ppbv	<3.9	3.9	<6.69	6.69	3317067
2,2,4-Trimethylpentane	ppbv	0.64	0.20	2.99	0.934	3317067
Carbon Disulfide	ppbv	3.21	0.50	9.99	1.56	3317067
Vinyl Acetate	ppbv	<0.20	0.20	<0.704	0.704	3317067
Surrogate Recovery (%)						
Bromochloromethane	%	92		N/A	N/A	3317067
			•			•

N/A = Not Applicable

QC Batch = Quality Control Batch

Tiamat Environmental Client Project #: 12-435

Sampler Initials: JAL

N/A

3317067

N/A

VOLATILE ORGANICS BY GC/MS (AIR)

Maxxam ID		SN8305				
Sampling Date		2013/08/02				
COC Number		18283				
	Units	VW-03	RDL	ug/m3	DL (ug/m3)	QC Batch
		(RDM) / 1929				
D5-Chlorobenzene	%	85		N/A	N/A	3317067

95

%

N/A = Not Applicable

Difluorobenzene

QC Batch = Quality Control Batch

Tiamat Environmental Client Project #: 12-435

Sampler Initials: JAL

Test Summary

Maxxam ID SN8303

Sample ID VW-01 (CONVENT HILL) / 1360

Matrix AIR

Collected 2013/08/02

Shipped

Received 2013/08/07

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
BTEX Fractionation in Air (TO-15mod)	GC/MS	3319686	N/A	2013/08/14	Jie Wu
Canister Pressure (TO-15)	PRES	3317031	N/A	2013/08/14	Jie Wu
Light Hydrocarbons	GC/FID	3322553	N/A	2013/08/21	Vijay Lad
Matrix Gases	GC/TCD	3324319	N/A	2013/08/22	Tonghui (Jenny) Chen
Volatile Organics in Air (TO-15)	GC/MS	3317067	N/A	2013/08/14	Jie Wu

Maxxam ID SN8304

Sample ID VW-01 (RDM) / 00291

Matrix AIR

Collected 2013/08/02

Shipped

Received 2013/08/07

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
BTEX Fractionation in Air (TO-15mod)	GC/MS	3320596	N/A	2013/08/15	Jie Wu
Canister Pressure (TO-15)	PRES	3320530	N/A	2013/08/15	Jie Wu
Light Hydrocarbons	GC/FID	3322553	N/A	2013/08/21	Vijay Lad
Matrix Gases	GC/TCD	3324319	N/A	2013/08/22	Tonghui (Jenny) Chen
Volatile Organics in Air (TO-15)	GC/MS	3315967	N/A	2013/08/15	Jie Wu

Maxxam ID SN8305

Sample ID VW-03 (RDM) / 1929

Matrix AIR

Collected 2013/08/02

Shipped

Received 2013/08/07

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
BTEX Fractionation in Air (TO-15mod)	GC/MS	3319686	N/A	2013/08/14	Jie Wu
Canister Pressure (TO-15)	PRES	3317031	N/A	2013/08/14	Jie Wu
Light Hydrocarbons	GC/FID	3322553	N/A	2013/08/21	Vijay Lad
Matrix Gases	GC/TCD	3324319	N/A	2013/08/22	Tonghui (Jenny) Chen
Volatile Organics in Air (TO-15)	GC/MS	3317067	N/A	2013/08/14	Jie Wu

Tiamat Environmental Client Project #: 12-435

Sampler Initials: JAL

GENERAL COMMENTS

ws:3317067

Ethanol exceeds 130% recovery criteria in Reference Standard. It meets %RSD criteria in the Continuing Calibration Standard. Data was accepted and flagged.

Light Hydrocarbon/Matrix Gas Analysis: Canisters were pressurized with Helium to enable sampling. Results and DLs adjusted accordingly.

Matrix Gas Analysis: Results normalized to 100% dry volume.

Sample SN8303-01: A 1.1x dilution was analyzed. The DLs were adjusted accordingly.

Increased DL further for propene and 1,3,5-trimethylbenzene due to possible interference.

Sample SN8304-01: Canister received at -1.4psig and was pressurized to 10psig, for a 1.9x pressure dilution. A 50x dilution was prepared and analyzed, resulting in a 95x final dilution. The DLs were adjusted accordingly.

The amount reported for propene represents the mixture of propene and propane.

Increased DL further for methylene chloride, toluene, m/p-xylene and total xylenes due to airbag background.

Sample SN8305-01: A 10x dilution was prepared and analyzed for ethanol. The DL was adjusted accordingly.

Increased DL further for propene, hexane and 1,3,5-trimethylbenzene due to possible interference.

Results relate only to the items tested.

P.O. #: Site Location:

Quality Assurance Report Maxxam Job Number: GB3C8546

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	%Recovery	Units	QC Limits
3315967 JIW	Spiked Blank	Bromochloromethane	2013/08/15		102	%	60 - 140
		D5-Chlorobenzene	2013/08/15		105	%	60 - 140
		Difluorobenzene	2013/08/15		104	%	60 - 140
		Dichlorodifluoromethane (FREON 12)	2013/08/15		104	%	70 - 130
		1,2-Dichlorotetrafluoroethane	2013/08/15		110	%	70 - 130
		Chloromethane	2013/08/15		108	%	70 - 130
		Vinyl Chloride	2013/08/15		103	%	70 - 130
		Chloroethane	2013/08/15		98	%	70 - 130
		1,3-Butadiene	2013/08/15		106	%	70 - 130
		Trichlorofluoromethane (FREON 11)	2013/08/15		101	%	70 - 130
		Ethanol (ethyl alcohol)	2013/08/15		132 (1)	%	70 - 130
		Trichlorotrifluoroethane	2013/08/15		94)	%	70 - 130
		2-propanol	2013/08/15		117	%	70 - 130
		2-Propanone	2013/08/15		103	%	70 - 130
		Methyl Ethyl Ketone (2-Butanone)	2013/08/15		103	%	70 - 130
		Methyl Isobutyl Ketone	2013/08/15		109	%	70 - 130
		Methyl Butyl Ketone (2-Hexanone)	2013/08/15		114	%	70 - 130
		Methyl t-butyl ether (MTBE)	2013/08/15		104	%	70 - 130
		Ethyl Acetate	2013/08/15		108	%	70 - 130
		1,1-Dichloroethylene	2013/08/15		101	%	70 - 130
		cis-1,2-Dichloroethylene	2013/08/15		105	%	70 - 130
		trans-1,2-Dichloroethylene	2013/08/15		103	%	70 - 130
		Methylene Chloride(Dichloromethane)	2013/08/15		96	%	70 - 130
		Chloroform	2013/08/15		100	%	70 - 130
		Carbon Tetrachloride	2013/08/15		100	% %	70 - 130
		1,1-Dichloroethane	2013/08/15		102	%	70 - 130
		1,1-Dichloroethane	2013/08/15		102	%	70 - 130
		Ethylene Dibromide			101	% %	70 - 130
		1,1,1-Trichloroethane	2013/08/15		99	%	70 - 130
			2013/08/15			%	
		1,1,2-Trichloroethane	2013/08/15		100	% %	70 - 130
		1,1,2,2-Tetrachloroethane	2013/08/15		98	%	70 - 130
		cis-1,3-Dichloropropene	2013/08/15		104		70 - 130
		trans-1,3-Dichloropropene	2013/08/15		112	%	70 - 130
		1,2-Dichloropropane	2013/08/15		100	%	70 - 130
		Bromomethane	2013/08/15		94	%	70 - 130
		Bromoform	2013/08/15		96	%	70 - 130
		Bromodichloromethane	2013/08/15		103	%	70 - 130
		Dibromochloromethane	2013/08/15		100	%	70 - 130
		Trichloroethylene	2013/08/15		94	%	70 - 130
		Tetrachloroethylene	2013/08/15		95	%	70 - 130
		Benzene	2013/08/15		99	%	70 - 130
		Toluene	2013/08/15		99	%	70 - 130
		Ethylbenzene	2013/08/15		100	%	70 - 130
		p+m-Xylene	2013/08/15		100	%	70 - 130
		o-Xylene	2013/08/15		102	%	70 - 130
		Styrene	2013/08/15		105	%	70 - 130
		4-ethyltoluene	2013/08/15		101	%	70 - 130
		1,3,5-Trimethylbenzene	2013/08/15		100	%	70 - 130
		1,2,4-Trimethylbenzene	2013/08/15		104	%	70 - 130
		Chlorobenzene	2013/08/15		97	%	70 - 130
		Benzyl chloride	2013/08/15		100	%	70 - 130
		1,3-Dichlorobenzene	2013/08/15		102	%	70 - 130
		1,4-Dichlorobenzene	2013/08/15		99	%	70 - 130
		1,2-Dichlorobenzene	2013/08/15		96	%	70 - 130
		1,2,4-Trichlorobenzene	2013/08/15		117	%	70 - 130

P.O. #: Site Location:

Quality Assurance Report (Continued)

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery	Units	QC Limits
3315967 JIW	Spiked Blank	Hexachlorobutadiene	2013/08/15	110	%	70 - 130
	•	Hexane	2013/08/15	108	%	70 - 130
		Heptane	2013/08/15	108	%	70 - 130
		Cyclohexane	2013/08/15	104	%	70 - 130
		Tetrahydrofuran	2013/08/15	113	%	70 - 130
		1,4-Dioxane	2013/08/15	106	%	70 - 130
		Xylene (Total)	2013/08/15	101	%	70 - 130
		Vinyl Bromide	2013/08/15	94	%	70 - 130
		Propene	2013/08/15	102	%	70 - 130
		2,2,4-Trimethylpentane	2013/08/15	105	%	70 - 130
		Carbon Disulfide	2013/08/15	104	%	70 - 130
		Vinyl Acetate	2013/08/15	110	%	70 - 130
	Method Blank	Bromochloromethane	2013/08/15	91	%	60 - 140
	Method Blank	D5-Chlorobenzene	2013/08/15	82	% %	60 - 140
				96	% %	60 - 140
		Difluorobenzene	2013/08/15			60 - 140
		Dichlorodifluoromethane (FREON 12) 1.2-Dichlorotetrafluoroethane	2013/08/15	ND, RDL=0.20	ppbv	
		,	2013/08/15	ND, RDL=0.17	ppbv	
		Chloromethane	2013/08/15	ND, RDL=0.30	ppbv	
		Vinyl Chloride	2013/08/15	ND, RDL=0.18	ppbv	
		Chloroethane	2013/08/15	ND, RDL=0.30	ppbv	
		1,3-Butadiene	2013/08/15	ND, RDL=0.50	ppbv	
		Trichlorofluoromethane (FREON 11)	2013/08/15	ND, RDL=0.20	ppbv	
		Ethanol (ethyl alcohol)	2013/08/15	ND, RDL=2.3	ppbv	
		Trichlorotrifluoroethane	2013/08/15	ND, RDL=0.15	ppbv	
		2-propanol	2013/08/15	ND, RDL=3.0	ppbv	
		2-Propanone	2013/08/15	ND, RDL=0.80	ppbv	
		Methyl Ethyl Ketone (2-Butanone)	2013/08/15	ND, RDL=3.0	ppbv	
		Methyl Isobutyl Ketone	2013/08/15	ND, RDL=3.2	ppbv	
		Methyl Butyl Ketone (2-Hexanone)	2013/08/15	ND, RDL=2.0	ppbv	
		Methyl t-butyl ether (MTBE)	2013/08/15	ND, RDL=0.20	ppbv	
		Ethyl Acetate	2013/08/15	ND, RDL=2.2	ppbv	
		1,1-Dichloroethylene	2013/08/15	ND, RDL=0.25	ppbv	
		cis-1,2-Dichloroethylene	2013/08/15	ND, RDL=0.19	ppbv	
		trans-1,2-Dichloroethylene	2013/08/15	ND, RDL=0.20	ppbv	
		Methylene Chloride(Dichloromethane)	2013/08/15	ND, RDL=0.80	ppbv	
		Chloroform	2013/08/15	ND, RDL=0.15	ppbv	
		Carbon Tetrachloride	2013/08/15	ND, RDL=0.30	ppbv	
		1,1-Dichloroethane	2013/08/15	ND, RDL=0.20	ppbv	
		1,2-Dichloroethane	2013/08/15	ND, RDL=0.20	ppbv	
		Ethylene Dibromide	2013/08/15	ND, RDL=0.17	ppbv	
		1,1,1-Trichloroethane	2013/08/15	ND, RDL=0.30	ppbv	
		1,1,2-Trichloroethane	2013/08/15	ND, RDL=0.15	ppbv	
		1,1,2,2-Tetrachloroethane	2013/08/15	ND, RDL=0.20	ppbv	
		cis-1,3-Dichloropropene	2013/08/15	ND, RDL=0.18	ppbv	
		trans-1,3-Dichloropropene	2013/08/15	ND, RDL=0.17	ppbv	
		1,2-Dichloropropane	2013/08/15	ND, RDL=0.40	ppbv	
		Bromomethane	2013/08/15	ND, RDL=0.18	ppbv	
		Bromoform	2013/08/15	ND, RDL=0.20	ppbv	
		Bromodichloromethane	2013/08/15	ND, RDL=0.20	ppbv	
		Dibromochloromethane	2013/08/15	ND, RDL=0.20	ppbv	
		Trichloroethylene	2013/08/15	ND, RDL=0.20 ND, RDL=0.30	ppbv	
		Tetrachloroethylene	2013/08/15	ND, RDL=0.30 ND, RDL=0.20		
		•	2013/08/15		ppbv	
		Benzene		ND, RDL=0.18	ppbv	
		Toluene	2013/08/15	ND, RDL=0.20	ppbv	
		Ethylbenzene	2013/08/15	ND, RDL=0.20	ppbv	

P.O. #: Site Location:

Quality Assurance Report (Continued)

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery	Units	QC Limits
3315967 JIW	Method Blank	p+m-Xylene	2013/08/15	ND, RDL=0.37	ppbv	
		o-Xylene	2013/08/15	ND, RDL=0.20	ppbv	
		Styrene	2013/08/15	ND, RDL=0.20	ppbv	
		4-ethyltoluene	2013/08/15	ND, RDL=2.2	ppbv	
		1,3,5-Trimethylbenzene	2013/08/15	ND, RDL=0.50	ppbv	
		1,2,4-Trimethylbenzene	2013/08/15	ND, RDL=0.50	ppbv	
		Chlorobenzene	2013/08/15	ND, RDL=0.30	ppbv	
			2013/08/15	ND, RDL=0.20 ND, RDL=1.0		
		Benzyl chloride	2013/08/15	ND, RDL=1.0 ND, RDL=0.40	ppbv	
		1,3-Dichlorobenzene			ppbv	
		1,4-Dichlorobenzene	2013/08/15	ND, RDL=0.40	ppbv	
		1,2-Dichlorobenzene	2013/08/15	ND, RDL=0.40	ppbv	
		1,2,4-Trichlorobenzene	2013/08/15	ND, RDL=2.0	ppbv	
		Hexachlorobutadiene	2013/08/15	ND, RDL=3.0	ppbv	
		Hexane	2013/08/15	ND, RDL=0.30	ppbv	
		Heptane	2013/08/15	ND, RDL=0.30	ppbv	
		Cyclohexane	2013/08/15	ND, RDL=0.20	ppbv	
		Tetrahydrofuran	2013/08/15	ND, RDL=0.40	ppbv	
		1,4-Dioxane	2013/08/15	ND, RDL=2.0	ppbv	
		Xylene (Total)	2013/08/15	ND, RDL=0.60	ppbv	
		Vinyl Bromide	2013/08/15	ND, RDL=0.20	ppbv	
		Propene	2013/08/15	ND, RDL=0.30	ppbv	
		2,2,4-Trimethylpentane	2013/08/15	ND, RDL=0.20	ppbv	
		Carbon Disulfide	2013/08/15	ND, RDL=0.50	ppbv	
		Vinyl Acetate	2013/08/15	ND, RDL=0.20	ppbv	
317067 JIW	Spiked Blank	Bromochloromethane	2013/08/14	101	%	60 - 140
0011001 0111	Opinou Biarin	D5-Chlorobenzene	2013/08/14	111	%	60 - 140
		Difluorobenzene	2013/08/14	107	%	60 - 140
		Dichlorodifluoromethane (FREON 12)	2013/08/14	108	%	70 - 130
		1,2-Dichlorotetrafluoroethane	2013/08/14	115	% %	70 - 130 70 - 130
		·				
		Chloromethane	2013/08/14	113	%	70 - 130
		Vinyl Chloride	2013/08/14	107	%	70 - 130
		Chloroethane	2013/08/14	100	%	70 - 130
		1,3-Butadiene	2013/08/14	109	%	70 - 130
		Trichlorofluoromethane (FREON 11)	2013/08/14	103	%	70 - 130
		Ethanol (ethyl alcohol)	2013/08/14	141 (1)		70 - 130
		Trichlorotrifluoroethane	2013/08/14	97	%	70 - 130
		2-propanol	2013/08/14	118	%	70 - 130
		2-Propanone	2013/08/14	107	%	70 - 130
		Methyl Ethyl Ketone (2-Butanone)	2013/08/14	109	%	70 - 130
		Methyl Isobutyl Ketone	2013/08/14	110	%	70 - 130
		Methyl Butyl Ketone (2-Hexanone)	2013/08/14	115	%	70 - 130
		Methyl t-butyl ether (MTBE)	2013/08/14	106	%	70 - 130
		Ethyl Acetate	2013/08/14	114	%	70 - 130
		1,1-Dichloroethylene	2013/08/14	103	%	70 - 130
		cis-1,2-Dichloroethylene	2013/08/14	106	%	70 - 130
		trans-1,2-Dichloroethylene	2013/08/14	100	% %	70 - 130 70 - 130
		Methylene Chloride(Dichloromethane)		99	% %	70 - 130 70 - 130
		,	2013/08/14			
		Chloroform	2013/08/14	102	%	70 - 130
		Carbon Tetrachloride	2013/08/14	99	%	70 - 130
		1,1-Dichloroethane	2013/08/14	105	%	70 - 130
		1,2-Dichloroethane	2013/08/14	106	%	70 - 130
		Ethylene Dibromide	2013/08/14	100	%	70 - 130
		1,1,1-Trichloroethane	2013/08/14	100	%	70 - 130
		1,1,2-Trichloroethane	2013/08/14	97	%	70 - 130
		1,1,2,2-Tetrachloroethane	2013/08/14	98	%	70 - 130

P.O. #: Site Location:

Quality Assurance Report (Continued)

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery	Units	QC Limits
3317067 JIW	Spiked Blank	cis-1,3-Dichloropropene	2013/08/14	104	%	70 - 130
		trans-1,3-Dichloropropene	2013/08/14	111	%	70 - 130
		1,2-Dichloropropane	2013/08/14	100	%	70 - 130
		Bromomethane	2013/08/14	96	%	70 - 130
		Bromoform	2013/08/14	95	%	70 - 130
		Bromodichloromethane	2013/08/14	102	%	70 - 130
		Dibromochloromethane	2013/08/14	99	% %	70 - 130
				99	%	70 - 130
		Trichloroethylene	2013/08/14			
		Tetrachloroethylene	2013/08/14	94	%	70 - 130
		Benzene	2013/08/14	97	%	70 - 130
		Toluene	2013/08/14	99	%	70 - 130
		Ethylbenzene	2013/08/14	97	%	70 - 130
		p+m-Xylene	2013/08/14	97	%	70 - 130
		o-Xylene	2013/08/14	100	%	70 - 130
		Styrene	2013/08/14	102	%	70 - 130
		4-ethyltoluene	2013/08/14	99	%	70 - 130
		1,3,5-Trimethylbenzene	2013/08/14	99	%	70 - 130
		1,2,4-Trimethylbenzene	2013/08/14	102	%	70 - 130
		Chlorobenzene	2013/08/14	95	%	70 - 130
		Benzyl chloride	2013/08/14	101	%	70 - 130
		1,3-Dichlorobenzene	2013/08/14	103	%	70 - 130
		1,4-Dichlorobenzene	2013/08/14	100	%	70 - 130
		1,2-Dichlorobenzene	2013/08/14	97	%	70 - 130
		1,2,4-Trichlorobenzene	2013/08/14	117	%	70 - 130
		Hexachlorobutadiene	2013/08/14	110	%	70 - 130
		Hexane	2013/08/14	111	%	70 - 130
		Heptane	2013/08/14	109	%	70 - 130
		Cyclohexane	2013/08/14	105	%	70 - 130
		Tetrahydrofuran	2013/08/14	118	%	70 - 130
		1,4-Dioxane	2013/08/14	106	%	70 - 130
		· ·		98	% %	70 - 130
		Xylene (Total)	2013/08/14	94	% %	
		Vinyl Bromide	2013/08/14			70 - 130
		Propene	2013/08/14	106	%	70 - 130
		2,2,4-Trimethylpentane	2013/08/14	102	%	70 - 130
		Carbon Disulfide	2013/08/14	104	%	70 - 130
		Vinyl Acetate	2013/08/14	115	%	70 - 130
	Method Blank	Bromochloromethane	2013/08/14	92	%	60 - 140
		D5-Chlorobenzene	2013/08/14	84	%	60 - 140
		Difluorobenzene	2013/08/14	96	%	60 - 140
		Dichlorodifluoromethane (FREON 12)	2013/08/14	ND, RDL=0.20	ppbv	
		1,2-Dichlorotetrafluoroethane	2013/08/14	ND, RDL=0.17	ppbv	
		Chloromethane	2013/08/14	ND, RDL=0.30	ppbv	
		Vinyl Chloride	2013/08/14	ND, RDL=0.18	ppbv	
		Chloroethane	2013/08/14	ND, RDL=0.30	ppbv	
		1,3-Butadiene	2013/08/14	ND, RDL=0.50	ppbv	
		Trichlorofluoromethane (FREON 11)	2013/08/14	ND, RDL=0.20	ppbv	
		Ethanol (ethyl alcohol)	2013/08/14	ND, RDL=2.3	ppbv	
		Trichlorotrifluoroethane	2013/08/14	ND, RDL=0.15	ppbv	
		2-propanol	2013/08/14	ND, RDL=3.0	ppbv	
		2-Propanone	2013/08/14	ND, RDL=0.80	ppbv	
		Methyl Ethyl Ketone (2-Butanone)	2013/08/14	ND, RDL=0.00 ND, RDL=3.0	ppbv	
		Methyl Isobutyl Ketone	2013/08/14	ND, RDL=3.0 ND, RDL=3.2	ppbv	
		Methyl Butyl Ketone (2-Hexanone)	2013/08/14	ND, RDL=3.2 ND, RDL=2.0		
		, ,	2013/08/14	ND, RDL=2.0 ND, RDL=0.20	ppbv	
		Methyl t-butyl ether (MTBE)			ppbv	
		Ethyl Acetate	2013/08/14	ND, RDL=2.2	ppbv	

P.O. #: Site Location:

Quality Assurance Report (Continued)

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery	Units	QC Limits
3317067 JIW	Method Blank	1,1-Dichloroethylene	2013/08/14	ND, RDL=0.25	ppbv	
		cis-1,2-Dichloroethylene	2013/08/14	ND, RDL=0.19	ppbv	
		trans-1,2-Dichloroethylene	2013/08/14	ND, RDL=0.20	ppbv	
		Methylene Chloride(Dichloromethane)	2013/08/14	ND, RDL=0.80	ppbv	
		Chloroform	2013/08/14	ND, RDL=0.15	ppbv	
		Carbon Tetrachloride	2013/08/14	ND, RDL=0.30	ppbv	
		1,1-Dichloroethane	2013/08/14	ND, RDL=0.20	ppbv	
		1,2-Dichloroethane	2013/08/14	ND, RDL=0.20	ppbv	
		Ethylene Dibromide	2013/08/14	ND, RDL=0.17	ppbv	
		1,1,1-Trichloroethane	2013/08/14	ND, RDL=0.30	ppbv	
		1,1,2-Trichloroethane	2013/08/14	ND, RDL=0.15	ppbv	
		1,1,2.7-Tetrachloroethane	2013/08/14	ND, RDL=0.20	ppbv	
		cis-1,3-Dichloropropene	2013/08/14	ND, RDL=0.18	ppbv	
		trans-1,3-Dichloropropene	2013/08/14	ND, RDL=0.17	ppbv	
		1,2-Dichloropropene		ND, RDL=0.17		
		Bromomethane	2013/08/14 2013/08/14	ND, RDL=0.40 ND, RDL=0.18	ppbv	
		Bromoform		•	ppbv	
			2013/08/14	ND, RDL=0.20	ppbv	
		Bromodichloromethane	2013/08/14	ND, RDL=0.20	ppbv	
		Dibromochloromethane Triable asset the least	2013/08/14	ND, RDL=0.20	ppbv	
		Trichloroethylene	2013/08/14	ND, RDL=0.30	ppbv	
		Tetrachloroethylene	2013/08/14	ND, RDL=0.20	ppbv	
		Benzene	2013/08/14	ND, RDL=0.18	ppbv	
		Toluene	2013/08/14	ND, RDL=0.20	ppbv	
		Ethylbenzene	2013/08/14	ND, RDL=0.20	ppbv	
		p+m-Xylene	2013/08/14	ND, RDL=0.37	ppbv	
		o-Xylene	2013/08/14	ND, RDL=0.20	ppbv	
		Styrene	2013/08/14	ND, RDL=0.20	ppbv	
		4-ethyltoluene	2013/08/14	ND, RDL=2.2	ppbv	
		1,3,5-Trimethylbenzene	2013/08/14	ND, RDL=0.50	ppbv	
		1,2,4-Trimethylbenzene	2013/08/14	ND, RDL=0.50	ppbv	
		Chlorobenzene	2013/08/14	ND, RDL=0.20	ppbv	
		Benzyl chloride	2013/08/14	ND, RDL=1.0	ppbv	
		1,3-Dichlorobenzene	2013/08/14	ND, RDL=0.40	ppbv	
		1,4-Dichlorobenzene	2013/08/14	ND, RDL=0.40	ppbv	
		1,2-Dichlorobenzene	2013/08/14	ND, RDL=0.40	ppbv	
		1,2,4-Trichlorobenzene	2013/08/14	ND, RDL=2.0	ppbv	
		Hexachlorobutadiene	2013/08/14	ND, RDL=3.0	ppbv	
		Hexane	2013/08/14	ND, RDL=0.30	ppbv	
		Heptane	2013/08/14	ND, RDL=0.30	ppbv	
		Cyclohexane	2013/08/14	ND, RDL=0.20	ppbv	
		Tetrahydrofuran	2013/08/14	ND, RDL=0.40	ppbv	
		1,4-Dioxane	2013/08/14	ND, RDL=2.0	ppbv	
		Xylene (Total)	2013/08/14	ND, RDL=0.60	ppbv	
		Vinyl Bromide	2013/08/14	ND, RDL=0.20	ppbv	
		Propene	2013/08/14	ND, RDL=0.30	ppbv	
		2,2,4-Trimethylpentane	2013/08/14	ND, RDL=0.30	ppbv	
		Carbon Disulfide	2013/08/14	ND, RDL=0.20 ND, RDL=0.50	ppbv	
		Vinyl Acetate	2013/08/14	ND, RDL=0.30 ND, RDL=0.20	ppbv	
	RPD -	VIIIyi Acetate	2013/00/14	ND, NDL=0.20	ρρυν	
	Sample/Sample	Diablaradifluaramethana (EDEON 42)	2012/00/44	NC	0/	0
	Dup	Dichlorodifluoromethane (FREON 12)	2013/08/14	NC NC	%	2
		1,2-Dichlorotetrafluoroethane	2013/08/14	NC NC	%	25
		Chloromethane	2013/08/14	NC NO	%	2:
		Chloroethane	2013/08/14	NC	%	25
		1,3-Butadiene	2013/08/14	NC	%	25

P.O. #: Site Location:

Quality Assurance Report (Continued)

QA/QC Batch			Date Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	%Recovery	Units	QC Limits
3317067 JIW	RPD -)))),,		,,		
	Sample/Sample						
	Dup	Trichlorofluoromethane (FREON 11)	2013/08/14	NC		%	25
		Ethanol (ethyl alcohol)	2013/08/14	NC		%	25
		Trichlorotrifluoroethane	2013/08/14	NC		%	25
		2-propanol	2013/08/14	NC		%	25
		2-Propanone	2013/08/14	4.5		%	25
		Methyl Ethyl Ketone (2-Butanone)	2013/08/14	NC		%	25
		Methyl Isobutyl Ketone	2013/08/14	NC		%	25
		Methyl Butyl Ketone (2-Hexanone)	2013/08/14	NC		%	25
		Methyl t-butyl ether (MTBE)	2013/08/14	NC		%	25
		Ethyl Acetate	2013/08/14	NC		%	25
		1,1-Dichloroethylene	2013/08/14	NC		% %	25 25
		cis-1,2-Dichloroethylene	2013/08/14	NC			
		trans-1,2-Dichloroethylene	2013/08/14 2013/08/14	NC NC		% %	25 25
		Methylene Chloride(Dichloromethane) Chloroform	2013/08/14	NC NC		%	25 25
		Carbon Tetrachloride	2013/08/14	NC NC		%	25 25
		1,1-Dichloroethane	2013/08/14	NC NC		%	25 25
		1,2-Dichloroethane	2013/08/14	NC		%	25
		Ethylene Dibromide	2013/08/14	NC		%	25
		1,1,1-Trichloroethane	2013/08/14	NC		%	25
		1,1,2-Trichloroethane	2013/08/14	NC		%	25
		1,1,2.7-Tetrachloroethane	2013/08/14	NC		%	25
		cis-1,3-Dichloropropene	2013/08/14	NC		%	25
		trans-1,3-Dichloropropene	2013/08/14	NC		%	25
		1,2-Dichloropropane	2013/08/14	NC		%	25
		Bromomethane	2013/08/14	NC		%	25
		Bromoform	2013/08/14	NC		%	25
		Bromodichloromethane	2013/08/14	NC		%	25
		Dibromochloromethane	2013/08/14	NC		%	25
		Trichloroethylene	2013/08/14	NC		%	25
		Tetrachloroethylene	2013/08/14	NC		%	25
		Benzene	2013/08/14	NC		%	25
		Toluene	2013/08/14	NC		%	25
		Ethylbenzene	2013/08/14	NC		%	25
		p+m-Xylene	2013/08/14	NC		%	25
		o-Xylene	2013/08/14	NC		%	25
		Styrene	2013/08/14	NC		%	25
		4-ethyltoluene	2013/08/14	NC		%	25
		1,3,5-Trimethylbenzene	2013/08/14	NC		%	25
		1,2,4-Trimethylbenzene	2013/08/14	NC		%	25
		Chlorobenzene	2013/08/14	NC		%	25
		Benzyl chloride	2013/08/14	NC		%	25
		1,3-Dichlorobenzene	2013/08/14	NC		%	25
		1,4-Dichlorobenzene	2013/08/14	NC		%	25
		1,2-Dichlorobenzene	2013/08/14	NC		%	25
		1,2,4-Trichlorobenzene	2013/08/14	NC		%	25
		Hexachlorobutadiene	2013/08/14	NC		%	25
		Hexane	2013/08/14	NC		%	25
		Heptane	2013/08/14	NC		%	25
		Cyclohexane	2013/08/14	NC		%	25
		Tetrahydrofuran	2013/08/14	NC		%	25
		1,4-Dioxane	2013/08/14	NC		%	25
		Xylene (Total)	2013/08/14	NC		%	25

P.O. #: Site Location:

Quality Assurance Report (Continued)

QA/QC Batch			Date Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery	Units	QC Limits
3317067 JIW	RPD -		,,,,	•		
	Sample/Sample					
	Dup	Vinyl Bromide	2013/08/14	NC	%	25
		Propene	2013/08/14	NC	%	25
		2,2,4-Trimethylpentane	2013/08/14	NC	%	25
		Carbon Disulfide	2013/08/14	NC	%	25
		Vinyl Acetate	2013/08/14	NC	%	25
3319686 JIW	Method Blank	Aliphatic >C5-C6	2013/08/14	ND, RDL=5.0	ug/m3	
		Aliphatic >C6-C8	2013/08/14	ND, RDL=5.0	ug/m3	
		Aliphatic >C8-C10	2013/08/14	ND, RDL=5.0	ug/m3	
		Aliphatic > C10-C12	2013/08/14	ND, RDL=5.0	ug/m3	
		Aliphatic >C12-C16	2013/08/14	ND, RDL=5.0	ug/m3	
		Aromatic >C7-C8 (TEX Excluded) Aromatic >C8-C10	2013/08/14	ND, RDL=5.0 ND, RDL=5.0	ug/m3 ug/m3	
		Aromatic >C0-C10 Aromatic >C10-C12	2013/08/14 2013/08/14	ND, RDL=5.0 ND, RDL=5.0	•	
		Aromatic >C10-C12 Aromatic >C12-C16	2013/08/14	ND, RDL=5.0 ND, RDL=5.0	ug/m3 ug/m3	
3320596 JIW	Method Blank	Aliphatic > C5-C6	2013/08/15	ND, RDL=5.0 ND, RDL=5.0	ug/m3 ug/m3	
3320390 JIW	Method Dialik	Aliphatic >C6-C8	2013/08/15	ND, RDL=5.0 ND, RDL=5.0	ug/m3	
		Aliphatic >C8-C10	2013/08/15	ND, RDL=5.0 ND, RDL=5.0	ug/m3	
		Aliphatic >C10-C12	2013/08/15	ND, RDL=5.0	ug/m3	
		Aliphatic >C12-C16	2013/08/15	ND, RDL=5.0	ug/m3	
		Aromatic >C7-C8 (TEX Excluded)	2013/08/15	ND, RDL=5.0	ug/m3	
		Aromatic >C8-C10	2013/08/15	ND, RDL=5.0	ug/m3	
		Aromatic >C10-C12	2013/08/15	ND, RDL=5.0	ug/m3	
		Aromatic >C10-C12 Aromatic >C12-C16	2013/08/15	ND, RDL=5.0	ug/m3	
3322553 VLA	Method Blank	Acetylene	2013/08/21	ND, RDL=0.1	ppm	
3322333 VLA	Wicthod Blank	Ethane	2013/08/21	ND, RDL=0.1	ppm	
		Ethylene	2013/08/21	ND, RDL=0.1	ppm	
		Methane	2013/08/21	ND, RDL=2	ppm	
		n-Butane	2013/08/21	ND, RDL=0.2	ppm	
		n-Pentane	2013/08/21	ND, RDL=0.1	ppm	
		Propane	2013/08/21	ND, RDL=0.1	ppm	
		Propene	2013/08/21	ND, RDL=0.1	ppm	
		Propyne	2013/08/21	ND, RDL=0.2	ppm	
	RPD -			,	FF	
	Sample/Sample					
	Dup	Acetylene	2013/08/21	NC	%	20
	•	Ethane	2013/08/21	NC	%	20
		Ethylene	2013/08/21	NC	%	20
		Methane	2013/08/21	19.3	%	20
		n-Butane	2013/08/21	NC	%	20
		n-Pentane	2013/08/21	NC	%	20
		Propane	2013/08/21	NC	%	20
		Propene	2013/08/21	NC	%	20
		Propyne	2013/08/21	NC	%	20
3324319 TJC	Method Blank	Oxygen	2013/08/22	ND, RDL=0.1	% v/v	
		Nitrogen	2013/08/22	ND, RDL=0.1	% v/v	
		Carbon Monoxide	2013/08/22	ND, RDL=0.1	% v/v	
		Methane	2013/08/22	ND, RDL=0.1	% v/v	
		Carbon Dioxide	2013/08/22	ND, RDL=0.1	% v/v	
	RPD -					
	Sample/Sample					
	Dup	Oxygen	2013/08/22	0.1	%	20
		Nitrogen	2013/08/22	0.1	%	20
		Methane	2013/08/22	NC	%	20

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: GB3C8546

QA/QC Batch			Date Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	%Recovery	Units	QC Limits
3324319 TJC	RPD -						
	Sample/Sample						
	Dup	Carbon Dioxide	2013/08/22	0		%	20

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Your Project #: 12-435 Site Location: ROM Your C.O.C. #: 18285

Attention: Leon T. Mah
Tiamat Environmental
107, 2719-7 Ave. NE
Calgary, AB
CANADA T2A 2L9

Report Date: 2013/08/25

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B3C8605 Received: 2013/08/07, 09:43

Sample Matrix: AIR # Samples Received: 1

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
BTEX Fractionation in Air (TO-15mod)	1	N/A	2013/08/14 BRL SOP-00304	EPA TO-15mod
Canister Pressure (TO-15)	1	N/A	2013/08/14 BRL SOP-00304	EPA TO-15
Light Hydrocarbons	1	N/A	2013/08/21 CAM SOP-00227	GC/FID
Matrix Gases	1	N/A	2013/08/22 CAM SOP-00225, CAM	4 ASTM D1946-90
			SOP-00209	
Volatile Organics in Air (TO-15) (1)	1	N/A	2013/08/14 BRL SOP-00304	EPA TO-15

(1) Air sampling canisters have been cleaned in accordance with U.S. EPA Method TO14A. At the end of the cleaning, evacuation, and pressurization cycles, one canister was selected and was pressurized with Zero Air. This canister was then analyzed via TO14A on a GC/MS. The canister must have been found to contain <0.2 ppbv concentration of all target analytes in order for the batch to have been considered clean. Each canister also underwent a leak check prior to shipment.

Please Note: SUMMA® canister samples will be retained by Maxxam for a period of 5 calendar days or as contractually agreed from the date of this report, after which time they will be cleaned for reuse. If you require a longer sample storage period, please contact your service representative.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Theresa Stephenson, Project Manager Email: TStephenson@maxxam.ca Phone# (905) 817-5763

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam Analytics Inc. is a NELAC accredited laboratory. Certificate # CANA001. Use of the NELAC logo however does not insure that

Your Project #: 12-435 Site Location: ROM Your C.O.C. #: 18285

Attention: Leon T. Mah Tiamat Environmental 107, 2719-7 Ave. NE Calgary, AB CANADA T2A 2L9

Report Date: 2013/08/25

CERTIFICATE OF ANALYSIS -2-

Maxxam is accredited for all of the methods indicated. This certificate shall not be reproduced except in full, without the written approval of Maxxam Analytics Inc. Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section.

Total cover pages: 2

Tiamat Environmental Client Project #: 12-435 Site Location: ROM Sampler Initials: JAL

RESULTS OF ANALYSES OF AIR

	11 14	VW-02 / 1921	RDL	QC Batch
COC Number		18285		
Sampling Date		2013/08/03		
Maxxam ID		SN8568		

ppm	ND	0.28	3322553
ppm	ND	0.28	3322553
ppm	ND	0.28	3322553
ppm	67	5.6	3322553
ppm	ND	0.56	3322553
ppm	ND	0.28	3322553
ppm	ND	0.28	3322553
ppm	ND	0.28	3322553
ppm	ND	0.56	3322553
psig	(-3.6)	N/A	3317031
	ppm ppm ppm ppm ppm ppm ppm ppm	ppm ND ppm ND ppm 67 ppm ND ppm ND ppm ND ppm ND ppm ND ppm ND ppm ND	ppm ND 0.28 ppm ND 0.28 ppm 67 5.6 ppm ND 0.56 ppm ND 0.28 ppm ND 0.28 ppm ND 0.28 ppm ND 0.56

ND = Not detected

RDL = Reportable Detection Limit

Tiamat Environmental Client Project #: 12-435 Site Location: ROM Sampler Initials: JAL

COMPRESSED GAS PARAMETERS (AIR)

	Units	VW-02 / 1921	RDL	QC Batch
COC Number		18285		
Sampling Date		2013/08/03		
Maxxam ID		SN8568		

Fixed Gases				
Oxygen	% v/v	17.2	0.3	3324319
Nitrogen	% v/v	77.8	0.3	3324319
Carbon Monoxide	% v/v	ND	0.3	3324319
Methane	% v/v	ND	0.3	3324319
Carbon Dioxide	% v/v	4.6	0.3	3324319

ND = Not detected

RDL = Reportable Detection Limit

Tiamat Environmental Client Project #: 12-435 Site Location: ROM Sampler Initials: JAL

VOLATILE ORGANIC HYDROCARBONS BY GC/MS (AIR)

	Units	VW-02 / 1921	RDL	QC Batch
COC Number		18285		
Sampling Date		2013/08/03		
Maxxam ID		SN8568		

	_			
Volatile Organics				
Aliphatic >C5-C6	ug/m3	332	5.0	3319686
Aliphatic >C6-C8	ug/m3	2990	5.0	3319686
Aliphatic >C8-C10	ug/m3	577	5.0	3319686
Aliphatic >C10-C12	ug/m3	345	5.0	3319686
Aliphatic >C12-C16	ug/m3	106	5.0	3319686
Aromatic >C7-C8 (TEX Excluded)	ug/m3	ND	5.0	3319686
Aromatic >C8-C10	ug/m3	44.8	5.0	3319686
Aromatic >C10-C12	ug/m3	78.4	5.0	3319686
Aromatic >C12-C16	ug/m3	ND	5.0	3319686

ND = Not detected

RDL = Reportable Detection Limit

Tiamat Environmental Client Project #: 12-435 Site Location: ROM Sampler Initials: JAL

VOLATILE ORGANICS BY GC/MS (AIR)

Maxxam ID		SN8568				
Sampling Date		2013/08/03				
COC Number		18285				
	Units	VW-02 / 1921	RDL	ug/m3	DL (ug/m3)	QC Batch

Volatile Organics						
Dichlorodifluoromethane (FREON 12)	ppbv	348	1.1	1720	5.54	3317067
1,2-Dichlorotetrafluoroethane	ppbv	34.4	0.17	240	1.19	3317067
Chloromethane	ppbv	<0.30	0.30	<0.620	0.620	3317067
Vinyl Chloride	ppbv	0.51	0.18	1.29	0.460	3317067
Chloroethane	ppbv	<0.30	0.30	<0.792	0.792	3317067
1,3-Butadiene	ppbv	<0.50	0.50	<1.11	1.11	3317067
Trichlorofluoromethane (FREON 11)	ppbv	50.6	0.20	284	1.12	3317067
Ethanol (ethyl alcohol)	ppbv	180	13	338	24.3	3317067
Trichlorotrifluoroethane	ppbv	<0.15	0.15	<1.15	1.15	3317067
2-propanol	ppbv	3.6	3.0	8.94	7.37	3317067
2-Propanone	ppbv	36.5	0.80	86.7	1.90	3317067
Methyl Ethyl Ketone (2-Butanone)	ppbv	<3.0	3.0	<8.85	8.85	3317067
Methyl Isobutyl Ketone	ppbv	<3.2	3.2	<13.1	13.1	3317067
Methyl Butyl Ketone (2-Hexanone)	ppbv	<2.0	2.0	<8.19	8.19	3317067
Methyl t-butyl ether (MTBE)	ppbv	<0.20	0.20	<0.721	0.721	3317067
Ethyl Acetate	ppbv	<2.2	2.2	<7.93	7.93	3317067
1,1-Dichloroethylene	ppbv	1.41	0.25	5.60	0.991	3317067
cis-1,2-Dichloroethylene	ppbv	13.2	0.19	52.3	0.753	3317067
trans-1,2-Dichloroethylene	ppbv	<0.20	0.20	<0.793	0.793	3317067
Methylene Chloride(Dichloromethane)	ppbv	1.47	0.80	5.10	2.78	3317067
Chloroform	ppbv	18.2	0.15	88.8	0.732	3317067
Carbon Tetrachloride	ppbv	<0.30	0.30	<1.89	1.89	3317067
1,1-Dichloroethane	ppbv	<2.7	2.7	<11.1	11.1	3317067
1,2-Dichloroethane	ppbv	<0.20	0.20	<0.809	0.809	3317067
Ethylene Dibromide	ppbv	<0.17	0.17	<1.31	1.31	3317067
1,1,1-Trichloroethane	ppbv	3.45	0.30	18.8	1.64	3317067
1,1,2-Trichloroethane	ppbv	<0.15	0.15	<0.818	0.818	3317067
1,1,2,2-Tetrachloroethane	ppbv	<0.20	0.20	<1.37	1.37	3317067
cis-1,3-Dichloropropene	ppbv	<0.18	0.18	<0.817	0.817	3317067
trans-1,3-Dichloropropene	ppbv	<0.17	0.17	<0.772	0.772	3317067
1,2-Dichloropropane	ppbv	<0.40	0.40	<1.85	1.85	3317067
Bromomethane	ppbv	<0.18	0.18	<0.699	0.699	3317067
Bromoform	ppbv	<0.20	0.20	<2.07	2.07	3317067

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Tiamat Environmental Client Project #: 12-435 Site Location: ROM Sampler Initials: JAL

VOLATILE ORGANICS BY GC/MS (AIR)

Maxxam ID		SN8568 2013/08/03				
Sampling Date COC Number		18285				
OCC HAMISON	Units	VW-02 / 1921	RDL	ug/m3	DL (ug/m3)	QC Batch
Bromodichloromethane	ppbv	<0.20	0.20	<1.34	1.34	3317067
Dibromochloromethane	ppbv	<0.20	0.20	<1.70	1.70	3317067
Trichloroethylene	ppbv	81.9	0.30	440	1.61	3317067
Tetrachloroethylene	ppbv	221	1.1	1500	7.60	3317067
Benzene	ppbv	5.17	0.18	16.5	0.575	3317067
Toluene	ppbv	4.80	0.20	18.1	0.753	3317067
Ethylbenzene	ppbv	0.75	0.20	3.24	0.868	3317067
p+m-Xylene	ppbv	1.89	0.37	8.23	1.61	3317067
o-Xylene	ppbv	1.22	0.20	5.29	0.868	3317067
Styrene	ppbv	<0.20	0.20	<0.852	0.852	3317067
4-ethyltoluene	ppbv	<2.2	2.2	<10.8	10.8	3317067
1,3,5-Trimethylbenzene	ppbv	4.05	0.50	19.9	2.46	3317067
1,2,4-Trimethylbenzene	ppbv	2.31	0.50	11.3	2.46	3317067
Chlorobenzene	ppbv	<0.20	0.20	<0.921	0.921	3317067
Benzyl chloride	ppbv	<1.0	1.0	<5.18	5.18	3317067
1,3-Dichlorobenzene	ppbv	<0.40	0.40	<2.40	2.40	3317067
1,4-Dichlorobenzene	ppbv	<0.40	0.40	<2.40	2.40	3317067
1,2-Dichlorobenzene	ppbv	<0.40	0.40	<2.40	2.40	3317067
1,2,4-Trichlorobenzene	ppbv	<2.0	2.0	<14.8	14.8	3317067
Hexachlorobutadiene	ppbv	<3.0	3.0	<32.0	32.0	3317067
Hexane	ppbv	142	0.30	501	1.06	3317067
Heptane	ppbv	181	0.30	740	1.23	3317067
Cyclohexane	ppbv	219	1.1	753	3.86	3317067
Tetrahydrofuran	ppbv	<0.40	0.40	<1.18	1.18	3317067
1,4-Dioxane	ppbv	<2.0	2.0	<7.21	7.21	3317067
Xylene (Total)	ppbv	3.11	0.60	13.5	2.61	3317067
Vinyl Bromide	ppbv	<0.20	0.20	<0.875	0.875	3317067
Propene	ppbv	<8.7	8.7	<14.9	14.9	3317067
2,2,4-Trimethylpentane	ppbv	<0.20	0.20	<0.934	0.934	3317067
Carbon Disulfide	ppbv	40.5	0.50	126	1.56	3317067
Vinyl Acetate	ppbv	<0.20	0.20	<0.704	0.704	3317067
Surrogate Recovery (%)						
Bromochloromethane	%	99		N/A	N/A	3317067
D5-Chlorobenzene	%	103		N/A	N/A	3317067

N/A = Not Applicable

Tiamat Environmental Client Project #: 12-435 Site Location: ROM Sampler Initials: JAL

VOLATILE ORGANICS BY GC/MS (AIR)

Maxxam ID		SN8568				
Sampling Date		2013/08/03				
COC Number		18285				
	Units	VW-02 / 1921	RDL	ug/m3	DL (ug/m3)	QC Batch
Difluorobenzene	%	106		N/A	N/A	3317067

Tiamat Environmental Client Project #: 12-435 Site Location: ROM Sampler Initials: JAL

Test Summary

Maxxam ID SN8568 **Collected** 2013/08/03 Shipped

Sample ID VW-02 / 1921 Matrix AIR Received 2013/08/07

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
BTEX Fractionation in Air (TO-15mod)	GC/MS	3319686	N/A	2013/08/14	Jie Wu
Canister Pressure (TO-15)	PRES	3317031	N/A	2013/08/14	Jie Wu
Light Hydrocarbons	GC/FID	3322553	N/A	2013/08/21	Vijay Lad
Matrix Gases	GC/TCD	3324319	N/A	2013/08/22	Tonghui (Jenny) Chen
Volatile Organics in Air (TO-15)	GC/MS	3317067	N/A	2013/08/14	Jie Wu

Tiamat Environmental Client Project #: 12-435 Site Location: ROM Sampler Initials: JAL

GENERAL COMMENTS

ws:3317067

Ethanol exceeds 130% recovery criteria in Reference Standard. It meets %RSD criteria in the Continuing Calibration Standard. Data was accepted and flagged.

Light Hydrocarbon/Matrix Gas Analysis: Canister was pressurized with Helium to enable sampling. Results and DLs adjusted accordingly.

Sample SN8568-01: Increased DL further for propene and 1,1-dichloroethane due to possible interference.

A 5.6x dilution was prepared and analyzed for dichlorodifluoromethane, ethanol, cyclohexane and tetrachloroethylene. The DLs were adjusted accordingly.

Results relate only to the items tested.

P.O. #:

Site Location: ROM

Quality Assurance Report Maxxam Job Number: GB3C8605

QA/QC Batch			Date Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery I	Units	QC Limit
3317067 JIW	Spiked Blank	Bromochloromethane	2013/08/14	101	%	60 - 14
	opou z.u	D5-Chlorobenzene	2013/08/14	111	%	60 - 14
		Difluorobenzene	2013/08/14	107	%	60 - 14
		Dichlorodifluoromethane (FREON 12)	2013/08/14	108	%	70 - 13
		1,2-Dichlorotetrafluoroethane	2013/08/14	115	%	70 - 13
		Chloromethane	2013/08/14	113	%	70 - 13
		Vinyl Chloride	2013/08/14	107	%	70 - 13
		Chloroethane	2013/08/14	100	%	70 - 13
		1,3-Butadiene	2013/08/14	109	%	70 - 13
		Trichlorofluoromethane (FREON 11)	2013/08/14	103	%	70 - 13
		Ethanol (ethyl alcohol)	2013/08/14	141 (1)	%	70 - 13
		Trichlorotrifluoroethane	2013/08/14	97 `´	%	70 - 13
		2-propanol	2013/08/14	118	%	70 - 13
		2-Propanone	2013/08/14	107	%	70 - 13
		Methyl Ethyl Ketone (2-Butanone)	2013/08/14	109	%	70 - 13
		Methyl Isobutyl Ketone	2013/08/14	110	%	70 - 13
		Methyl Butyl Ketone (2-Hexanone)	2013/08/14	115	%	70 - 13
		Methyl t-butyl ether (MTBE)	2013/08/14	106	%	70 - 13
		Ethyl Acetate	2013/08/14	114	%	70 - 13
		1,1-Dichloroethylene	2013/08/14	103	%	70 - 13
		cis-1,2-Dichloroethylene	2013/08/14	106	%	70 - 13
		trans-1,2-Dichloroethylene	2013/08/14	104	%	70 - 13
		Methylene Chloride(Dichloromethane)	2013/08/14	99	%	70 - 1
		Chloroform	2013/08/14	102	%	70 - 1
		Carbon Tetrachloride	2013/08/14	99	%	70 - 1
		1,1-Dichloroethane	2013/08/14	105	%	70 - 13
		1,2-Dichloroethane	2013/08/14	106	%	70 - 13
		Ethylene Dibromide	2013/08/14	100	%	70 - 13
		1,1,1-Trichloroethane	2013/08/14	100	%	70 - 13
		1,1,2-Trichloroethane	2013/08/14	97	%	70 - 13
		1,1,2,2-Tetrachloroethane	2013/08/14	98	%	70 - 13
		cis-1,3-Dichloropropene	2013/08/14	104	%	70 - 13
		trans-1,3-Dichloropropene	2013/08/14	111	%	70 - 13
		1,2-Dichloropropane	2013/08/14	100	%	70 - 1
		Bromomethane	2013/08/14	96	%	70 - 1
		Bromoform	2013/08/14	95	%	70 - 13
		Bromodichloromethane	2013/08/14	102	%	70 - 1
		Dibromochloromethane	2013/08/14	99	%	70 - 13
		Trichloroethylene	2013/08/14	92	%	70 - 13
		Tetrachloroethylene	2013/08/14	94	%	70 - 13
		Benzene	2013/08/14	97	%	70 - 13
		Toluene	2013/08/14	99	%	70 - 13
		Ethylbenzene	2013/08/14	97	%	70 - 13
		p+m-Xylene	2013/08/14	97	%	70 - 13
		o-Xylene	2013/08/14	100	%	70 - 13
		Styrene	2013/08/14	102	%	70 - 13
		4-ethyltoluene	2013/08/14	99	%	70 - 13
		1,3,5-Trimethylbenzene	2013/08/14	99	%	70 - 1
		1,2,4-Trimethylbenzene	2013/08/14	102	%	70 - 1
		Chlorobenzene	2013/08/14	95	%	70 - 1
		Benzyl chloride	2013/08/14	101	%	70 - 1
		1,3-Dichlorobenzene	2013/08/14	103	%	70 - 1
		1,4-Dichlorobenzene	2013/08/14	100	%	70 - 1
		1,2-Dichlorobenzene	2013/08/14	97	%	70 - 1
		1,2,4-Trichlorobenzene	2013/08/14	117	%	70 - 13

P.O. #:

Site Location: ROM

Quality Assurance Report (Continued)

Maxxam Job Number: GB3C8605

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery	Units	QC Limits
3317067 JIW	Spiked Blank	Hexachlorobutadiene	2013/08/14	110	%	70 - 130
		Hexane	2013/08/14	111	%	70 - 130
		Heptane	2013/08/14	109	%	70 - 130
		Cyclohexane	2013/08/14	105	%	70 - 130
		Tetrahydrofuran	2013/08/14	118	%	70 - 130
		1,4-Dioxane	2013/08/14	106	%	70 - 130
		Xylene (Total)	2013/08/14	98	%	70 - 130
		Vinyl Bromide	2013/08/14	94	%	70 - 130
		Propene	2013/08/14	106	%	70 - 130
		2,2,4-Trimethylpentane	2013/08/14	102	%	70 - 130
		Carbon Disulfide	2013/08/14	104	%	70 - 130
		Vinyl Acetate	2013/08/14	115	%	70 - 130
	Method Blank	Bromochloromethane	2013/08/14	92	%	60 - 140
		D5-Chlorobenzene	2013/08/14	84	%	60 - 140
		Difluorobenzene	2013/08/14	96	%	60 - 140
		Dichlorodifluoromethane (FREON 12)	2013/08/14	ND, RDL=0.20	ppbv	
		1,2-Dichlorotetrafluoroethane	2013/08/14	ND, RDL=0.17	ppbv	
		Chloromethane	2013/08/14	ND, RDL=0.30	ppbv	
		Vinyl Chloride	2013/08/14	ND, RDL=0.18	ppbv	
		Chloroethane	2013/08/14	ND, RDL=0.30	ppbv	
		1,3-Butadiene	2013/08/14	ND, RDL=0.50	ppbv	
		Trichlorofluoromethane (FREON 11)	2013/08/14	ND, RDL=0.20	ppbv	
		Ethanol (ethyl alcohol)	2013/08/14	ND, RDL=2.3	ppbv	
		Trichlorotrifluoroethane	2013/08/14	ND, RDL=0.15	ppbv	
		2-propanol	2013/08/14	ND, RDL=3.0	ppbv	
		2-Propanone	2013/08/14	ND, RDL=0.80	ppbv	
		Methyl Ethyl Ketone (2-Butanone)	2013/08/14	ND, RDL=3.0	ppbv	
		Methyl Isobutyl Ketone	2013/08/14	ND, RDL=3.2	ppbv	
		Methyl Butyl Ketone (2-Hexanone)	2013/08/14	ND, RDL=2.0	ppbv	
		Methyl t-butyl ether (MTBE)	2013/08/14	ND, RDL=0.20	ppbv	
		Ethyl Acetate	2013/08/14	ND, RDL=2.2	ppbv	
		1,1-Dichloroethylene	2013/08/14	ND, RDL=0.25	ppbv	
		cis-1,2-Dichloroethylene	2013/08/14	ND, RDL=0.19	ppbv	
		trans-1,2-Dichloroethylene	2013/08/14	ND, RDL=0.20	ppbv	
		Methylene Chloride(Dichloromethane)	2013/08/14	ND, RDL=0.80	ppbv	
		Chloroform	2013/08/14	ND, RDL=0.15	ppbv	
		Carbon Tetrachloride	2013/08/14	ND, RDL=0.30	ppbv	
		1,1-Dichloroethane	2013/08/14	ND, RDL=0.20	ppbv	
		1,2-Dichloroethane	2013/08/14	ND, RDL=0.20	ppbv	
		Ethylene Dibromide	2013/08/14	ND, RDL=0.17	ppbv	
		1,1,1-Trichloroethane	2013/08/14	ND, RDL=0.17	ppbv	
		1,1,2-Trichloroethane	2013/08/14	ND, RDL=0.30	ppbv	
		1,1,2,2-Tetrachloroethane	2013/08/14	ND, RDL=0.10	ppbv	
		cis-1,3-Dichloropropene	2013/08/14	ND, RDL=0.20	ppbv	
		trans-1,3-Dichloropropene	2013/08/14	ND, RDL=0.17	ppbv	
		1,2-Dichloropropane	2013/08/14	ND, RDL=0.17	ppbv	
		Bromomethane	2013/08/14	ND, RDL=0.40	ppbv	
		Bromoform	2013/08/14	ND, RDL=0.10	ppbv	
		Bromodichloromethane	2013/08/14	ND, RDL=0.20	ppbv	
		Dibromochloromethane	2013/08/14	ND, RDL=0.20 ND, RDL=0.20	ppbv	
		Trichloroethylene	2013/08/14	ND, RDL=0.20 ND, RDL=0.30	ppbv	
		Tetrachloroethylene	2013/08/14	ND, RDL=0.30 ND, RDL=0.20		
		Benzene		ND, RDL=0.20 ND, RDL=0.18	ppbv	
		Toluene	2013/08/14	•	ppbv	
			2013/08/14	ND, RDL=0.20	ppbv	
		Ethylbenzene	2013/08/14	ND, RDL=0.20	ppbv	

P.O. #:

Site Location: ROM

Quality Assurance Report (Continued)

Maxxam Job Number: GB3C8605

QA/QC Batch			Date Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery	Units	QC Lim
317067 JIW	Method Blank	p+m-Xylene	2013/08/14	ND, RDL=0.37	ppbv	QU LIIII
517007 01VV	Wictioa Blank	o-Xylene	2013/08/14	ND, RDL=0.20	ppbv	
		Styrene	2013/08/14	ND, RDL=0.20	ppbv	
		4-ethyltoluene	2013/08/14	ND, RDL=2.2	ppbv	
		1,3,5-Trimethylbenzene	2013/08/14	ND, RDL=0.50	ppbv	
		1,2,4-Trimethylbenzene	2013/08/14	ND, RDL=0.50	ppbv	
		Chlorobenzene	2013/08/14	ND, RDL=0.30	ppbv	
		Benzyl chloride	2013/08/14	ND, RDL=0.20 ND, RDL=1.0	ppbv	
		1,3-Dichlorobenzene	2013/08/14	ND, RDL=0.40	ppbv	
		1,4-Dichlorobenzene	2013/08/14	ND, RDL=0.40	ppbv	
		1,2-Dichlorobenzene	2013/08/14	ND, RDL=0.40	ppbv	
		1,2,4-Trichlorobenzene	2013/08/14	ND, RDL=0.40 ND, RDL=2.0	ppbv	
		Hexachlorobutadiene	2013/08/14	ND, RDL=2.0 ND, RDL=3.0	ppbv	
		Hexane	2013/08/14	ND, RDL=3.0 ND, RDL=0.30	ppbv	
				•		
		Heptane Cyclobeyane	2013/08/14 2013/08/14	ND, RDL=0.30 ND, RDL=0.20	ppbv	
		Cyclohexane		ND, RDL=0.20 ND, RDL=0.40	ppbv	
		Tetrahydrofuran	2013/08/14	•	ppbv	
		1,4-Dioxane	2013/08/14	ND, RDL=2.0	ppbv	
		Xylene (Total)	2013/08/14	ND, RDL=0.60	ppbv	
		Vinyl Bromide	2013/08/14	ND, RDL=0.20	ppbv	
		Propene	2013/08/14	ND, RDL=0.30	ppbv	
		2,2,4-Trimethylpentane	2013/08/14	ND, RDL=0.20	ppbv	
		Carbon Disulfide	2013/08/14	ND, RDL=0.50	ppbv	
	DDD	Vinyl Acetate	2013/08/14	ND, RDL=0.20	ppbv	
	RPD -					
	Sample/Sample	Dichlorodifluoromethane (FREON 12)	2012/09/14	NC	%	
	Dup	` ,	2013/08/14	NC NC	% %	
		1,2-Dichlorotetrafluoroethane	2013/08/14		% %	
		Chloromethane	2013/08/14	NC NC		
		Chloroethane	2013/08/14	NC NC	%	
		1,3-Butadiene	2013/08/14	NC NO	%	
		Trichlorofluoromethane (FREON 11)	2013/08/14	NC	%	
		Ethanol (ethyl alcohol)	2013/08/14	NC	%	
		Trichlorotrifluoroethane	2013/08/14	NC	%	
		2-propanol	2013/08/14	NC	%	
		2-Propanone	2013/08/14	4.5	%	
		Methyl Ethyl Ketone (2-Butanone)	2013/08/14	NC	%	
		Methyl Isobutyl Ketone	2013/08/14	NC	%	
		Methyl Butyl Ketone (2-Hexanone)	2013/08/14	NC	%	
		Methyl t-butyl ether (MTBE)	2013/08/14	NC	%	
		Ethyl Acetate	2013/08/14	NC	%	
		1,1-Dichloroethylene	2013/08/14	NC	%	
		cis-1,2-Dichloroethylene	2013/08/14	NC	%	
		trans-1,2-Dichloroethylene	2013/08/14	NC	%	
		Methylene Chloride(Dichloromethane)	2013/08/14	NC	%	
		Chloroform	2013/08/14	NC	%	
		Carbon Tetrachloride	2013/08/14	NC	%	
		1,1-Dichloroethane	2013/08/14	NC	%	
		1,2-Dichloroethane	2013/08/14	NC	%	
		Ethylene Dibromide	2013/08/14	NC	%	
		1,1,1-Trichloroethane	2013/08/14	NC	%	
		1,1,2-Trichloroethane	2013/08/14	NC	%	
		1,1,2,2-Tetrachloroethane	2013/08/14	NC	%	
		cis-1,3-Dichloropropene	2013/08/14	NC	%	
		trans-1,3-Dichloropropene	2013/08/14	NC	%	

P.O. #:

Site Location: ROM

Quality Assurance Report (Continued)

Maxxam Job Number: GB3C8605

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery	Units	QC Limits
3317067 JIW	RPD -					
	Sample/Sample					
	Dup	1,2-Dichloropropane	2013/08/14	NC	%	25
		Bromomethane	2013/08/14	NC	%	25
		Bromoform	2013/08/14	NC	%	25
		Bromodichloromethane	2013/08/14	NC	%	25
		Dibromochloromethane	2013/08/14	NC	%	25
		Trichloroethylene	2013/08/14	NC	%	25
		Tetrachloroethylene	2013/08/14	NC	%	25
		Benzene	2013/08/14	NC	%	25
		Toluene	2013/08/14	NC	%	25
		Ethylbenzene	2013/08/14	NC	%	25
		p+m-Xylene	2013/08/14	NC	%	25
		o-Xylene	2013/08/14	NC	%	25
		Styrene	2013/08/14	NC	%	25
		4-ethyltoluene	2013/08/14	NC	%	25
		1,3,5-Trimethylbenzene	2013/08/14	NC	%	25
		1,2,4-Trimethylbenzene	2013/08/14	NC	%	25
		Chlorobenzene	2013/08/14	NC	%	25
		Benzyl chloride	2013/08/14	NC	%	25
		1,3-Dichlorobenzene	2013/08/14	NC	%	25
		1,4-Dichlorobenzene	2013/08/14	NC	%	25
		1,2-Dichlorobenzene	2013/08/14	NC	%	25
		1,2,4-Trichlorobenzene	2013/08/14	NC	%	25
		Hexachlorobutadiene	2013/08/14	NC	%	25
		Hexane	2013/08/14	NC	%	25
		Heptane	2013/08/14	NC	%	25
		Cyclohexane	2013/08/14	NC	%	25
		Tetrahydrofuran	2013/08/14	NC	%	25
		1,4-Dioxane	2013/08/14	NC	%	25
		Xylene (Total)	2013/08/14	NC	%	25
		Vinyl Bromide	2013/08/14	NC	%	25
		Propene	2013/08/14	NC	%	25
		2,2,4-Trimethylpentane	2013/08/14	NC	%	25
		Carbon Disulfide	2013/08/14	NC	%	25
		Vinyl Acetate	2013/08/14	NC	%	25
3319686 JIW	Method Blank	Aliphatic >C5-C6	2013/08/14	ND, RDL=5.0	ug/m3	20
3313000 3111	Wictiod Blank	Aliphatic >C6-C8	2013/08/14	ND, RDL=5.0	ug/m3	
		Aliphatic >C8-C10	2013/08/14	ND, RDL=5.0	ug/m3	
		Aliphatic >C10-C12	2013/08/14	ND, RDL=5.0	ug/m3	
		Aliphatic >C12-C16	2013/08/14	ND, RDL=5.0	ug/m3	
		Aromatic >C7-C8 (TEX Excluded)	2013/08/14	ND, RDL=5.0	ug/m3	
		,		·		
		Aromatic >C8-C10 Aromatic >C10-C12	2013/08/14 2013/08/14	ND, RDL=5.0 ND, RDL=5.0	ug/m3	
					ug/m3	
2222552 \// \	Mathad Dlad.	Aromatic >C12-C16	2013/08/14	ND, RDL=5.0	ug/m3	
3322553 VLA	Method Blank	Acetylene	2013/08/21	ND, RDL=0.1	ppm	
		Ethane	2013/08/21	ND, RDL=0.1	ppm	
		Ethylene	2013/08/21	ND, RDL=0.1	ppm	
		Methane	2013/08/21	ND, RDL=2	ppm	
		n-Butane	2013/08/21	ND, RDL=0.2	ppm	
		n-Pentane	2013/08/21	ND, RDL=0.1	ppm	
		Propane	2013/08/21	ND, RDL=0.1	ppm	
		Propene	2013/08/21	ND, RDL=0.1	ppm	
	222	Propyne	2013/08/21	ND, RDL=0.2	ppm	
	RPD -					
	Sample/Sample					
	Dup	Acetylene	2013/08/21	NC	%	20

P.O. #:

Site Location: ROM

Quality Assurance Report (Continued)

Maxxam Job Number: GB3C8605

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery	Units	QC Limits
3322553 VLA	RPD -					
	Sample/Sample					
	Dup	Ethane	2013/08/21	NC	%	20
		Ethylene	2013/08/21	NC	%	20
		Methane	2013/08/21	19.3	%	20
		n-Butane	2013/08/21	NC	%	20
		n-Pentane	2013/08/21	NC	%	20
		Propane	2013/08/21	NC	%	20
		Propene	2013/08/21	NC	%	20
		Propyne	2013/08/21	NC	%	20
3324319 TJC	Method Blank	Oxygen	2013/08/22	ND, RDL=0.1	% v/v	
		Nitrogen	2013/08/22	ND, RDL=0.1	% v/v	
		Carbon Monoxide	2013/08/22	ND, RDL=0.1	% v/v	
		Methane	2013/08/22	ND, RDL=0.1	% v/v	
		Carbon Dioxide	2013/08/22	ND, RDL=0.1	% v/v	
	RPD -					
	Sample/Sample					
	Dup	Oxygen	2013/08/22	0.1	%	20
		Nitrogen	2013/08/22	0.1	%	20
		Methane	2013/08/22	NC	%	20
		Carbon Dioxide	2013/08/22	0	%	20

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

REPORT OF ANALYSIS: Maxxam Analytics - B3C8489/B3C8505/B3C8538/B3C8549 - Selected Siloxanes (TIVA)

REPORT: 13033/13034/13035/13036si (Method -SCANATD-GC-MSD Cryogenic Oven Control)

	DESCRIPTION	13080918	13080918	13080918	13080918	13081202	13081202	13081202	13081202	13081204	13081204	13081204	13081204
CAS#	COMPOUND	SN8076-01 VM-01 V=10.0mL	SN8076-01 VM-01 V=10.0mL	Silicon Equivalent	Silicon Equivalent	SN8077-01 VM-02 V=25mL	SN8077-01 VM-02 V=25mL	Silicon Equivalent	Silicon Equivalent	SN8148-01 VW-03 (RDM) V=200mL	SN8148-01 VW-03 (RDM) V=200mL	Silicon Equivalent	Silicon Equivalent
		mg/m³	ppm	mg/m³	ppm	mg/m³	ppm	mg/m³	ppm	mg/m³	ppm	mg/m³	ppm
420-56-4	Trimethylsilyl Fluoride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
75-76-3	Tetramethylsilane	<0.0022	<0.0006	<0.0007	<0.0006	<0.0010	<0.0003	<0.0003	<0.0003	<0.0001	<0.0001	<0.0001	<0.0001
1825-61-2	Methoxytrimethylsilane	<0.0563	<0.0132	<0.0152	<0.0132	<0.0265	<0.0062	<0.0071	<0.0062	<0.0032	<0.0007	<0.0009	<0.0007
1825-62-3	Ethoxytrimethylsilane	<0.0543	<0.0112	<0.0129	<0.0112	<0.0255	<0.0053	<0.0061	<0.0053	<0.0031	<0.0006	<0.0007	<0.0006
1066-40-6	Trimethylsilanol	0.0338	0.0092	0.0105	0.0092	ND	ND	ND	ND	0.0098	0.0027	0.0031	0.0027
1825-64-5	Isopropoxytrimethylsilane	<0.0229	<0.0042	<0.0049	<0.0042	<0.0108	<0.0020	<0.0023	<0.0020	<0.0013	<0.0002	<0.0003	<0.0002
1185-55-3	Trimethoxymethyl Silane #	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
107-46-0	Hexamethyl Disiloxane - L2	<0.0021	<0.0003	<0.0007	<0.0006	<0.0010	<0.0001	<0.0003	<0.0003	<0.0001	<0.0001	<0.0001	<0.0001
1825-63-4	Propoxytrimethylsilane	<0.0621	<0.0115	<0.0132	<0.0115	<0.0292	<0.0054	<0.0062	<0.0054	<0.0035	<0.0006	<0.0007	<0.0006
1825-67-8	1-Methylbutoxytrimethylsilane *	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1825-65-6	Butoxytrimethylsilane *	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2768-02-7	Trimethoxyvinyl Silane #	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
541-05-9	Hexamethyl Cyclotrisiloxane - D3	0.1927	0.0212	0.0730	0.0636	0.0844	0.0093	0.0320	0.0278	0.0146	0.0016	0.0055	0.0048
107-51-7	Octamethyl Trisiloxane - L3	<0.0041	<0.0004	<0.0014	<0.0013	<0.0019	<0.0002	<0.0007	<0.0006	<0.0002	<0.0001	<0.0001	<0.0001
78-08-0	Triethoxyvinyl Silane #	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
78-07-9	Triethoxyethyl Silane #	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
556-67-2	Octamethyl Cyclotetrasiloxane - D4	0.0739	0.0061	0.0280	0.0244	0.0299	0.0025	0.0113	0.0099	0.0234	0.0019	0.0089	0.0077
141-62-8	Decamethyl Tetrasiloxane - L4	<0.0053	<0.0004	<0.0019	<0.0017	<0.0025	<0.0002	<0.0009	<0.0008	<0.0003	<0.0001	<0.0001	<0.0001
78-10-4	Tetraethylsilicate #	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
541-02-6	Decamethyl Cyclopentasiloxane - D	0.0349	0.0023	0.0132	0.0115	0.0321	0.0021	0.0122	0.0106	0.0420	0.0028	0.0159	0.0138
141-63-9	Dodecamethyl Pentasiloxane - L5	<0.0528	<0.0034	<0.0193	<0.0168	<0.0249	<0.0016	<0.0091	<0.0079	<0.0030	<0.0002	<0.0011	<0.0009
540-97-6	Dodecamethyl Cyclohexasiloxane -	<0.0531	<0.0029	<0.0201	<0.0175	0.1454	0.0080	0.0551	0.0480	0.1513	0.0083	0.0573	0.0499
	Sum	0.6503	0.0870	0.2150	0.1873	0.4152	0.0432	0.1436	0.1251	0.2559	0.0198	0.0946	0.0824

< (ND) = Characteristic ions are not present therefore Not Detected

< (TRACE) = Characteristic ions present but too low to be quantified

V = Volume of air/gas sampled

⁼ Semiquantitative (Response Factor set at 5)

⁼ Unstable, poor detectability, commercial standards tested

12-435 Phase II ESA – Red Deer Motors Site Historic Waste Disposal Site, The City of Red Deer

APPENDIX B

TESTHOLE LOGS

TERMS USED ON BOREHOLE LOGS

Terminology Common Soil Genesis

Rootmat vegetation roots and moss with organic matter and topsoil typically forming a mattress at the

ground surface.

Topsoil mixture of soil and humus capable of supporting good vegetative growth

Peat fibrous aggregate of visible and invisible fragments of decayed organic matter

Loam silty sand or sand mixed with silt and organics

Till unstratified glacial deposit which may range from clay to boulders

Fill any materials below the surface identified as placed by excavation activities (excluding buried

services)

Common Soil Structure

Slickensided Having inclined planes of weakness that are slick and glossy in appearance.

Fissured Containing shrinkage cracks, frequently filled with fine sand or silt; usually more or less vertical.

Laminated Composed of thin layers of varying color and texture.
 Interbedded Composed of alternate layers of different soil types.
 Calcareous Containing appreciable quantities of calcium carbonate.

Well Graded Having wide range in grain sizes and substantial amounts of intermediate particle sizes.

Poorly graded Predominantly of one grain size, or having a range of sizes with some intermediate sizes missing.

Homogeneous same color and appearance throughout

Stratified composed of alternating successions of different soil types, eg. silt and sand

Lensed inclusion of small pockets of different soils

Laminated alternating layers of varying material or color with the layers less than 6 mm thick

Layer thickness > 75mm

Seam thickness between 2 mm and 75 mm

Parting thickness < 2 mm

Grain Size and Plasticity

Description of soils on the basis of grain size and plasticity is based on the Unified Soil Classification System (USCS) (ASTM D-2487). The classification excludes particles larger than 76 mm (3 inches). This system provides a ground symbol (eg., SM) and group name (eg., silty SAND) for identification. Note: terminology describing materials in the absence of laboratory analysis is based on a visual method (ASTM D-2488).

Descriptors for soil materials outside the USCS (eg., particles larger that 76 mm, visible organic matter, construction debris) is based on the (visually estimated) proportion of these materials present:

Trace, or occasionalLess than approximately 10%SomeApproximately 10-20%

Frequent Greater than approximately 20%

Solid lines between soil strata indicate the interpreted boundary between different soil types. Dashed line between soil strata indicates the contact between different soil units has been inferred.

Consistency of Cohesive Soils (Fine-Grained Soils)

Fine-grained soils (major portion passing 0.075mm sieve): includes (1) inorganic and organic silts and clays. (2) gravelly, sandy, or silty clays, and (3) clayey silts. Consistency is rated according to shearing strength, as estimated from laboratory or in-situ tests.

The standard nomenclature to describe cohesive soils includes the consistency, which is based on undrained shear strength as measured by in situ tests, penetrometer tests, unconfined compression tests, or occasionally by standard penetration tests.

Standard Penetration Test 'N-Value'

The Standard Penetration Test provides an "N-value; the number of blows of a 64 kg (140 pound) hammer falling 760 mm (30 inches) required to drive a 51 mm (2 inch) O.D. split spoon sampler 305 mm (one foot) into the soil. For split spoon samples where insufficient penetration is achieved and 'N' values cannot be determined, the number of blows is reported over sampler penetration in millimeters; e.g. blows/penetration = 50/75.

Consistency	Unconfined Compressive Strength (kPa)	N-Value
Very Soft	<25	<2
Soft	25-50	2-4
Firm	50-100	4-8
Stiff	100-200	8-15
Very Stiff	200-400	15-30
Hard	>400	>30

NOTE: Slackened and fissured clays may have lower unconfined compressive strengths than shown above, because of naturally occurring planes of weakness or cracks in the soil.

Density of Cohesionless Soils (Coarse-grained Soils)

Coarse-grained soils (major portion retained on 0.075 mm sieve): includes (1) clean gravels and sands, and (2) silty or clayey gravels and sands. Condition is rated according to relative density, as inferred from laboratory or in-situ tests.

The standard terminology to describe cohesionless soils includes the compactness (former "relative density"), as determined by laboratory test or by the Standard Penetration Test 'N-Value'.

Density	N Value (Blows per 0.3m)	Relative Density - % Compactness
Very Loose	0-4	0-20
Loose	4-10	20-40
Compact	10-30	40-75
Dense	30-50	75-90
Very Dense	>50	90-100

PRO.	JECT: Phase II Environmental Site Assessment	BOREHOLE No.: MY						MW-01
PRO.	JECT No.: 12-435	DR	ILL	TYP	E:			SS Auger
LOC	ATION: Red Deer Motors Site	GR	OUN	ND E	LEVA	TION:		874.014 m
CLIE	NT: The City of Red Deer	CO	MPI	LETI	ON D	ATE:		06/26/2013
Samp	le Type: Shelby Tube Split Spoon Core Disturbed			o Rec	overy			
Back	fill Type: Bentonite 💹 Silica Sand 🧱 Grout 🔃 Pea Gravel				uttings		nite : Sand	
Notes	<i>c</i> .	lor D	rive	and	~7 m s	outh of 32 S	Street, near t	he
	northwest corner of the site.	ı			_			
Depth (m)	Soil Description	Sample Type	Sample No.	SPT (N)	Combustible Soil Vapours (ppm)		Well Details	
0.0	Grass/loam - soft, silty, sandy, moist, olive. (~ 3 cm thick). Sand (fill) - dense to compact, silty, trace clay, damp, yellow.							
1.0	Loam (fill) - compact, silty, sandy, trace clay, damp, dark olive.							
1.0								
	Clay (fill) - firm, loamy, silty, trace fine rounded gravel, distinctive slough gas odour, moist, dark olive.							
2.0	wood debris at 1.8 m to 2.4 m.							
2.0								
		1000000						
3.0	No obvious waste material. Sand (fill) - compact to loose, silty, trace clay, mild hydrocarbon odour, moist, light olive.	0000	J					
4.0	becomes wet and trace silt at 3.8 m.							
	some gravel at 4.3 m.							
	Clay (fill) - stiff, trace silt, trace sand, moist, olive. mild hydrocarbon odour at 4.6 m - 5.2 m							
5.0	mind hydrocarbon oddar at 4,0 in 3,2 in	00000	J					
6.0	End of hole at 6.1 m.							
	51 mm diameter 4.6 m length 010 PVC screen. Aboveground lockable steel casing set in concrete.							
7.0	The regional formation steel causing set in controls.							
7.0								
8.0								
9.0							<u> </u>	
10.0							Q	
11.0								
12.0								
		Slough	l 1:				Completion Depth	(m): 6.1
	Tiamat Environmental Consultants Ltd.	Ŭ		undwate	er:			LTM
l		Logge	d Dv			IAI.	Page:	1 of 1

PRO	JECT: Phase II Environmental Site Assessment	BOREHOLE No.:						VW-01
PRO	JECT No.: 12-435		ILL					SS Auger
LOC	ATION: Red Deer Motors Site	_				TION:		874.194 m
	ENT: The City of Red Deer	CO	MPI			06/26/2013		
	ole Type: Shelby Tube Split Spoon Core Disturbed				overy			
	fill Type: Bentonite Silica Sand Grout Pea Gravel				uttings	Benton	nite : Sand	
Notes	Soil Vapour Well is ~ 2 m east of MW-01, near the northwest	corne	er of	the s	ite.		I	
Depth (m)	Soil Description	Sample Type	Sample No.	SPT (N)	Combustible Soil Vapours (ppm)		Well Details	
0.0	Grass (~ 3 cm thick). Sand (fill) - compact, silty, clayey, damp, light olive brown.							
1.0	becomes dark olive and loamy at 0.8 m.							
2.0	Silt (fill) - firm, clayey, moist, dark olive.							
2.0	wood fragments at 2.3 m.						10000000	
3.0	mild hydrocarbon odour at 3 m.							
4.0	End of hole at 3.5 m. 25 mm diameter 30 cm length 020 PVC screen. Aboveground lockable steel casing set in concrete.							
5.0								
6.0								
7.0								
8.0								
9.0								
10.0								
11.0								
12.0								
12.0								
	Tiomed Emilionmental Community	Slough	h :				Completion Depth	
	Tiamat Environmental Consultants Ltd.		to Grou	ındwate	er:	TAT		LTM 1 of 1
		Logge	u ny:			JAL	Page:	1 of 1

PRO	JECT: Phase II Environmental Site Assessment	BOREHOLE No.:						TH-03
PRO	JECT No.: 12-435	DR	ILL '	TYP	E:			SS Auger
LOC	ATION: Red Deer Motors Site	GR	OUN	ID E	LEVA	TION:		875.332 m
CLIE	ENT: The City of Red Deer	CO	MPI	ET	ION D	ATE:		06/26/2013
Samp	ole Type: Shelby Tube Z Split Spoon Core Disturbed			o Rec	overy			
Back	fill Type: Bentonite Silica Sand Grout Pea Gravel] D	rill C	uttings	Bentor	nite : Sand	
Notes		site	, ~ 6	m n	orth of	the overhea	d	
	electrical traversing the site.						T	
Depth (m)	Soil Description	Sample Type	Sample No.	SPT (N)	Combustible Soil Vapours (ppm)		Well Details	
0.0	Grass/loam - soft, silty, sandy, moist, olive. (~ 3 cm thick).							
	Sand and Silt (fill) mixed with MSW - brick, wood debris, plastic, some clay.							
1.0								
-	Sand (fill) - compact, silty, trace clay, trace fine rounded gravel, damp, dark olive grey. mild hydrocarbon odour at 1.5 m to 2.1 m.							
2.0								
	becomes wet at 2.7 m.							
3.0								
4.0	glass fragments at 3.8 m. some wood debris at 4 m.							
4.0	some wood deoris at 4 in.							
-	Clay (fill) - stiff, some gravel, wood debris, moist, dark olive.							
5.0								
	Clay (till) - very stiff, silty, trace carbonates, trace sand, moist, dark olive.							
6.0	End of hole at 6.1 m.							
	Backfilled with ~ 50:50 bentonite and silica sand.							
7.0								
8.0								
0.0								
9.0								
10.0								
11.0								
12.0								
		Slough	1:				Completion Depth	(m): 6.1
	Tiamat Environmental Consultants Ltd.	Depth Logge	to Grou	ındwate	er:			LTM
	Ţ					JAL	Page:	1 of 1

PRO	JECT: Phase II Environmental Site Assessment	BO	REH	VW-02				
PRO	JECT No.: 12-435	DR	ILL		SS Auger			
LOC	ATION: Red Deer Motors Site	_	OUN		877.321 m			
	ENT: The City of Red Deer	CO	<u>MPI</u>		06/26/2013			
	ole Type: Shelby Tube Split Spoon Core Disturbed			o Rec	overy			
	fill Type: Bentonite Silica Sand Grout Pea Gravel		D	rill C	uttings	Bentor	nite : Sand	
Notes	Soil Vapour Well is located on the southeast side of the site.						1	
Depth (m)	Soil Description	Sample Type	Sample No.	SPT (N)	Combustible Soil Vapours (ppm)		Well Details	
0.0	Grass (~ 3 cm thick). Sand (fill) - loose, trace silt, trace loam, trace clay, damp, light olive brown. trace rootlets to 1.2 m							
1.0	trace plastic bags at 0.9 m to 1.1 m.						П	
2.0	Clay (fill) - stiff, silty, trace sand, moist, light olive.							
	No obvious waste material.							
3.0	Sand (fill) - compact, silty, moist, light olive. trace coal at 3 m.							
4.0	trace gravel at 4 m.							
	becomes loose at 4.6 m						Ι	
5.0	trace gravel and becomes wet at 5 m.							
6.0	End of hole at 6.1 m. 25 mm diameter 30 cm length 020 PVC screen. Aboveground lockable steel casing set in concrete.							
7.0								
8.0								
9.0								
10.0								
11.0								
12.0								
	T	Slough	1:				Completion Depth	(m): 6.1
	Tiamat Environmental Consultants Ltd.		to Grou	ındwate	er:			LTM
		Logge	d By:			JAL	Page:	1 of 1

							BOREHOLE No.:							
							DRILL TYPE:							
	ATION: Red Deer Mot				_	OUN		875.567 m						
	ENT: The City of Red I		nen -	p		_		ION D	ATE:		06/26/2013			
		Tube 💹	Split Spoon	_				overy						
	fill Type: Bentoni		Silica Sand		l L	□ D	rill C	uttings	Benton	nite : Sand				
Notes	s: Testhole is located in	near the	south perimete	r of site.	1	T .	Π	= .		1				
Depth (m)		Soil De	scription		Sample Type	Sample No.	SPT (N)	Combustible Soil Vapours (ppm)		Well Details				
0.0	Grass. (~ 3 cm thick). Sand (fill) - loose, silty, some clay, plastic and trace coal at 0.5 m.	damp, light o	live.		1									
1.0	becomes moist at 1.7 m.													
2.0	becomes moist at 1.7 in.													
3.0	No obvious waste material. becomes wet at 3 m.													
4.0														
5.0	Clay (till) - very stiff, silty, trace fin	ne gravel, trad	e sand, wet, dark oliv	e.										
6.0	End of hole at 6.1 m.													
7.0	Backfilled with ~ 50:50 bentonite a	ind silica san	1.											
8.0														
9.0														
10.0														
11.0														
12.0														
	T		1.0	4 747	Slough	h :	_			Completion Depth	(m): 6.1			
	Tiamat Enviro	nment	al Consulta	nts Ltd.		to Grou	undwate	er:			LTM 1 of 1			
					Logge	Logged By: JAL Page:								

	JECT: Phase II Environmental Site Assessment	BO	TH-06								
	JECT No.: 12-435		ILL '	SS Auger							
	ATION: Red Deer Motors Site		OUN		876.597 m						
	CNT: The City of Red Deer	CO	MPI		06/27/2013						
	ole Type: Shelby Tube Split Spoon Core Disturbed			o Rec							
	fill Type: Bentonite Silica Sand Grout Pea Gravel				ıttings		nite : Sand				
Notes	Testhole is located about 38 m northwest of VW-02 in the sout	h cei	ıtral	area	of the	site.	l I				
Depth (m)	Soil Description	Sample Type	Sample No.	SPT (N)	Combustible Soil Vapours (ppm)		Well Details				
1.0	Grass. (~ 3 cm thick). Sand (fill) mixed with MSW - newspaper, paper, porcelain, tin can, plastic bags, plastic, wood debris, glass fragments, steel wire, tin can, firm to stiff, silty, clayey, strong pungent bitter odour, damp to moist, olive brown.										
2.0											
3.0	refusal at 3.7 m (suspected boulder).										
4.0	End of hole at 3.7 m. Backfilled with $\sim 50:50$ bentonite and silica sand.										
5.0											
6.0											
7.0											
8.0											
9.0											
10.0											
11.0											
12.0											
	Tiamat Environmental Consultants Ltd.	Slough		ındı	vr •		Chacked By:	(m): 3.7 LTM			
					Depth to Groundwater : Checked By: Logged By: JAL Page:						
								1 of 1			

PRO	JECT: Phase II Environmental Site Assessment	_	REH	TH-07				
PRO	JECT No.: 12-435	DR	ILL		SS Auger			
LOC	ATION: Red Deer Motors Site	GR	OUN		876.925 m			
	ENT: The City of Red Deer	CO	<u>MPI</u>		06/27/2013			
	ole Type: Shelby Tube Split Spoon Core Disturbed			o Rec	overy			
	fill Type: Bentonite Silica Sand Grout Pea Gravel				uttings	Benton	nite : Sand	
Notes	Testhole is ~ 6 m south of the overhead power line along east	erin	neter	of th	e site.			
Depth (m)	Soil Description	Sample Type	Sample No.	(N) LdS	Combustible Soil Vapours (ppm)		Well Details	
0.0	Grass. (~ 3 cm thick). Clay (fill) mixed with MSW - paper, wood debris, plastic bag, nylon string, firm, silty, trace sand, damp, olive grey.							
1.0	becomes moist at 1.5 m.							
2.0	No abrigue masta belon 2 m							
3.0	No obvious waste below 3 m. Clay (fill) - stiff, trace coal, trace oxides, moist, olive.							
4.0	Sand (fill) - compact, silty, wet, light olive brown.	_						
5.0								
6.0	End of hole at 6.1 m. Backfilled with 50:50 bentonite and silica sand.	=						
7.0								
8.0								
9.0								
10.0								
11.0								
12.0								
	Tiamat Environmental Consultants Ltd.	Slough		ındı	ar.		Chacked By:	
	Lamar Divironmental Consultants Ltu.	Logge	to Grou d By:	Checked By: Page:	LTM 1 of 1			

	JECT: Phase II Environmental Site Assessment	BO	TH-08					
	JECT No.: 12-435	_	ILL '	SS Auger				
	ATION: Red Deer Motors Site	+	OUN		876.812 m			
	ENT: The City of Red Deer		_		ION D	ATE:		06/27/2013
	ole Type: Shelby Tube Split Spoon Core Disturbed				overy			
	fill Type: Bentonite Silica Sand Grout Pea Gravel]] D	rill Cı	uttings	Benton	nite : Sand	
Notes	Due to refussal at TH-07, Testhole is ~ 9 m south.	1	I I		-		l I	
Depth (m)	Soil Description	Sample Type	Sample No.	SPT (N)	Combustible Soil Vapours (ppm)		Well Details	
0.0	Grass/loam - soft, silty, sandy, moist, olive. (~ 3 cm thick). Sand and loam (fill) mixed with MSW - plastic bag, nail, glass, nylon, paper, wood debris, tin can, compact, trace clay, strong bitter pungent odour, damp, olive brown.							
1.0	becomes moist at 1.5 m.							
2.0								
3.0								
4.0	refusal at 4.3 m (suspected boulder), no recovery at 3 m to 4.3 m, wet. End of hole at 4.3 m.							
5.0	Backfilled with 50:50 bentonite and silica sand.							
6.0								
7.0								
8.0							0	
9.0								
10.0								
11.0								
12.0								
	Tional Emilion and Al Control of Table	Slough	n :				Completion Depth	
	Tiamat Environmental Consultants Ltd.		to Grou	ındwate	er:	***		LTM
		Logge	a By:			JAL	Page:	1 of 1

CLENT: The City of Red Deer COMPLETION DATE: 06.27.20	PROJECT: Phase II Environmental Site Assessment						BO	REH	[OL]	E No.:	TH-09						
CLIPNT: The City of Red Decr Sample Type: Selety Table Split Spoon Tory Disturbed							DR	ILL	TYP	E:	SS Auger						
Sample Type:							_					875.907 m					
Rectamite Sand Sa									F		CO	MPI	ET	ION D		06/27/2013	
Soil Description Soil Descrip												-					
Soil Description Soil Description Soil Descrip																nite : Sand	
Clay (fill) - very stiff, silty, trace and, moist, dark olive. Sand (fill mode) and silter and	Notes	s: Testhole	is ~ 3 m	east of	f AE	NV g	roundw	ater m	nonito	oring we	ells MW	/-02	and	MW-03	3.		1
Clay (fill) - very stiff, silty, trace and, moist, dark olive. Sand (fill mode) and silter and	Depth (m)			Soi	l De	scrip	tion				Sample Type	Sample No.	(N) LdS	Combustible Soi Vapours (ppm)		Well Details	
becomes moist at 1.5 m. moderate hydrocarbon odour at 1.5 m to 3.2 m. No obvious wate material below 2.6 m. Sand (ifft) : crospact, trace stilt, trace coal, trace pebbles, moist, light olive brown. 3.0 Sand (native) - compact, trace stilt, trace coal, trace pebbles, moist, light olive brown. 4.0 Clay (ifft) - very stiff, silty, trace sand, moist, dark olive. 5.0 Eact of hole at 6.1 m. Backfilled with - 50-50 beattomic and silica sand. 7.0 In the sand of	0.0	Sand (fill) mixed w	rith MSW - n						ic bags, g	glass							
2.0 No obvious wate numerial below 2.6 m. Sand (full) - compact, trace silt, trace coal, trace pebbles, moist, light olive brown. 3.0 Sand (maive) - compact, trace silt, trace coal, trace pebbles, moist, light olive brown. 4.0 Clay (till) - very stiff, silty, trace sand, moist, dark olive. 5.0 Sand (onlive) - compact, trace sand, moist, dark olive. 5.0 Sand (onlive) - compact, trace sand, moist, dark olive. 5.0 Sand (onlive) - compact, trace sand, moist, dark olive. 5.0 Sand (onlive) - compact, trace sand, moist, dark olive. 5.0 Sand (onlive) - compact, trace sand, moist, dark olive. 5.0 Sand (onlive) - compact, trace sand, moist, dark olive. 5.0 Sand (onlive) - compact, trace sand, moist, dark olive. 5.0 Sand (onlive) - compact, trace sand, moist, dark olive. 5.0 Sand (onlive) - compact, trace sand, moist, dark olive. 5.0 Sand (onlive) - compact, trace salt, trace coal, trace pebbles, moist, light olive brown. 5.0 Sand (onlive) - compact, trace salt, trace coal, trace pebbles, moist, light olive brown. 5.0 Sand (onlive) - compact, trace salt, trace coal, trace pebbles, moist, light olive brown. 5.0 Sand (onlive) - compact, trace salt, trace coal, trace pebbles, moist, light olive brown. 5.0 Sand (onlive) - compact, trace salt, trace coal, trace pebbles, moist, light olive brown. 5.0 Sand (onlive) - compact, trace salt, trace coal, trace pebbles, moist, light olive brown. 5.0 Sand (onlive) - compact, trace salt, trace coal, trace pebbles, moist, light olive brown. 5.0 Sand (onlive) - compact, trace salt, trace coal, trace pebbles, moist, light olive brown. 5.0 Sand (onlive) - compact, trace salt, trace coal, trace pebbles, moist, light olive brown. 5.0 Sand (onlive) - compact, trace salt, trace coal, trace pebbles, moist, light olive brown. 5.0 Sand (onlive) - compact, trace salt, trace coal, trace pebbles, moist, light olive brown. 5.0 Sand (onlive) - compact, trace salt, trace coal, trace pebbles, moist, light olive brown. 5.0 Sand (onlive) - compact, trace salt, trace coal, trace pebb	1.0			1.5 m to 1	3.2 m												
Clay (till) - very stiff, silty, trace sand, moist, dark olive. 5.0 End of hole at 6.1 m. Backfilled with - 50-50 bentonite and silica sand. 7.0 10.0 11.0 Tiamat Environmental Consultants Ltd. Slough: Completion Depth (an): 6.1 Depth to Groundwater: Checked By: LTM	2.0	No obvious wate m	naterial below	2.6 m.		pebbles,	moist, light	olive bro	 own.								
Clay (till) - very stiff, silty, trace sand, moist, dark olive. End of hole at 6.1 m. Backfilled with - 50:50 bentonite and silica sand. 7.0 10.0 11.0 Tiamat Environmental Consultants Ltd. Storgh: Completion Depth (m): 6.1 Depth to Groundwater: Consultants Ltd.	3.0	Sand (native) - con	npact, trace si	ilt, trace c	oal, tra	ice pebbl	es, moist, li	ght olive	e brown.								
End of hole at 6.1 m. Backfilled with ~ 50.50 bentonite and silica sand. 7.0 10.0 11.0 Tiamat Environmental Consultants Ltd.	4.0	Clay (till) - very sti	ff. silty, trace	sand, mo	oist, da	rk olive.											
End of hole at 6.1 m. Backfilled with ~ 50:50 bentonite and silicn sand. 20	5.0																
10.0 Tiamat Environmental Consultants Ltd. Slough: Completion Depth (m): 6.1 Depth to Groundwater: Checked By: LTM				te and sili	ca sano	1.											
Tiamat Environmental Consultants Ltd. Slough: Depth to Groundwater: Checked By: LTM																0	
Tiamat Environmental Consultants Ltd. Slough: Completion Depth (m): 6.1																ō.	
Tiamat Environmental Consultants Ltd. Slough: Depth to Groundwater: Completion Depth (m): 6.1 Depth to Groundwater: Checked By: LTM	9.0																
Tiamat Environmental Consultants Ltd. Slough: Completion Depth (m): 6.1 Depth to Groundwater: Checked By: LTM	10.0																
Tiamat Environmental Consultants Ltd. Slough: Completion Depth (m): 6.1 Depth to Groundwater: Checked By: LTM																	
Tiamat Environmental Consultants Ltd. Depth to Groundwater: Checked By: LTM	12.0																
		Tioma	t Envi	ronm	onte	al C	menlta	nte I	I + A								
			it EHVII	UIIII	CIIL	ai C()115UIL	ші5 І	Ltu.				ındwate	er:	Checked By: Page:	LTM 1 of 1	

PRO	JECT: Phase II Environmental Site Assessment	BO	VW-03								
PRO	JECT No.: 12-435		ILL '		SS Auger						
LOC	ATION: Red Deer Motors Site	GR	OUN	ID E		877.316 m					
	ENT: The City of Red Deer	CO	MPI	ET		06/27/2013					
	ole Type: Shelby Tube Split Spoon Core Disturbed	[overy						
	fill Type: Bentonite Silica Sand Grout Pea Gravel	Ш	□ D	rill C	uttings	Benton	nite : Sand				
Notes	Soil Vapour Well is near the northeast corner of the site.	ı			= .						
Depth (m)	Soil Description	Sample Type	Sample No.	(N) LdS	Combustible Soil Vapours (ppm)		Well Details				
0.0	Grass. (~ 3 cm thick). Clay (fill) - firm to stiff, silty, moist, olive.										
1.0	trace plastic bags at 0.9 m.										
2.0	trace coal at 2.1 m.										
	trace gravel at 2.6 m.										
3.0	No obvious waste material.										
4.0	becomes wet at 4 m.										
5.0											
6.0	Sand (fill) - loose, silty, wet, olive.										
7.0											
8.0	End of hole at 7.6 m. 25 mm diameter 30 cm length 020 PVC screen. Flush mount lockable steel casing set in concrete.										
9.0											
10.0											
11.0											
12.0											
		Slough	1:				Completion Depth	(m): 7.6			
	Tiamat Environmental Consultants Ltd.	Depth	to Grou	ındwate	er:	•		LTM			
					Logged By: JAL Page: 1						

12-435 Phase II ESA – Red Deer Motors Site Historic Waste Disposal Site, The City of Red Deer

APPENDIX C SELECT PHOTOGRAPHS

Phase II ESA – Red Deer Motors Site

Photograph No. 1: View of site looking north.

Photograph No. 2: View of west boundary of site looking southwest.

Phase II ESA – Red Deer Motors Site Historic Waste Disposal Sites, The City of Red Deer

Photograph No. 3: View of east boundary of the site looking southeast.

Photograph No. 4: View of the north boundary of site, looking east. Note, 32 Street runs parallel with north boundary.

Phase II ESA – Red Deer Motors Site Historic Waste Disposal Sites, The City of Red Deer

Photograph No. 5: View of south boundary of the site. Note site boundaries taper to the south.

Photograph No. 6: Drilling MW-01 and VW-01 in northwest corner of the site. Note intersection of 32 Street and Taylor Drive in the background.

Phase II ESA – Red Deer Motors Site Historic Waste Disposal Sites, The City of Red Deer

Photograph No. 7: View of completed wells MW-01 and VW-01, looking south.

Photograph No. 8: View of completed well VW-01.

Page C-5

Photograph No. 9: Drilling VW-02, located at the southeast site of the site. Note truck mounted auger drill.

Photograph No. 10: View of Groundwater Wells, MW-02 and MW-03, previously installed by Alberta Environment.