Phase II Environmental Site Assessment Historic Waste Disposal Site Riverside Light Industrial Park The City of Red Deer

Prepared For:The City of Red DeerPrepared By:Tiamat Environmental Consultants Ltd.Date:February 7, 2014File:12-435

EXECUTIVE SUMMARY

On behalf of The City of Red Deer, Tiamat Environmental Consultants Ltd. (Tiamat) has conducted a Phase II Environmental Site Assessment within the Riverside Light Industrial Park. This Phase II ESA focusses on determining the relative location and configuration of the area within the light industrial park where historic waste materials were suspected to be buried.

The objective of this ESA is to assess the environmental quality of the subsurface soil and groundwater underlying the site and address concerns identified in a Phase I ESA. This report presents the scope of work, a summary of the results and our professional opinion respecting the environmental quality of the site. This report is intended to complement the Phase I ESA dated October 10, 2013, prepared by Tiamat.

The key results of this Phase II ESA are as follow:

- Dry construction waste mixed with some sanitary waste was encountered at one of the ten testholes advanced across the light industrial park. The buried waste material is interpreted to lie within third party properties. However, there is a reasonable possibility; the waste material extends beneath a portion of the city roadways (46A Avenue and 61 Street) including the intersection of these two streets. The estimated footprint of the historical waste area is 5,500 m² (1.36 ac).
- Laboratory results of groundwater samples show a relatively minor level of impact to the local groundwater that is interpreted to be down gradient of the historic waste material. The concentrations are not considered to be an environmental concern relative to the commercial businesses in proximity to the identified waste material or the urban environment.
- Laboratory results of soil vapour show detectable petroleum and chlorinated hydrocarbon vapours. The test was taken during the summer and will not be reflective of soil vapours under frozen ground conditions. The types and relative concentrations of various chemical compounds in the soil vapour from the summer test event are indicative of buried waste but not considered to be an environmental concern to the various commercial properties within the light industrial park.

To better understand and manage the off-site environmental risks associated with this historic waste disposal site, several recommendations are presented in this report.

TABLE OF CONTENTS

Execu	tive Sur	nmary	1
1.0	Introdu	uction	1
	1.1	Scope of Work	1
2.0	Site D	escription & Environmental Setting	2
	2.1	Site Description and Environmental Setting	2
	2.2	Notable Environmental Conditions for Special Consideration	2
	2.3	Regional Geology and Hydrogeology	4
	2.4	Previous Investigations and Historic Perspective	4
3.0	Fieldw	ork	5
	3.1	Underground Line Locates and Testhole Drilling	5
	3.2	Site Monitoring and Groundwater Sampling	7
4.0	Result	s	7
	4.1	Soil Profile	7
	4.2	Groundwater Conditions	8
	4.3	Headspace Vapours	8
5.0	Summ	ary of Assessment	9
	5.1	Quality of Subsurface Soil	9
	5.2	Quality of Local Groundwater	9
	5.3	Interpretation of Soil Vapours	10
6.0	Conclu	usions and Recommendations	13
7.0	Statem	nent of Limitations	14
8.0	Closur	е	15
Refere	ences		16
Table Table Table Table Table Table	2 3 4A 4B	Groundwater Monitoring and Soil Vapour Well Elevations Site Monitoring Results Analytical Results – Soil – Drill Cuttings (Soil Bag) Groundwater Indices Measured at Time of Sampling Analytical Results – Groundwater – General Water Quality Analytical Results – Groundwater – Metals	

Table 4DAnalytical Results – Groundwater – VOCs

TABLE OF CONTENTS Continued...

Table 5A Table 5B Table 5C Table 5D	Summary of Parameters Measured During Sampling of Soil Vapour Analytical Results – Soil Vapour – General Indices Analytical Results – Soil Vapour – VOCs Analytical Results – Soil Vapour - Siloxanes
Figure 1	Site Plan Showing Surrounding Land Use
Figure 2	Test Locations and Interpreted Extent of Waste
Figure 3A	Cross Section A-A'
Figure 3B	Cross Sections B-B' and C-C'
Figure 4	Interpreted Groundwater Elevations – August 1, 2013
Appendix A	Field Protocols and Analytical Data, ASCM Information and Laboratory Reports
Appendix B	Testhole Logs
Appendix C	Select Photographs

Page iii

1.0 INTRODUCTION

On behalf of The City of Red Deer, Tiamat Environmental Consultants Ltd. (Tiamat) presents this Phase II Environmental Site Assessment (ESA) report for a potential historic waste disposal site within the Riverside Light Industrial Park.

The objectives of this Phase II ESA are to determine the presence, the areal extent and the composition of the waste material. This report presents the scope of work, a summary of the results and our professional opinion respecting the subsurface environmental conditions associated with the historic waste materials. This report is intended to complement the Phase I ESA dated October 10, 2013.

1.1 Scope of Work

A summary of the key tasks for this Phase II ESA are outlined below:

Fieldwork

- Identify and locate underground utilities within the work areas on the site;
- Supervise the drilling of testholes (THs) located within the legal property lines of the site;
- Collect the soil samples for laboratory analyses of benzene, toluene, ethylbenzene, xylenes (BTEX), petroleum hydrocarbon fractions F1 (C₆-C₁₀), F2 (>C₁₀-C₁₆), F3 (>C₁₆-C₃₄), F4 (>C₃₄), EPA 8260 list of volatile organic compounds (VOCs), metals, chlorides (Cl⁻) and nitrates/nitrites (NO₃⁻/NO₂⁻);
- Screen the soil cuttings to determine the feasibility to dispose of drill cuttings at a Class II landfill facility. Acceptance parameters for disposal include laboratory analyses of pH, soil flash point, paint filter, total organic carbon (TOC) and TCLP assay for BTEX compounds and metals;
- Each TH is completed with either a groundwater (MW) or vapour (VW) monitoring well or backfilled and abandoned;
- Collect groundwater samples for laboratory analyses of BTEX, hydrocarbon fractions F1, F2, VOCs, total and dissolved metals, Cl⁻, sulfate (SO₄), ammonium (NH₄-N), phosphorus (P), TOC, chemical oxygen demand (COD), biochemical oxygen demand (BOD), NO₃⁻/NO₂⁻, total nitrogen (N), pH, electrical conductivity (EC), adsorbable organic halides (AOXs) and volatile fatty acids;
- Collect vapour samples for laboratory analyses of VOCs, oxygen (O₂), carbon monoxide (CO), carbon dioxide (CO₂), methane (CH₄), nitrogen (N), volatile hydrocarbons and siloxanes or volatile organic silicon compounds (VOSCs);

• Survey each test location for horizontal and vertical control relative to established ASCM (Alberta Survey Control Marker) datums within The City of Red Deer.

Report

• Prepare a report summarising the results including figures, tabulated data and our interpretation of the subsurface environmental conditions resulting from the historic waste disposal site.

2.0 SITE DESCRIPTION & ENVIRONMENTAL SETTING

This section provides general information of the site including a brief description of the location, surrounding land use(s), regional geology, hydrogeology and notable environmental conditions specific to the site.

2.1 Site Description and Environmental Setting

The potential historic waste material (site) is suspected to lie within the Riverside Light Industrial Park. This commercial light industrial park is utilized predominantly for various commercial businesses and light industrial activities. The industrial park lies within the NW 21-38-27 W4M.

The industrial park has been fully subdivided and serviced. Various commercial and light industrial business activities are present. Electrical, cable, sanitary and storm sewer utilities are located along the roadway network within the industrial park. The site is bounded by land designated for environmental preservation to the north and west and a recreation park to the south. Commercial developments are located further to the north and west along Gaetz Avenue. The nearest residential community is west of Gaetz Avenue. A site plan showing the site and the surrounding land uses is presented as Figure 1.

The Red Deer River is located approximately 200 m east of the site; this section of the river flows in a northerly direction.

A review of historical information indicates the historical waste disposal activity occurred between 1961 to the late 1970s, refer to the October 10, 2013 Phase I ESA.

2.2 Notable Environmental Conditions for Special Consideration

Historical information pertaining to the disposal of historic waste prior to and during the development of the Riverside Light Industrial Park appears to be limited.

Within the immediate area of the suspected historic waste, surface run-off appears to be directed along the asphalt paved network of roadways to municipal storm sewers. There are no obvious environmental concerns for surface water run-off or run-on at the site. The area is mapped outside of the 100-year flood fringe (Environment Canada and Alberta Environmental Protection, Edition 1, 1995). Following the recent severe June 2013 flood event, it is recognized the flood fringe may be updated following a review by the provincial authority.

Underground municipal utilities traversing the site include electrical cables, sanitary and storm sewers. Overhead electrical lines are also present throughout the site. The relative locations of underground municipal utilities are shown in Figure 1.

Generally, potential environmental concerns arising from historic waste are grouped into three broad categories:

- Ground stability issue where the historic waste lies;
- Continual generation of soil vapour from the decomposing waste materials; and
- Lateral transport of groundwater which passes through the waste material and ultimately migrates to adjacent properties within the Red Deer River Valley and potentially, the river.

Several geochemical processes and physical settlement occurs as the buried historic waste materials decompose. At this fully developed site, there is no obvious sign of differential settlement resulting from decomposing waste material. The surface topography exhibited by the road network shows no significant settlement occurring in an uneven manner.

Landfill gas is a by-product of a geochemical process associated with the decomposing waste materials. The soil vapours comprising of constituents from landfill gas can migrate in the subsurface. The geochemical process also yields soluble hydrocarbons to the groundwater system with some volatile components capable of degassing into the soil vapour regime.

As surface infiltration percolates through the historic waste materials and contacts the groundwater table, leachate is formed. This leachate is a potentially polluting liquid that can adversely affect the local groundwater system.

Elements of testing in this Phase II ESA is an initial assessment of the subsurface conditions for soil vapour and leachate near the perimeter of the historic waste site relative to existing and potential future land developments.

2.3 Regional Geology and Hydrogeology

A summary of the published geological and hydrogeological information is presented in the October 10, 2013 Phase I ESA report.

Within the immediate area of the historic waste, the Red Deer River is located approximately 200 m east of the site. Based on a local topographic map for this area, regional groundwater flow is expected to be in a east direction towards the Red Deer River. There is no notable environmental concern for surface water run-off or run-on relative to the waste site.

It should be noted that local topography, geology, land development and soil disturbances might influence the local movement and pattern of groundwater. Furthermore, groundwater may also fluctuate from seasonal and climatic conditions.

2.4 **Previous Investigations and Historic Perspective**

A Phase I ESA for the site was conducted by Tiamat in 2013:

• Phase I Environmental Site Assessment, Historic Waste Disposal Sites, Riverside Light Site, October 10, 2013, prepared by Tiamat.

No previous reports or documentation was available to Tiamat for review. Aerial photographs indicate the potential historic waste disposal activity was suspected to have occurred between 1961 to the late 1970s.

The key results of the 2013 Phase I ESA are as follows:

- Historic information indicates the site and its adjacent lands were undeveloped until the late 1950s. Currently, the site is zoned I1 for light industrial and business use.
- Aerial photographs suggest the historic disposal activity to have occurred between 1961 to the late 1970s, during the development of the light industrial park.
- Information at various regulatory agencies appears to be scarce. There was no obvious indication of any outstanding environmental concern associated with the site.
- The Red Deer River is the closest permanent surface water body and is approximately 200 m to 400 m, more or less, from the north and south limits, respectively of the site.

- Interpreted water source wells within the quarter section of the site indicate records for 22 registered water well records within a quarter section radius (about 805 m) of the site.
- The Waskasoo Park and a natural area bound the west side of The Red Deer River in proximity to the site. A public campground facility (Lions Campground) lies within the Waskasoo Park.
- The site is surrounded by environmental preservation with Parkland Mall located less than 300 m to the northwest on a ground elevation which is notably 5 m to 6 m, more or less, higher than the industrial park. Some residential houses are also present further west of the mall. There are presently no obvious activities on the adjacent lands that are interpreted as an environmental concern relative to the site.

The findings of the 2013 Phase I ESA identify several uncertainties associated with this historic waste disposal site. In consultation with the Management of The City of Red Deer, a recommended Phase II ESA should include an attempt to determine whether waste material is composed of dry waste or municipal sanitary waste. It is understood this information would assist the City to identify whether further efforts are necessary to manage environmental risks associated with historic waste material at this site relative to existing and future land uses within and in the vicinity of this site.

3.0 FIELDWORK

This section describes the fieldwork for this Phase II ESA. A description of the field methods and data quality assurance implemented by Tiamat for this Phase II ESA is provided in Appendix A. Select photographs of testholes and groundwater monitoring wells are presented in Appendix C.

3.1 Underground Line Locates and Testhole Drilling

Prior to drilling, public and private underground utilities within the work area were identified and marked. The subsurface investigation commenced on Monday, June 17 and was completed on Wednesday, June 19, 2013.

A representative of Tiamat supervised an auger drill mounted on a truck rig from Earth Drilling Co. of Calgary, Alberta to advance 152 mm diameter testholes at various locations across the site. The testhole locations were selected with consideration of access for the drill rig. The drilling program is intended to determine whether subsurface waste material is present, its composition and areal footprint.

Each testhole was drilled vertically to depths ranging between 4.6 m to 8.5 m below the ground surface. On completion of drilling either a groundwater monitoring well or soil vapour well was installed, or the testhole was backfilled and abandoned.

Each monitoring well consists of a 51 mm diameter PVC machine slotted screen section and a solid section of pipe. The annulus of the testhole was backfilled with Sil-9 sand to approximately 0.3 m above the screen section followed by granular bentonite to about 0.3 m from the surface. An above ground lockable protective steel well protector was installed at each well location. Subsequent to establishing the depth of the testhole for a soil vapour well, a dedicated soil vapour well was assembled. Typically the soil vapour well consists of a 30 cm 0.020 PVC screen and a 25 mm diameter PVC solid standpipe. The screen section and brass valve assembly are mechanically threaded with stainless steel locking set screws

Each test location was surveyed for horizontal and vertical control by MRAC Surveys Ltd. To ensure the survey coordinates and elevations (via the GPS) of each test location are reasonably accurate, multiple ASCM markers located throughout the City and in proximity to the site were referenced. Elevations for each test location are relative to an established geodetic datum for the ASCM as established by the Alberta Survey Control Network, the relative ASCM information is provided in Appendix A. A summary of the well completion details is presented in Table 1 and the relative locations are shown on Figure 2. A copy of the testhole logs are provided in Appendix B.

The soil profile was visually classified during drilling and bulk grab samples were retrieved at approximately 0.6 m intervals for field screening. In the event significant MSW (municipal solid waste) material is encountered an RKI Eagle 2 capable of simultaneously measuring the combustible and volatile vapour in the testhole at the surface was used. This was to assess whether potential methane and other VOCs were emanating from the testhole at concentrations deemed potentially hazardous for drilling operations. For example, should combustible vapours exceed the lower explosive limit or elevated VOCs, greater than 35 ppm, drilling would temporarily cease until the level of vapours have subsided. Each on-site worker had a dedicated half-mask respirator with organic vapour filter as part of their respective personal protective equipment during drilling.

The drilling protocol for testhole(s) encountering MSW was to advance the drill such that contact is made with the underlying native soil. At locations where MSW was not found, the testhole was advanced to an appropriate depth to install either a soil vapour well or a groundwater well. Solid stem tooling was used in order to properly install the monitoring well as the encountered soil consisted mainly of clay and sand. Drill cuttings were stored in 1 cubic meter capacity tote bags for off-site disposal.

3.2 Site Monitoring and Groundwater Sampling

On Thursday, August 1, 2013, monitoring wells were field tested. Field measurements consisted of headspace vapours and the depth to liquid in each well. Groundwater samples were collected from the three newly installed monitoring wells, one located (MW-02) in an interpreted up-gradient position and two located (MW-01 and MW-03) on the down gradient margin relative to the site.

4.0 **RESULTS**

The area interpreted to exhibit buried historic waste materials lies beneath a section of a public roadway and (likely) extends onto private land. The waste area lies within the Red Deer River Valley and the nearest residential land use is about 210 m west of the southwest margin of the Riverside Light Industrial Park and is beyond the prescribed 300 m set back to a landfill. The residential properties are also at a ground elevation 5 m to 6 m above this light industrial park.

Accordingly, the commercial/industrial criteria have been referenced to assess the environmental quality of the subsurface soil and groundwater beneath the site. It should be noted the assessment is to illustrate the relative environmental quality and is not intended to infer remedial objectives.

This section summarizes the field observations during drilling and field testing for this Phase II ESA. For clarity, the analytical results for soil, groundwater and soil vapours are discussed in Section 5.

4.1 Soil Profile

Testholes which did not encounter buried waste material generally exhibited a variable soil texture of sand, gravel and clay. Following surficial fill material (sod and loam or asphalt), the soil encountered was either a sand or gravel to a depth of 1.6 m to 6.1 m. Variable amounts of clay fill was encountered in some testholes. Native sand and gravel underlies the fill material. At TH-01, a shale unit was identified to be bedrock.

Where found, the thickness of the soil cover (predominantly sod and loam) ranged from approximately 10 cm to 20 cm. In general, relatively inert construction debris (brick, timber and minor amounts of glass) mixed with clay was encountered mainly in TH-01. Trace to some timber fragments were noted at VW-01, MW-01, MW-03 and TH-10.

The relative location of each testhole is shown on Figure 2. Select cross sections of the interpreted soil stratigraphy are presented as Figure 3. A copy of the testhole logs is presented in Appendix B. Select photographs of the drilling are presented in Appendix C.

To verify the environmental quality of the drill cuttings, soil samples from each soil bag were submitted for laboratory testing. The soil tests performed were to assess whether the drill cuttings can be disposed at The City Waste Management Facility. The analytical results are discussed in Section 5.1.

4.2 Groundwater Conditions

Static depth to groundwater was measured at each monitoring well. The relative groundwater elevations are presented on Table 2. The groundwater elevations are plotted and the interpreted contours are illustrated as Figure 4. The average depth to the groundwater on Thursday August 1, 2013 was 5.1 m below the ground surface. The measured groundwater elevations suggest the local groundwater exhibits a very gentle horizontal gradient with a flow pattern to the east-southeast, towards the Red Deer River.

During sampling of groundwater, the purged water was slightly murky with no unusual odour encountered during purging. General water quality indices were measured during purging and at the time of sampling. A summary of the field measured indices is presented as Table 4A.

Water samples were preserved and submitted to the laboratory for analysis. The results of groundwater laboratory tests are presented in Tables 4B to 4D and discussed in Section 5.2.

4.3 Headspace Vapours

A summary of the concentration of soil vapours as interpreted from headspace measurements from the existing monitoring wells is tabulated in Table 2. The headspace vapours were measured in the groundwater monitoring wells and the soil vapour wells.

Combustible vapours from the headspace of the groundwater monitoring wells ranged between 155 ppm (MW-02) to 510 ppm (MW-01). Volatile vapours from the headspace were not detected, less than 0.1 ppm. Laboratory results for the groundwater samples are discussed in Section 5.2.

Combustible vapours from the soil vapour wells were 1,300 ppm (VW-02) and 1,750 ppm (VW-01). Volatile vapours were not detected at VW-01 and was 1 ppm at VW-02. Laboratory results for the soil vapour samples are discussed in Section 5.3.

The field measured headspace vapours suggest combustible soil vapours to be prominent at VW-01 and VW-02. The combustible soil vapours (up to 14% LEL) appear to be consistent with the laboratory results from the Summa Canisters. The combustible vapours, including methane, may be attributed to the decomposing organic matter within the fill encountered in the subsurface. Decomposing organic matter in a water saturated environment can yield significant quantities of methane. The concentration of volatile vapours was less than the limit of instrument detection (0.1 ppm) and is considered negligible.

5.0 SUMMARY OF ASSESSMENT

This section further discusses our observations during the field work along with an interpretation of the laboratory results in respect to potentials for an adverse environmental impact.

Buried waste material was encountered in one testhole (TH-01) advanced across the site. The waste material is present within the clay fill and is predominantly construction type waste materials with a minor percentage of sanitary type waste. Foreign material at six other testholes consisted of trace to some wood fragments and one testhole with a piece of discarded plastic. The other three testholes exhibited soil with no obvious waste material.

5.1 Quality of Subsurface Soil

The drill cuttings for this Phase II ESA were stored in a pair of one cubic meter soil bags. A soil sample from each soil bag was submitted for laboratory testing. Analytical results for each soil bag indicate the drill cuttings satisfy the acceptance guidelines for disposal at The City of Red Deer Class II Waste Management Facility.

A summary of the soil test results are presented as Table 3. A copy of the laboratory reports for soil are provided in Appendix A.

Notable buried waste material was encountered at one of the ten testholes. On the basis of the ground disturbance noted on historic aerial photographs and the observations from the testhole drilling program, an interpreted area of the waste is presented on Figures 2 and 4. The interpreted area is estimated to be $5,500 \text{ m}^2$ (1.36 ac) and appears to be situated primarily within third party land. There is a likelihood the noted waste material may extend beneath a portion of the intersection and the bounding roads (46A Avenue and 61 Street). Various underground utilities and overhead electrical lines limited additional test locations within the roadways. Testholes on the north side of 46A Avenue showed a small amount of wood fragments and no obvious waste material.

5.2 Quality of Local Groundwater

For this initial Phase II ESA, three test locations were sampled for groundwater, namely MW-01 to MW-03. MW-02 was located in the interpreted up gradient location and MW-01 and MW-03 were deemed to be at down gradient locations relative to MW-02. The

calculated elevations of the groundwater is presented as Figure 4. On Thursday, August 1, 2013, the average depth to the groundwater was about 5.1 m below the ground surface. The horizontal gradient varies from approximately 0.13 cm/m (southeasterly component) to 0.16 cm/m (eastward component) and is considered to be a gentle gradient.

Field measured water quality indices were recorded during purging and at the time of sampling (August 1, 2013, sunny, no precipitation prior to or during). The groundwater is mildly alkaline with pH ranging between 7.64 and 8.35. Electrical conductivity and total dissolved solids were greatest at MW-03, 1,378 μ S/cm and 1,287 mg/L respectively. Purged groundwater was mildly murky with no unusual odour or discolouration. Negative redox potentials were encountered at MW-01 (-11.9 mV) and MW-03 (-68.1 mV), which are indicative of a mild oxidizing condition in the ground water. MW-01 and MW-03 are located down gradient of the interpreted area of historic waste. The redox potential at MW-02, up gradient, was +45.1 mV.

General Water Quality parameters are tabulated in Table 4B, with the exceptions of cadmium and ammonia (as nitrogen) exceeding the referenced Tier 1 Guideline. The relative concentration of ammonia at MW-03 was 16 mg/L; ammonia was not detected at the other well locations. The concentration of ammonia at MW-03 may be indicative of impact by the historic waste material that is immediately upgradient of the monitoring well. Analogously, the concentration of total and Kjeldahl nitrogen at MW-03 exhibited a similar pattern relative to the results from the other monitoring wells. A comparison of Total nitrogen, Kjeldahl nitrogen, nitrate and nitrite at MW-01 suggests nitrates to be the predominant form of dissolved nitrogen in the groundwater at MW-01.

The reported alkalinity ranges from 350 mg/L to 940 mg/L. Typical groundwater has an alkalinity not more than 100 mg/L and seldom exceeds 300 mg/L in a natural setting. Similarly, the concentration of bicarbonates in the groundwater samples may also infer a higher concentration of carbon dioxide in the subsurface.

Table 4C is a tabulation of total and dissolved metals from each groundwater sample. The concentrations of specific metals exceed the referenced Alberta Tier 1 Guideline. The companion dissolved concentration of heavy metals shown in Table 4C were low or not detected, suggesting the reported total concentration as likely naturally occurring in the soil and not in soluble forms. The exceptions are the common cations where the relative concentrations between total and dissolved are of relative magnitude.

VOCs in groundwater were not detected in any monitoring wells. The results are tabulated in Table 4D and a copy of the laboratory reports are presented in Appendix B, attached.

5.3 Interpretation of Soil Vapours

For this Phase II ESA, an initial evaluation of the soil vapour was performed at locations analogous to the groundwater tests. This approach was undertaken to develop a "snap-shot assessment" of the local groundwater and soil vapour relationship, specifically at the interpreted down gradient margin of the historic area of the waste materials.

To reduce uncertainties concerning the assessment of soil vapour, the construction of soil vapour wells, sample collection and laboratory testing of soil vapour was performed in accordance with a standardized practice. Specifically, ASTM D5314-92(2006) Standard Guide for Soil Gas Monitoring in the vadose zone.

Field headspace vapour measurements were performed by an RKI Eagle 2 equipped with dual sensors to concurrently measure combustible and volatile vapours. Combustible vapours at the soil vapour wells, VW-01 and VW-02, were between 1,300 ppm to 1,750 ppm. No notable levels of volatile vapours were detected.

Two (2) soil vapour wells (VW-01 and VW-02) were sampled. Field measurements during purging of vapours in the well headspace as well as measurement of ambient bariometric pressure at each well location is summarised in Table 5A. There was a slight negative pressure differential at VW-01 (-0.34 kPa) and no notable pressure gradient at VW-02 on the day of testing (Thursday, August 1, 2013). Thus, the soil vapours are interpreted to be in a quasi-steady pattern.

Sample collection consisted of two methods of collection. One 1.4 L laboratory certified Summa Canister[®] and one sterile 1 L Tedlar Bag[®] sample were used. The sample collected by the Summa Canister[®] was analysed for general air indices (oxygen, carbon dioxide, carbon monoxide, nitrogen and methane) and a suite of VOCs in accordance with US EPA TO14A for toxic organic compounds in air. The sample collected in the Tedlar Bag[®] was analysed for volatile organic silicon compounds (VOSCs), commonly referred as siloxanes.

General analytical indices for soil vapour are presented in Table 5B. The results show nitrogen to be the predominant component in the soil vapour. Methane at both well locations were approximately 27.4% (VW-01) and 17.6% (VW-02) by volume. The reported proportions of the main components: oxygen, nitrogen, carbon dioxide and methane appear to be acceptable, total aggregate 100%, more or less.

The concentration of methane at VW-01 and VW-02 appear to be consistent with field instrument measurements for gross combustible vapours.

The composition of other volatiles measured from the soil vapour sample from VW-01 and VW-02 is presented in Table 5C. Petroleum hydrocarbon constituents including BTEX compounds, various VOCs and chlorinated hydrocarbons were detected.

The specific chemicals include:

Petroleum Hydrocarbons

Total BTEX compounds up to 37.64 ppb Volatile aliphatic compounds ranging from 1.4 mg/m³ to 3.56 mg/m³ Extractable aromatic compounds ranging from 0.089 mg/m³ to 0.157 mg/m³

Chlorinated Hydrocarbons

Freon 12, chloromethane, vinyl chloride, trichloroethylene (TCE), tetrachloroethylene (PCE) each less than 341 ppb.

Other VOCs

Ethanol, 2-propanol, methyl ethyl ketone, ethyl acetate, styrene, 1,2,4-trimethylbenzene, hexane, heptane, cyclohexane, tetrahydrofuran, 2,2,4-trimethylpentane and carbon disulfide each less than 34.4 ppb.

As shown in Table 5C, volatile aliphatic petroleum hydrocarbons between carbon chain 5 and carbon chain 16 and aromatic hydrocarbon compounds between carbon chain 8 and carbon chain 12 were detected. Hence, semi-volatile petroleum hydrocarbon vapours are present in the subsurface at varying concentrations. It should be noted that the above results do not imply the composition of the soil vapour is a constant as subsurface biodegradation and geochemical reactions are continuous along with influences by climatic factors. In addition, the measured concentrations are influenced by climatic conditions, ground conditions (frozen versus frost-free) and moisture content in the vadose zone, natural biodegradation and geochemical reactions.

Twenty six of the 64 VOCs assayed were detected (about 41%) from the Summa Canister[®] sample. The 26 VOCs identified in the soil vapour samples include a variety of petroleum and chlorinated hydrocarbons, ketones and other oxygenated volatile hydrocarbons. The results indicate constituents in the soil gas are likely attributed to landfill gas and the decomposing waste materials. The relative concentrations are considered to be relatively low and are not interpreted to be a significant environmental concern for the present land use.

Table 5D presents the results of analyses of the soil vapour sample for siloxanes. Trimethylsilanol and siloxanes D3, D4, D5, D6 and L4 were identified in each soil vapour sample with the maximum concentration of 0.05 ppb. The reported aggregate mass at each well was 1.6375 mg/m³ (VW-01) and 0.9083 mg/m³ (VW-02). The calculated volume fraction at each well was 0.1089 ppm (VW-01) and 0.0628 ppm (VW-02). The reported concentrations suggest the presence of waste material, however, the relative concentrations are not deemed to be a significant environmental concern for the various commercial business activities within the light industrial park. It is noted there is currently no food establishments or related business activities within this light industrial park.

Volatile siloxane compounds are considered a significant component of landfill gas. Presently, there are no regulatory guidelines or standards for exposure to siloxane compounds. However, ongoing toxicity studies have implicated exposure to siloxanes by inhalation to be linked to adverse effects to humans. It is anticipated, regulatory guidelines will be developed in the future as further research and toxicity information becomes available.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Observations from the testhole drilling program along with consideration of the areas of ground disturbance from historic aerial photographs, the area of historic waste material is interpreted to be within a contiguous area encompassing about 0.55 ha (1.36 acres), more or less and is located primarily within third party properties. The identified waste material likely extends beneath a portion of the city roadways (46A Avenue and 61 Street) including a portion of the intersection of these two roads.

The results for soil vapour tests indicate various constituents of landfill gas are present in the subsurface. The presence of the various chemical compounds in the soil vapour are relatively low and are not considered to be significant environmental concern relative to the various commercial business activities or the surrounding urban environment. It must be acknowledged, this summer sampling event likely reflects muted concentrations which would likely increase due to the lack of natural venting from the soil under frozen ground conditions.

In order to better understand the off-site environmental risks associated with this historic waste disposal site, several aspects of the data presented in this Phase II ESA deserve some further attention. It is recommended Management at the City of Red Deer consider the following actions:

- Collect groundwater elevations and soil vapour data at a bi-annual interval for at least one standard hydrogeological cycle. Include the three monitoring locations on the section of the east side of Riverside Drive on Lot 4, Block 8, Plan 892 2959. This information is to better understand the local flow pattern and whether an environmental risk may be presented to the Red Deer River hydraulically down gradient from the site.
- Collect a second data set consisting of soil vapour and groundwater chemistry, groundwater levels and headspace measurements during the winter period. The information obtained from this second event would attempt to illustrate the best/worst case for seasonal variability of the soil vapours.
- Develop a site specific risk management plan (RMP) addressing the identified environmental concerns with consideration of the of the potential future land

development opportunities with an emphasis on lands which are deemed down gradient and on lands in proximity to the historic waste disposal area.

• Review all additional data to develop and (when necessary) update/amend the site specific RMP in light of new information.

7.0 STATEMENT OF LIMITATIONS

This Phase II Environmental Site Assessment was conducted on the dates presented within this report. The conditions prevalent and noted at this time must be recognized as having a limited life. Should activities be introduced or practices change, either of which may not be deemed to comply with generally accepted environmental practices, the site conditions would be altered sufficiently for this report to be invalid. This report has been prepared for the use of The City of Red Deer and the approved designates for the specific application described in Section 1.0.

The report has been based in part with information obtained by others. Verification of the results presented by others has not been done. This report has been prepared in accordance with generally accepted environmental engineering practice and no other warranty is made, either expressed or implied. The opinions, conclusions and recommendations presented herein reflect the best judgment of Tiamat ©2014, all rights reserved. As such, Tiamat reserves the right to re-evaluate our conclusions and recommendations presented in this report should new information become available.

Any use by a third party of this report or any reliance by a third party upon the information, records or documents in this report is undertaken solely at the risk and responsibility of such third party. Tiamat shall not in any way be responsible for any damages suffered by a third party due to decisions or actions taken by a third party on the basis of this report.

This report was issued electronically in an encrypted PDF format. Notwithstanding, the file encryption, Tiamat cannot guarantee the contents of this report has not been altered. Should an authenticated copy be required, the reader should contact The City of Red Deer and our office.

8.0 CLOSURE

We trust the information presented herein satisfies your present requirements. Should you have any questions, we invite the reader to contact our office at (403) 640-9009.

Respectfully submitted, Tiamat Environmental Consultants Ltd.

Krister Songen

Per: Kristen E. Sanger, G.I.T. Environmental Geoscientist

Per: Jessica A.C. Lee, E.I.T. Environmental Engineer

Per: Leon T. Mah, P.Eng. Senior Project Engineer

/kjs

The Association of Professional Engineers and Geoscientists of Alberta Permit To Practice No.: P 7109

References

- 1. Standard Guide for Soil Gas Monitoring in the Vadose Zone, ASTM D5314-92(2006).
- 2. B. Slomczynska and T. Slomczynski, "Physico-Chemical and Toxicological Characteristics of Leachates from MSW Landfills," Institute of Environmental Engineering Systems, Warsaw University of Technology, June 2004.
- 3. P. Kjeldsen, M.A. Barlaz, et al., "Present and Long Term Composition of MSW Landfill Leachate" A Review," Environmental Science and Technology, Volume 32(4) pages 297 336, 2002.
- 4. M.O. Rivett, Gary P. Wealthall, R.A. Dearden, T.A. McAlary, "Review of Unsaturated-Zone Transport and Attenuation of Volatile Organic Compound Plumes Leached from Shallow Source Zones," Journal of Contaminant Hydrology, Edition 123, pages 130 156, 2011.

TABLES

Groundwater Monitoring and Son Vapour Wen Elevations									
Test	Well		Elevations						
Location	Depth	Ground	Top of Pipe	Screen	Screen Interval				
	(m)	(m)	(m)	Bottom	Тор	(m)			
MW-01	7.6	854.669	854.539	847.069	851.669	4.6			
MW-02	8.4	855.257	855.097	846.857	851.457	4.6			
MW-03	7.6	854.551	854.461	846.951	851.551	4.6			
VW-01	4.6	854.444	854.243	849.844	850.144	0.3			
VW-02	6.1	855.329	854.429	849.229	849.529	0.3			
TH-01	NA	854.665							
TH-04	NA	855.279							
TH-07	NA	855.058							
TH-08	NA	854.759							
TH-10	NA	854.418							

Table 1
Groundwater Monitoring and Soil Vapour Well Elevations

Notes:

1) Geodetic elevations are determined from multiple datums, ASCM Nos. 36574 and 124339.

2) MW - Monitoring Well.

3) VW - Soil Vapour Well.

4) TH - Testhole.

5) NA - Not Applicable.

6) - - No value established.

Test	Ele	vations	Groundwat	er Elevation	Headspace Vapour				
Location	Ground	Top of Pipe		(m)	01/0	8/13			Notes
	(m)	(m)	01/08/13		Combustible	Volatile	Combustible	Volatile	
MW-01	854.669	854.539	849.752		510	ND			
MW-02	855.257	855.097	850.004		155	ND			
MW-03	854.551	854.461	849.421		460	ND			
VW-01	854.444				1,750	ND			
VW-02	855.329				1,300	1			
					·				
TH-01	854.665								
TH-04	855.279								
TH-07	855.058								
TH-08	854.759								
TH-10	854.418								

Table 2Site Monitoring Results

Notes:

1) Measurement of combustible and volatile vapours by RKI Eagle 2. Units ppmv.

Combustible vapour sensor calibrated to hexane and photoionization detector calibrated to isobutylene.

2) ND - Not Detected, less than the limit of instrument detection.

3) - - No value established.

12-435

PPhase II ESA - Riverside Light Industrial Park

Historic Waste Disposal Sites, The City of Red Deer

Detection Limit	Soil	Bag	Class II Landfill
Limit	1 of 2		
	1 01 2	2 of 2	Acceptance Criteria
0.10	8.47	8.80	2-12.5
30.0	>75	>75	>61
-	PASS	PASS	PASS
0.10	0.85	0.36	
0.0050	ND	ND	0.5
0.0050	ND	ND	0.5
0.0050	ND	ND	0.5
0.0050	ND	ND	0.5
5.0	ND	ND	500
			5
5.0			100
0.50			5
5.0	ND	ND	500
0.050	ND	ND	1
			5
5.0	ND	ND	100
5.0	ND	ND	100
5.0	ND	ND	1,000
0.50	ND	ND	5
			0.2
0.50			5
			1
0.50	ND	ND	5
0.50	ND	ND	5
			2
			100
			500
5.0	ND	ND	500
	$\begin{array}{c} 30.0\\ -\\ 0.10\\ \\0.0050\\ 0.0050\\ 0.0050\\ 0.0050\\ 0.0050\\ 0.0050\\ 0.0050\\ 5.0\\ 5.$	30.0 >75 - PASS 0.10 0.85 0.0050 ND 5.0 ND 5.0 ND 5.0 ND 0.50 ND 5.0 ND 0.50 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 0.50 ND 1.0 ND 5.0 ND 5.	30.0 >75 >75 - PASS PASS 0.10 0.85 0.36 0.0050 ND ND 5.0 ND ND 0.50 ND ND 5.0 ND ND 5.0 ND ND 5.0 ND ND 0.50 ND ND

 Table 3

 Analytical Results - Soil - Drill Cuttings (Soil Bag)

Notes:

1) Class II Landfill Acceptance Criteria - per Table 2, Part 4 Schedule to the Alberta User Guide for Waste Managers 3/95. Applicable waste screening for The City of Red Deer Class II Waste Managenet Facility.

2) All units are mg/L unless otherwise stated.

3) ND - Not Detected

4) Soil Bags were sampled July 14, 2013.

5) For further laboratory information, refer to the specific laboratory report in Appendix A.

Monitoring Well	pН	Electrical Conductivity	Temperature	Dissolved Oxygen	Total Dissolved Solids	Redox				
		(µS/cm)	(°C)	(mg/L)	(mg/L)	(±mV)				
MW-01	8.22	1,025	8.8	0.92	968.50	-11.9				
MW-02	7.64	584	9.4	3.47	539.50	+45.1				
MW-03	8.35	1,378	8.7	2.29	1,287.00	-68.1				

 Table 4A

 Groundwater Indices Measured Time of Sampling

Notes:

1) Samples collected on August 01, 2013.

2) Groundwater indices measured by YSI Pro Plus multi-meter.

12-435

Phase II ESA - Riverside Light Industrial Park

Historic Waste Disposal Sites, The City of Red Deer

Analytical Results - Groundwater - General Water Quality									
Parameter	Unit	Detection	MW-01	MW-02	MW-03	Tier 1			
		Limit		08/01/13		Guideline			
General Water Quality									
Biochemical Oxygen Demand	mg/L	2.0	2.2	ND	2.2				
Chemical Oxygen Demand	mg/L	5.0	210	130	190				
Conductivity	µS/cm	1.0	1,800	910	2,300				
pH	Unitless	NA	7.07	7.48	7.23	6.5-8.5			
Total Organic Carbon (C)	mg/L	0.50	5.2	2.9	16				
Dissolved Cadmium (Cd)	μg/L	0.0050	0.080	0.040	0.047				
Total Cadmium (Cd)	μg/L	0.0050	0.810	0.470	0.460	0.060*			
Alkalinity (CaCO ₃)	mg/L	0.50	620	350	940				
Bicarbonate (HCO ₃)	mg/L	0.50	750	430	1,100				
Carbonate (CO ₃)	mg/L	0.50	ND	ND	ND				
Hydroxide (OH)	mg/L	0.50	ND	ND	ND				
Sulphates (SO ₄)	mg/L	1.0	160	39	34				
Chlorides (Cl)	mg/L	1.0	110	59	190				
Total Ammonia (NH ₃ -N)	mg/L	0.050 - 0.50	ND	ND	16	1.37*			
Total Phosphorus (P)	mg/L	0.1	1.8	0.63	0.69				
Total Nitrogen (N)	mg/L	0.050	23	2.1	14				
Total Kjeldahl Nitrogen (TKN)	mg/L	0.050 - 0.50	2.4	0.86	14				
Nitrite (NO ₂)	mg/L	0.0030	0.91	ND	ND				
Nitrate (NO_3)	mg/L	0.0030 - 0.030	19	1.3	ND				
Nitrate plus Nitrite (N)	mg/L	0.0030 - 0.030	20	1.3	ND				
Trace Organics									
Acetic Acid	mg/L	50	ND	ND	ND				
Formic Acid	mg/L	50	ND	ND	ND				
Propionic Acid	mg/L	50	ND	ND	ND				
Adsorbable Organic Halogen	mg/L	0.004 - 0.02	0.075	0.055	0.05				

 Table 4B

 Analytical Results - Groundwater - General Water Quality

Notes:

1) Tier 1 Guideline - Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for commercial/industrial land use.

2) * Surface Water Quality Guidelines for Use in Alberta (AENV, 1999) on aquatic life pathway. Canadian Council of Ministers of the Environment (CCME) guidelines are referenced.

3) ND - Not Detected, less than the limit of method detection.

4) -- No value established in the reference criteria.

5) Bold & Shaded - Exceeds the referenced Alberta Tier 1 Guidelines and CCME guidelines.

6) For further laboratory information, refer to the specific laboratory report in Appendix A.

Analytical Results - Groundwater - Metals								
Parameter	Detection	MW-01	MW-02	MW-03	Tier 1			
	Limit		01/08/13		Guideline			
Total Metals								
Aluminum (Al)	0.0030	21	9.3	8.7	0.1*			
Antimony (Sb)	0.00060	0.00098	0.00079	0.00087	0.006			
Arsenic (As)	0.00020	0.035	0.018	0.017	0.005			
Barium (Ba)	0.010	1.4	0.53	0.95	1			
Beryllium (Be)	0.0010	0.0018	ND	ND				
Boron (B)	0.020	0.12	0.061	0.17	1.5			
Calcium (Ca)	0.30	350	150	250				
Chromium (Cr)	0.0010	0.049	0.019	0.021	0.001*			
Cobalt (Co)	0.00030	0.019	0.010	0.017				
Copper (Cu)	0.00020	0.072	0.031	0.025	0.003*			
Iron (Fe)	0.060	62	24	30	0.3			
Lead (Pb)	0.00020	0.034	0.014	0.015	0.004*			
Lithium (Li)	0.020	0.075	0.036	0.051				
Magnesium (Mg)	0.20	110	48	96				
Manganese (Mn)	0.0040	1.6	0.68	2.2	0.05			
Molybdenum (Mo)	0.00020	0.0035	0.0030	0.0049	0.073*			
Nickel (Ni)	0.00050	0.071	0.032	0.035	0.11*			
Phosphorus (P)	0.10	1.8	0.63	0.69				
Potassium (K)	0.30	13	7.3	29				
Selenium (Se)	0.00020	0.0020	0.0028	0.00077	0.001			
Silicon (Si)	0.10 - 0.50	59	27	31				
Silver (Ag)	0.00010	0.00066	0.00031	0.00021	0.0001*			
Sodium (Na)	0.50	70	36	150				
Strontium (Sr)	0.020	1.2	0.63	1.7				
Sulphur (S)	0.20	47	10	11				
Thallium (Tl)	0.00020	0.0004	ND	ND	0.0008*			
Tin (Sn)	0.0010	0.0012	ND	0.0015				
Titanium (Ti)	0.0010	0.29	0.15	0.16				
Uranium (U)	0.00010	0.0099	0.0040	0.0047	0.02			
Vanadium (V)	0.0010	0.07	0.03	0.025				
Zinc (Zn)	0.0030	0.19	0.094	0.1	0.03			
Dissolved Metals								
Aluminum (Al)	0.0030	ND	ND	ND				
Antimony (Sb)	0.00060	ND	ND	ND				
Arsenic (As)	0.00020	0.00033	0.00051	0.0059				
Barium (Ba)	0.010	0.15	0.20	0.55				
	0.010	0.15	0.20	0.55				
Beryllium (Be)	0.0010	ND	ND	ND				
Beryllium (Be)	0.0010	ND	ND	ND				
Beryllium (Be) Boron (B)	0.0010 0.020	ND 0.11	ND 0.057	ND 0.16				
Beryllium (Be) Boron (B) Calcium (Ca)	0.0010 0.020 0.30	ND 0.11 230	ND 0.057 110	ND 0.16 210				
Beryllium (Be) Boron (B) Calcium (Ca) Chromium (Cr)	0.0010 0.020 0.30 0.0010	ND 0.11 230 ND	ND 0.057 110 ND	ND 0.16 210 ND				
Beryllium (Be) Boron (B) Calcium (Ca)	0.0010 0.020 0.30	ND 0.11 230	ND 0.057 110	ND 0.16 210				
Beryllium (Be) Boron (B) Calcium (Ca) Chromium (Cr) Cobalt (Co) Copper (Cu)	0.0010 0.020 0.30 0.0010 0.00030 0.00020	ND 0.11 230 ND 0.0015 0.0019	ND 0.057 110 ND 0.00073 0.0021	ND 0.16 210 ND 0.0092 0.0012				
Beryllium (Be) Boron (B) Calcium (Ca) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe)	0.0010 0.020 0.30 0.0010 0.00030 0.00020 0.060	ND 0.11 230 ND 0.0015 0.0019 0.08	ND 0.057 110 ND 0.00073 0.0021 ND	ND 0.16 210 ND 0.0092 0.0012 4.1				
Beryllium (Be) Boron (B) Calcium (Ca) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb)	0.0010 0.020 0.30 0.0010 0.00030 0.00020 0.060 0.00020	ND 0.11 230 ND 0.0015 0.0019 0.08 ND	ND 0.057 110 ND 0.00073 0.0021 ND ND	ND 0.16 210 ND 0.0092 0.0012 4.1 ND				
Beryllium (Be) Boron (B) Calcium (Ca) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Lithium (Li)	0.0010 0.020 0.30 0.0010 0.00030 0.00020 0.060 0.00020 0.020	ND 0.11 230 ND 0.0015 0.0019 0.08 ND 0.035	ND 0.057 110 ND 0.00073 0.0021 ND ND 0.021	ND 0.16 210 ND 0.0092 0.0012 4.1 ND 0.035				
Beryllium (Be) Boron (B) Calcium (Ca) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Lithium (Li) Magnesium (Mg)	0.0010 0.020 0.30 0.0010 0.00030 0.00020 0.060 0.00020	ND 0.11 230 ND 0.0015 0.0019 0.08 ND	ND 0.057 110 ND 0.00073 0.0021 ND ND	ND 0.16 210 ND 0.0092 0.0012 4.1 ND				
Beryllium (Be) Boron (B) Calcium (Ca) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Lithium (Li) Magnesium (Mg) Manganese (Mn)	$\begin{array}{c} 0.0010\\ 0.020\\ 0.30\\ 0.0010\\ 0.00030\\ 0.00020\\ 0.060\\ 0.00020\\ 0.020\\ 0.020\\ 0.20\\ 0.20\\ 0.0040\\ \end{array}$	ND 0.11 230 ND 0.0015 0.0019 0.08 ND 0.035 73 0.22	ND 0.057 110 ND 0.00073 0.0021 ND ND 0.021 35 0.14	ND 0.16 210 ND 0.0092 0.0012 4.1 ND 0.035 80 1.8	 			
Beryllium (Be) Boron (B) Calcium (Ca) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Lithium (Li) Magnesium (Mg) Manganese (Mn) Molybdenum (Mo)	0.0010 0.020 0.30 0.0010 0.00030 0.00020 0.060 0.00020 0.020 0.20 0.0040 0.00020	ND 0.11 230 ND 0.0015 0.0019 0.08 ND 0.035 73 0.22 0.0013	ND 0.057 110 ND 0.00073 0.0021 ND ND 0.021 35 0.14 0.0017	ND 0.16 210 ND 0.0092 0.0012 4.1 ND 0.035 80 1.8 0.0039				
Beryllium (Be) Boron (B) Calcium (Ca) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Lithium (Li) Magnesium (Mg) Manganese (Mn) Molybdenum (Mo) Nickel (Ni)	0.0010 0.020 0.30 0.0010 0.00030 0.00020 0.060 0.00020 0.020 0.20 0.0040 0.00020 0.00020 0.00020 0.00050	ND 0.11 230 ND 0.0015 0.0019 0.08 ND 0.035 73 0.22 0.0013 0.0086	ND 0.057 110 ND 0.00073 0.0021 ND ND 0.021 35 0.14 0.0017 0.0022	ND 0.16 210 ND 0.0092 0.0012 4.1 ND 0.035 80 1.8 0.0039 0.012	 			
Beryllium (Be) Boron (B) Calcium (Ca) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Lithium (Li) Magnesium (Mg) Manganese (Mn) Molybdenum (Mo) Nickel (Ni) Phosphorus (P)	0.0010 0.020 0.30 0.0010 0.00030 0.00020 0.060 0.00020 0.020 0.20 0.0040 0.00020	ND 0.11 230 ND 0.0015 0.0019 0.08 ND 0.035 73 0.22 0.0013	ND 0.057 110 ND 0.00073 0.0021 ND ND 0.021 35 0.14 0.0017	ND 0.16 210 ND 0.0092 0.0012 4.1 ND 0.035 80 1.8 0.0039	 			
Beryllium (Be) Boron (B) Calcium (Ca) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Lithium (Li) Magnesium (Mg) Manganese (Mn) Molybdenum (Mo) Nickel (Ni)	0.0010 0.020 0.30 0.0010 0.00030 0.00020 0.060 0.00020 0.020 0.20 0.0040 0.00020 0.00050 0.10	ND 0.11 230 ND 0.0015 0.0019 0.08 ND 0.035 73 0.22 0.0013 0.0086 ND	ND 0.057 110 ND 0.00073 0.0021 ND 0.021 35 0.14 0.0017 0.0022 ND	ND 0.16 210 ND 0.0092 0.0012 4.1 ND 0.035 80 1.8 0.0039 0.012 0.13	 			
Beryllium (Be) Boron (B) Calcium (Ca) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Lithium (Li) Magnesium (Mg) Manganese (Mn) Molybdenum (Mo) Nickel (Ni) Phosphorus (P) Potassium (K) Selenium (Se)	$\begin{array}{c} 0.0010\\ 0.020\\ 0.30\\ 0.0010\\ 0.00030\\ 0.00020\\ 0.00020\\ 0.00020\\ 0.020\\ 0.20\\ 0.0040\\ 0.00020\\ 0.00050\\ 0.10\\ 0.30\\ 0.00020\\ \end{array}$	ND 0.11 230 ND 0.0015 0.0019 0.08 ND 0.035 73 0.22 0.0013 0.0086 ND 7.5 0.00047	ND 0.057 110 ND 0.00073 0.0021 ND 0.021 35 0.14 0.0017 0.0022 ND 4.7 0.0016	ND 0.16 210 ND 0.0092 0.0012 4.1 ND 0.035 80 1.8 0.0039 0.012 0.13 26 0.00028				
Beryllium (Be) Boron (B) Calcium (Ca) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Lithium (Li) Magnesium (Mg) Manganese (Mn) Molybdenum (Mo) Nickel (Ni) Phosphorus (P) Potassium (K) Selenium (Se) Silicon (Si)	0.0010 0.020 0.30 0.0010 0.00030 0.00020 0.060 0.00020 0.020 0.20 0.0040 0.00020 0.00050 0.10 0.30 0.00020 0.10	ND 0.11 230 ND 0.0015 0.0019 0.08 ND 0.035 73 0.22 0.0013 0.0086 ND 7.5 0.00047 6.8	ND 0.057 110 ND 0.00073 0.0021 ND 0.021 35 0.14 0.0017 0.0022 ND 4.7 0.0016 5.2	ND 0.16 210 ND 0.0092 0.0012 4.1 ND 0.035 80 1.8 0.0039 0.012 0.13 26 0.00028 8.1	 			
Beryllium (Be) Boron (B) Calcium (Ca) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Lithium (Li) Magnesium (Mg) Manganese (Mn) Molybdenum (Mo) Nickel (Ni) Phosphorus (P) Potassium (K) Selenium (Se) Silicon (Si) Silver (Ag)	0.0010 0.020 0.30 0.0010 0.00030 0.00020 0.060 0.00020 0.020 0.20 0.0040 0.00020 0.00050 0.10 0.30 0.00020 0.10 0.00010	ND 0.11 230 ND 0.0015 0.0019 0.08 ND 0.035 73 0.22 0.0013 0.0086 ND 7.5 0.00047 6.8 ND	ND 0.057 110 ND 0.00073 0.0021 ND 0.021 35 0.14 0.0017 0.0022 ND 4.7 0.0016 5.2 ND	ND 0.16 210 ND 0.0092 0.0012 4.1 ND 0.035 80 1.8 0.0039 0.012 0.13 26 0.00028 8.1 ND				
Beryllium (Be) Boron (B) Calcium (Ca) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Lithium (Li) Magnesium (Mg) Manganese (Mn) Molybdenum (Mo) Nickel (Ni) Phosphorus (P) Potassium (K) Selenium (Se) Silicon (Si)	0.0010 0.020 0.30 0.0010 0.00030 0.00020 0.060 0.00020 0.020 0.20 0.0040 0.00020 0.00050 0.10 0.30 0.00020 0.10	ND 0.11 230 ND 0.0015 0.0019 0.08 ND 0.035 73 0.22 0.0013 0.0086 ND 7.5 0.00047 6.8	ND 0.057 110 ND 0.00073 0.0021 ND 0.021 35 0.14 0.0017 0.0022 ND 4.7 0.0016 5.2	ND 0.16 210 ND 0.0092 0.0012 4.1 ND 0.035 80 1.8 0.0039 0.012 0.13 26 0.00028 8.1				
Beryllium (Be) Boron (B) Calcium (Ca) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Lithium (Li) Magnesium (Mg) Manganese (Mn) Molybdenum (Mo) Nickel (Ni) Phosphorus (P) Potassium (K) Selenium (Se) Silicon (Si) Silver (Ag) Sodium (Na)	0.0010 0.020 0.30 0.0010 0.00030 0.00020 0.060 0.00020 0.020 0.020 0.0040 0.00020 0.00050 0.10 0.30 0.00020 0.10 0.00010 0.50	ND 0.11 230 ND 0.0015 0.0019 0.08 ND 0.035 73 0.22 0.0013 0.0086 ND 7.5 0.00047 6.8 ND 68	ND 0.057 110 ND 0.00073 0.0021 ND 0.021 35 0.14 0.0017 0.0022 ND 4.7 0.0016 5.2 ND 36	ND 0.16 210 ND 0.0092 0.0012 4.1 ND 0.035 80 1.8 0.0039 0.012 0.13 26 0.00028 8.1 ND 140				
Beryllium (Be) Boron (B) Calcium (Ca) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Lithium (Li) Magnesium (Mg) Manganese (Mn) Molybdenum (Mo) Nickel (Ni) Phosphorus (P) Potassium (K) Selenium (Se) Silicon (Si) Silver (Ag) Sodium (Na) Strontium (Sr) Sulphur (S)	0.0010 0.020 0.30 0.0010 0.00030 0.00020 0.060 0.00020 0.020 0.020 0.0040 0.00020 0.00050 0.10 0.30 0.00020 0.10 0.00020 0.10 0.00010 0.50 0.20 0.20	ND 0.11 230 ND 0.0015 0.0019 0.08 ND 0.035 73 0.22 0.0013 0.0086 ND 7.5 0.00047 6.8 ND 68 1.1 44	ND 0.057 110 ND 0.00073 0.0021 ND 0.021 35 0.14 0.0017 0.0022 ND 4.7 0.0016 5.2 ND 36 0.58 9.3	ND 0.16 210 ND 0.0092 0.0012 4.1 ND 0.035 80 1.8 0.0039 0.012 0.13 26 0.00028 8.1 ND 140 1.7 9.0				
Beryllium (Be) Boron (B) Calcium (Ca) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Lithium (Li) Magnesium (Mg) Manganese (Mn) Molybdenum (Mo) Nickel (Ni) Phosphorus (P) Potassium (K) Selenium (Se) Silicon (Si) Silver (Ag) Sodium (Na) Strontium (Sr) Sulphur (S) Thallium (Tl)	0.0010 0.020 0.30 0.0010 0.00030 0.00020 0.060 0.00020 0.020 0.00020 0.00020 0.00020 0.00050 0.10 0.30 0.00020 0.10 0.00020 0.10 0.00010 0.50 0.020 0.20 0.20 0.020 0.20 0.00020	ND 0.11 230 ND 0.0015 0.0019 0.08 ND 0.035 73 0.22 0.0013 0.0086 ND 7.5 0.00047 6.8 ND 68 1.1 44 ND	ND 0.057 110 ND 0.00073 0.0021 ND 0.021 35 0.14 0.0017 0.0022 ND 4.7 0.0016 5.2 ND 36 0.58 9.3 ND	ND 0.16 210 ND 0.0092 0.0012 4.1 ND 0.035 80 1.8 0.0039 0.012 0.13 26 0.00028 8.1 ND 140 1.7 9.0 ND				
Beryllium (Be) Boron (B) Calcium (Ca) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Lithium (Li) Magnesium (Mg) Manganese (Mn) Molybdenum (Mo) Nickel (Ni) Phosphorus (P) Potassium (K) Selenium (Se) Silicon (Si) Silver (Ag) Sodium (Na) Strontium (Sr) Sulphur (S) Thallium (Tl) Tin (Sn)	0.0010 0.020 0.30 0.0010 0.00030 0.00020 0.060 0.00020 0.020 0.0040 0.00020 0.00050 0.10 0.30 0.00020 0.10 0.00020 0.10 0.00010 0.50 0.020 0.20 0.020 0.20 0.0010	ND 0.11 230 ND 0.0015 0.0019 0.08 ND 0.035 73 0.22 0.0013 0.0086 ND 7.5 0.00047 6.8 ND 68 1.1 44 ND 68 1.1 44 ND	ND 0.057 110 ND 0.00073 0.0021 ND 0.021 35 0.14 0.0017 0.0022 ND 4.7 0.0016 5.2 ND 36 0.58 9.3 ND ND ND	ND 0.16 210 ND 0.0092 0.0012 4.1 ND 0.035 80 1.8 0.0039 0.012 0.13 26 0.00028 8.1 ND 140 1.7 9.0 ND ND ND				
Beryllium (Be) Boron (B) Calcium (Ca) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Lithium (Li) Magnesium (Mg) Manganese (Mn) Molybdenum (Mo) Nickel (Ni) Phosphorus (P) Potassium (K) Selenium (Se) Silicon (Si) Silver (Ag) Sodium (Na) Strontium (Sr) Sulphur (S) Thallium (Tl) Tin (Sn) Titanium (Ti)	0.0010 0.020 0.30 0.0010 0.00030 0.00020 0.060 0.00020 0.020 0.0040 0.00020 0.00020 0.10 0.30 0.00020 0.10 0.00020 0.10 0.00010 0.50 0.020 0.20 0.00020 0.0010 0.0010	ND 0.11 230 ND 0.0015 0.0019 0.08 ND 0.035 73 0.22 0.0013 0.0086 ND 7.5 0.00047 6.8 ND 68 1.1 44 ND 68 1.1 44 ND ND ND ND	ND 0.057 110 ND 0.00073 0.0021 ND 0.021 35 0.14 0.0017 0.0022 ND 4.7 0.0016 5.2 ND 36 0.58 9.3 ND ND ND ND ND	ND 0.16 210 ND 0.0092 0.0012 4.1 ND 0.035 80 1.8 0.0039 0.012 0.13 26 0.00028 8.1 ND 140 1.7 9.0 ND ND ND ND				
Beryllium (Be) Boron (B) Calcium (Ca) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Lithium (Li) Magnesium (Mg) Manganese (Mn) Molybdenum (Mo) Nickel (Ni) Phosphorus (P) Potassium (K) Selenium (Se) Silicon (Si) Silver (Ag) Sodium (Na) Strontium (Sr) Sulphur (S) Thallium (Tl) Tin (Sn)	0.0010 0.020 0.30 0.0010 0.00030 0.00020 0.060 0.00020 0.020 0.020 0.0040 0.00020 0.00050 0.10 0.00020 0.10 0.00010 0.50 0.020 0.20 0.00020 0.20 0.00010 0.0010 0.0010 0.00010	ND 0.11 230 ND 0.0015 0.0019 0.08 ND 0.035 73 0.22 0.0013 0.0086 ND 7.5 0.00047 6.8 ND 68 1.1 44 ND 68 1.1 44 ND	ND 0.057 110 ND 0.00073 0.0021 ND 0.021 35 0.14 0.0017 0.0022 ND 4.7 0.0016 5.2 ND 36 0.58 9.3 ND ND ND	ND 0.16 210 ND 0.0092 0.0012 4.1 ND 0.035 80 1.8 0.0039 0.012 0.13 26 0.00028 8.1 ND 140 1.7 9.0 ND ND ND				
Beryllium (Be) Boron (B) Calcium (Ca) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Lithium (Li) Magnesium (Mg) Manganese (Mn) Molybdenum (Mo) Nickel (Ni) Phosphorus (P) Potassium (K) Selenium (Se) Silicon (Si) Silver (Ag) Sodium (Na) Strontium (Sr) Sulphur (S) Thallium (Tl) Tin (Sn) Titanium (Ti) Uranium (U)	0.0010 0.020 0.30 0.0010 0.00030 0.00020 0.060 0.00020 0.020 0.0040 0.00020 0.00020 0.10 0.30 0.00020 0.10 0.00020 0.10 0.00010 0.50 0.020 0.20 0.00020 0.0010 0.0010	ND 0.11 230 ND 0.0015 0.0019 0.08 ND 0.035 73 0.22 0.0013 0.0086 ND 7.5 0.00047 6.8 ND 68 1.1 44 ND 68 1.1 44 ND ND 0.0078	ND 0.057 110 ND 0.00073 0.0021 ND 0.021 35 0.14 0.0017 0.0022 ND 4.7 0.0016 5.2 ND 36 0.58 9.3 ND ND ND ND ND ND ND ND	ND 0.16 210 ND 0.0092 0.0012 4.1 ND 0.035 80 1.8 0.0039 0.012 0.13 26 0.00028 8.1 ND 140 1.7 9.0 ND ND ND ND ND ND ND ND 0.0035				

 Table 4C

 Analytical Results - Groundwater - Metals

Notes:

- 1) Tier 1 Guideline Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for commercial/industrial land use.
- 2) * Surface Water Quality Guidelines for Use in Alberta (AENV, 1999) on aquatic life pathway. Canadian Council of Ministers of the Environment (CCME) guidelines are referenced.
- 3) ND Not Detected, less than the limit of method detection.
- 4) Unless specified all units are mg/L.
- 5) -- No value established in the reference criteria.
- 6) Bold & Shaded Exceeds the referenced Alberta Tier 1 and CCME guidelines.
- 7) For further laboratory information, refer to the specific laboratory report in Appendix A.

Table 4D Analytical Results - Groundwater - VOCs									
Analy Parameter	Detection	MW-01	er - VOC MW-02	S MW-03	Tier 1				
Farameter	Limit	101 00 -01	01/08/13	IVI VV -03	Guideline				
	Linnt		01/00/13		Guideline				
Volatile Organic Compounds									
Benzene	0.00040	ND	ND	ND	0.005				
Toluene	0.00040	ND	ND	ND	0.024				
Ethylbenzene	0.00040	ND	ND	ND	0.0024				
Xylenes (Total)	0.00080	ND	ND	ND	0.3				
F1 (C_6 - C_{10})	0.10	ND	ND	ND	2.2				
F2 (C ₁₀ -C ₁₆)	0.10	ND	ND	ND	1.1				
Trihalomethanes (THMs)	0.0020	ND	ND	ND	0.1				
Bromodichloromethane	0.00050	ND	ND	ND	0.1				
Bromoform	0.00050	ND	ND	ND					
Bromomethane	0.0020	ND	ND	ND					
Carbon tetrachloride	0.00050	ND	ND	ND	0.005				
Chlorobenzene	0.00050	ND	ND	ND	0.0013				
Chlorodibromomethane	0.00030	ND ND	ND ND	ND ND	0.0015				
Chloroethane	0.0010	ND	ND	ND					
Chloroform	0.00050	ND	ND	ND	0.0018				
Chloromethane	0.0020	ND	ND	ND					
1,2-dibromoethane	0.00050	ND	ND	ND					
1,2-dichlorobenzene	0.00050	ND	ND	ND	0.0007				
1,3-dichlorobenzene	0.00050	ND	ND	ND					
1,4-dichlorobenzene	0.00050	ND	ND	ND	0.001				
1,1-dichloroethane	0.00050	ND	ND	ND					
1,2-dichloroethane	0.00050	ND	ND	ND	0.005				
1,1-dichloroethene	0.00050	ND	ND	ND	0.014				
cis-1,2-dichloroethene	0.00050	ND	ND	ND					
trans-1,2-dichloroethene	0.00050	ND	ND	ND					
Dichloromethane	0.0020	ND	ND	ND	0.05				
1,2-dichloropropane	0.00050	ND	ND	ND					
cis-1,3-dichloropropene	0.00050	ND	ND	ND					
trans-1,3-dichloropropene	0.00050	ND	ND	ND					
Methyl methacrylate	0.00050	ND	ND	ND	0.47				
Methyl-tert-butylether (MTBE)	0.00050	ND	ND	ND	0.015				
Styrene	0.00050	ND	ND	ND	0.072				
1,1,1,2-tetrachloroethane	0.0020	ND	ND	ND					
1,1,2,2-tetrachloroethane	0.0020	ND	ND	ND					
Tetrachloroethene	0.00050	ND	ND	ND	0.03				
1,2,3-trichlorobenzene	0.0010	ND	ND	ND	0.008				
1,2,4-trichlorobenzene	0.0010	ND	ND	ND	0.015				
1,3,5-trichlorobenzene	0.00050	ND	ND	ND	0.014				
1,1,1-trichloroethane	0.00050	ND	ND	ND					
1,1,2-trichloroethane	0.00050	ND	ND	ND					
Trichloroethene	0.00050	ND	ND	ND	0.005				
Trichlorofluoromethane	0.00050	ND	ND	ND					
1,2,4-trimethylbenzene	0.00050	ND	ND	ND					
1,3,5-trimethylbenzene	0.00050	ND	ND	ND					
Vinyl chloride	0.00050	ND	ND	ND	0.002				
Notos:									

Table 4D

Notes:

1) Tier 1 Guideline - Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for commerical/industrial land use.

2) ND - Not Detected, less than the limit of method detection.

3) Unless specified all units are mg/L

- 4) -- No value established in the reference criteria.
- 5) Bold & Shaded Exceeds the referenced Alberta Tier 1 Guidelines.

6) For further laboratory information, refer to the specific laboratory report in Appendix A.

Table 5ASummary of Field Parameters Measured During Sampling of Soil Vapour

Parameter	Well Diameter	Screen Length	Well Depth	Headspace Volume	Purge Rate	Purge Time	Pres	sure (psi)
	(mm)	(cm)	(m)	(cm ³)	(cm ³ /min)	(min)	Ambient	Vapour Well
VW-01	25	30	4.6	2,558.02	943.3	3 min 7 sec	15.08	15.03
VW-02	25	30	6.1	2,994.33	943.3	3 min 36 sec	15.17	15.18

Notes:

1) Measurement of pressure by digital Cole-Parmer absolute pressure gauge.

2) Purge time is elapsed time prior to the collection of a soil vapour sample.

3) Screen set at base of well.

4) Soil vapour sampling was completed July 31, 2013.

Analytical Results - Soil Vapour - General Indices									
Parameter	Unit	Detection Limit	VW-01	VW-02					
<u>Gauge Pressure</u> Following sampling Reported by laboratory	psi psi		-4.7 -3.6	-5.0 -3.6					
Fixed Gases Oxygen Nitrogen Carbon monoxide Methane Carbon dioxide	% v/v % v/v % v/v % v/v % v/v	0.2 - 0.3 0.2 - 0.3 0.2 - 0.3 0.2 - 0.3 0.2 - 0.3	2 50.9 ND 27.4 19.8	5 67.0 ND 17.6 10.4					

Table 5B				
Analytical Results - Soil Vapour - General Indices				

Notes:

1) Soil vapour sample collected on Wednesday, July 31, 2013.

2) ND - Not Detected, less than the limit of method detection.

3) - - No value established in the detection limit and reference criteria.

4) For further information, the reader should refer to the laboratory report in Appendix A.

Table 5C Analytical Results - Soil Vapour - VOCs					
Parameter	Unit	Detection Limit	VW-01	VW-02	
			07/31	/2013	
Volatile Hydrocarbon Fractions	$\mu g/m^3$	5.0 12	205	2 520	
Aliphatic >C ₃ -C ₆ Aliphatic >C ₆ -C ₈	$\mu g/m^3$	5.0 - 13 5.0	205 483	2,530 651	
Aliphatic $>C_6-C_8$ Aliphatic $>C_8-C_{10}$	$\mu g/m^3$	5.0	485 176	106	
Aliphatic $>C_{10}$ Aliphatic $>C_{10}$ - C_{12}	$\mu g/m^3$	5.0	412	106	
Aliphatic $>C_{12}-C_{16}$	$\mu g/m^3$	5.0	125	91.1	
Anphane \mathcal{C}_{12} - \mathcal{C}_{16}		5.0	123	91.1	
Aromatic >C7-C8 (TEX Excluded)	μg/m ³	5.0	ND	ND	
Aromatic $>C_8-C_{10}$	µg/m ³	5.0	86.0	47.5	
Aromatic $>C_{10}$ - C_{12}	$\mu g/m^3$	5.0	71.1	41.7	
Aromatic $>C_{12}$ - C_{16}	μg/m ³	5.0	ND	ND	
Select Volatile Gases					
Acetylene	ppm	0.21 - 0.26	ND	ND	
Ethane Ethylene	ppm ppm	0.21 - 0.26 0.21 - 0.26	1.7 ND	1.3 ND	
n-Butane	ppm	0.41 - 0.51	ND	0.47	
n-Pentane	ppm	0.21 - 0.26	ND	ND	
Propane	ppm	0.21 - 0.26	1.1	0.69	
Propene	ppm	0.21 - 0.26	ND	ND	
Propyne	ppm	0.41 - 0.51	ND	ND	
Volatile Organic Compounds			2.24	2.11	
Dichlorodifluoromethane (FREON 12) 1,2-Dichlorotetrafluoroethane	ppbv ppbv	0.20 - 0.80 0.17	3.34 ND	341 ND	
Chloromethane	ppbv	0.30	0.87	ND	
Vinyl chloride	ppbv	0.18	0.60	ND	
Chloroethane	ppbv	0.30	ND	ND	
1,3-Butadiene	ppbv	0.50	ND	ND	
Trichlorofluoromethane (FREON 11) Ethanol (ethyl alcohol)	ppbv	0.20 2.3	ND 34.4	ND 23.5	
Trichlorotrifluoroethane	ppbv ppbv	0.15	34.4 ND	23.5 ND	
2-Propanol	ppbv	3.0	11.5	6.1	
2-Propanone	ppbv	0.80	32.0	19.8	
Methyl ethyl ketone (MEK) (2-Butanone)	ppbv	3.0	16.8	12.2	
Methyl isobutyl ketone	ppbv	3.2	ND	ND	
Methyl butyl ketone (MBK) (2-Hexanone) Methyl t-butyl ether (MTBE)	ppbv ppbv	2.0 0.20	ND ND	ND ND	
Ethyl acetate 1,1-Dichloroethylene	ppbv ppbv	2.2 0.25	2.6 ND	ND ND	
cis-1,2-Dichloroethylene	ppbv	0.19	ND	ND	
trans-1,2-Dichloroethylene	ppbv	0.20	ND	ND	
Methylene chloride(Dichloromethane)	ppbv	0.80	ND	ND	
Chloroform	ppbv	0.15	ND	ND	
Carbon tetrachloride	ppbv	0.30	ND	ND	
1,1-Dichloroethane 1,2-Dichloroethane	ppbv ppbv	0.20 0.20	ND ND	ND 0.29	
Ethylene dibromide	ppbv	0.17	ND	ND	
1,1,1-Trichloroethane	ppbv	0.30	ND	ND	
1,1,2-Trichloroethane	ppbv	0.15	ND	ND	
1,1,2,2-Tetrachloroethane	ppbv	0.20	ND	ND	
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ppbv ppbv	0.18 0.17	ND ND	ND ND	
		0.40	ND	ND	
1,2-Dichloropropane Bromomethane	ppbv ppbv	0.40	ND ND	ND	
Bromoform	ppbv	0.20	ND	ND	
Bromodichloromethane	ppbv	0.20	ND	ND	
Dibromochloromethane	ppbv	0.20	ND	ND	
Trichloroethylene (TCE)	ppbv	0.30	2.23	1.82	
Tetrachloroethylene (PCE) Benzene	ppbv ppbv	0.20 0.18	0.64 2.93	ND 1.15	
Toluene	ppbv	0.20	14.1	11.15	
Ethylbenzene	ppbv	0.20	4.01	2.53	
p+m-xylene	ppbv	0.37	11.6	7.03	
o-xylene	ppbv	0.20	5.01	2.85	
Styrene 4. Ethyltahuana	ppbv	0.20 2.2	1.4 ND	0.81	
4-Ethyltoluene 1,3,5-Trimethylbenzene	ppbv ppbv	2.2 3.6 - 8.3	ND ND	ND ND	
1,2,4-Trimethylbenzene	ppbv	0.50	3.76	2.27	
Chlorobenzene	ppbv	0.30	ND	ND	
Benzyl chloride	ppbv	1.0	ND	ND	
1,3-Dichlorobenzene	ppbv	0.40	ND	ND ND	
1,4-Dichlorobenzene	ppbv	0.40	ND	ND	
1,2-Dichlorobenzene	ppbv ppby	0.40	ND ND	ND ND	
1,2,4-Trichlorobenzene Hexachlorobutadiene	ppbv ppbv	2.0 3.0	ND ND	ND ND	
Hexane	ppbv	0.30	11.4	7.70	
Heptane	ppbv	0.30	3.79	1.87	
Cyclohexane	ppbv	0.20	34.9	8.60	
Tetrahydrofuran	ppbv	0.40	8.14	7.87	
1,4-Dioxane	ppbv	2.0	ND	ND	
Xylene (Total) Vinyl bromide	ppbv ppbv	0.60 0.20	16.6 ND	9.88 ND	
•					
Propene	ppbv	220 - 240 0.20	ND 4.62	ND 3.52	
2,2,4-Trimethylpentane	ppbv				
2,2,4-Trimethylpentane Carbon disulfide Vinyl acetate	ppbv ppbv	0.50	5.31	3.24	

Table 5C

Notes:

Results are from sampling performed on Wednesday, July 31, 2013.
 ND - Not Detected, less than the limit of method detection.

3) - - No value established in the detection limit and reference criteria.
4) For further information, the reader should refer to the laboratory report in Appendix A.

	Detection Limit		-	/-01	VW	VW-02	
Parameter			07/31/2013				
	mg/m ³	ppm	mg/m ³	ppm	mg/m ³	ppm	
Trimethylsilyl Fluoride			ND	ND	ND	ND	
Tetramethylsilane	0.0001	0.0001	ND	ND	ND	ND	
Methoxytrimethylsilane	0.0032	0.0007	ND	ND	ND	ND	
Ethoxytrimethylsilane	0.0030 - 0.0031	0.0006	ND	ND	ND	ND	
Trimethylsilanol			0.0243	0.0066	0.0172	0.0047	
Isopropoxytrimethylsilane	0.0013	0.0002	ND	ND	ND	ND	
Trimethoxymethyl Silane #			ND	ND	ND	ND	
Hexamethyl Disiloxane - L2	0.0001	0.0001	ND	ND	ND	ND	
Propoxytrimethylsilane	0.0035	0.0006	ND	ND	ND	ND	
1-Methylbutoxytrimethylsilane *			ND	ND	ND	ND	
Butoxytrimethylsilane *			ND	ND	ND	ND	
Trimethoxyvinyl Silane #			ND	ND	ND	ND	
Hexamethyl Cyclotrisiloxane - D3			0.0212	0.0023	0.0141	0.0016	
Octamethyl Trisiloxane - L3	0.0002	0.0001	ND	ND	ND	ND	
Triethoxyvinyl Silane #			ND	ND	ND	ND	
Triethoxyethyl Silane #			ND	ND	ND	ND	
Octamethyl Cyclotetrasiloxane - D4			0.0580	0.0048	0.0250	0.0021	
Decamethyl Tetrasiloxane - L4			0.0022	0.0002	0.0009	0.0001	
Tetraethylsilicate #			ND	ND	ND	ND	
Decamethyl Cyclopentasiloxane - D5			0.8254	0.0545	0.5350	0.3530	
Dodecamethyl Pentasiloxane - L5	0.0030	0.0002	ND	ND	ND	ND	
Dodecamethyl Cyclohexasiloxane - D6			0.6919	0.0381	0.3017	0.0166	
Sum			1.6375	0.1089	0.9083	0.0628	

 Table 5D

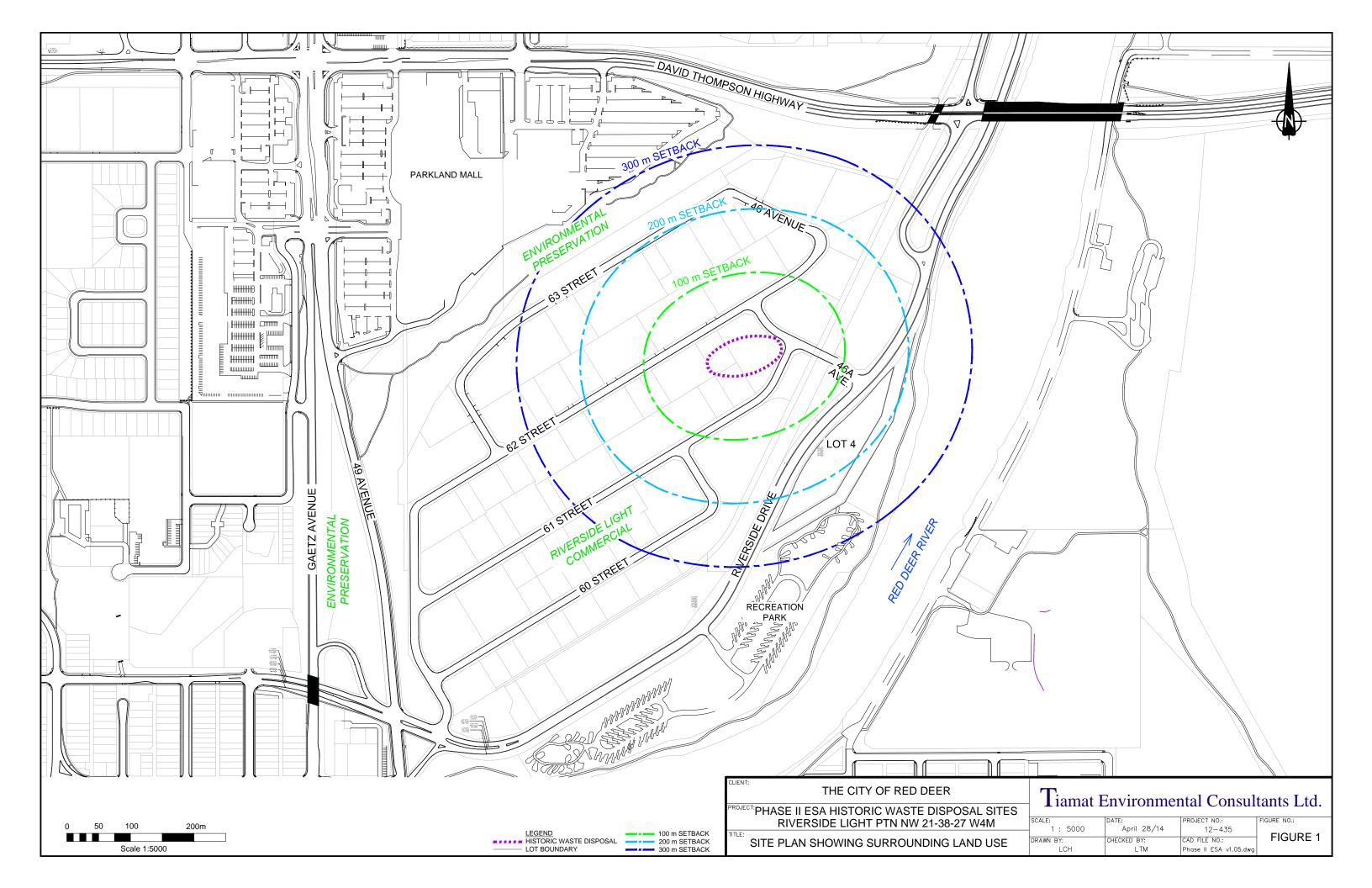
 Analytics Results - Soil Vapour - Siloxanes

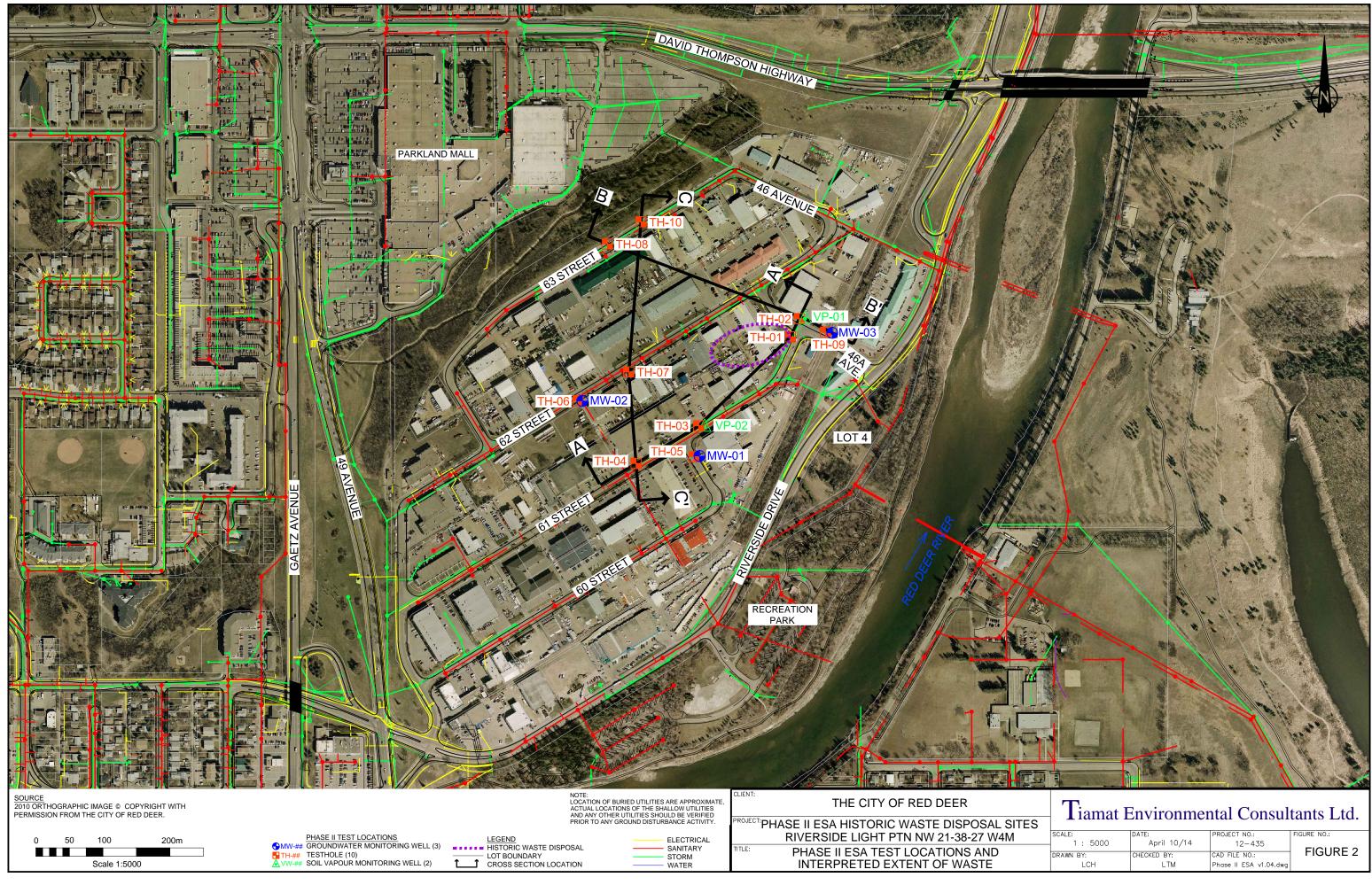
Notes:

1) Soil vapour samples collected on Wednesday, July 31, 2013.

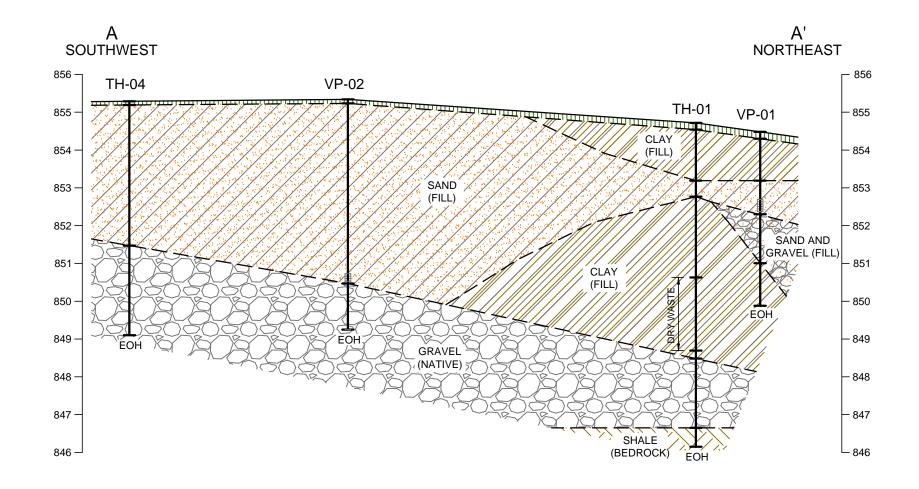
2) ND - Not Detected, less than the limit of method detection.

3) - - No value established in the detection limit and reference criteria.


4) V=200 mL, where V is volume of air/gas sampled.

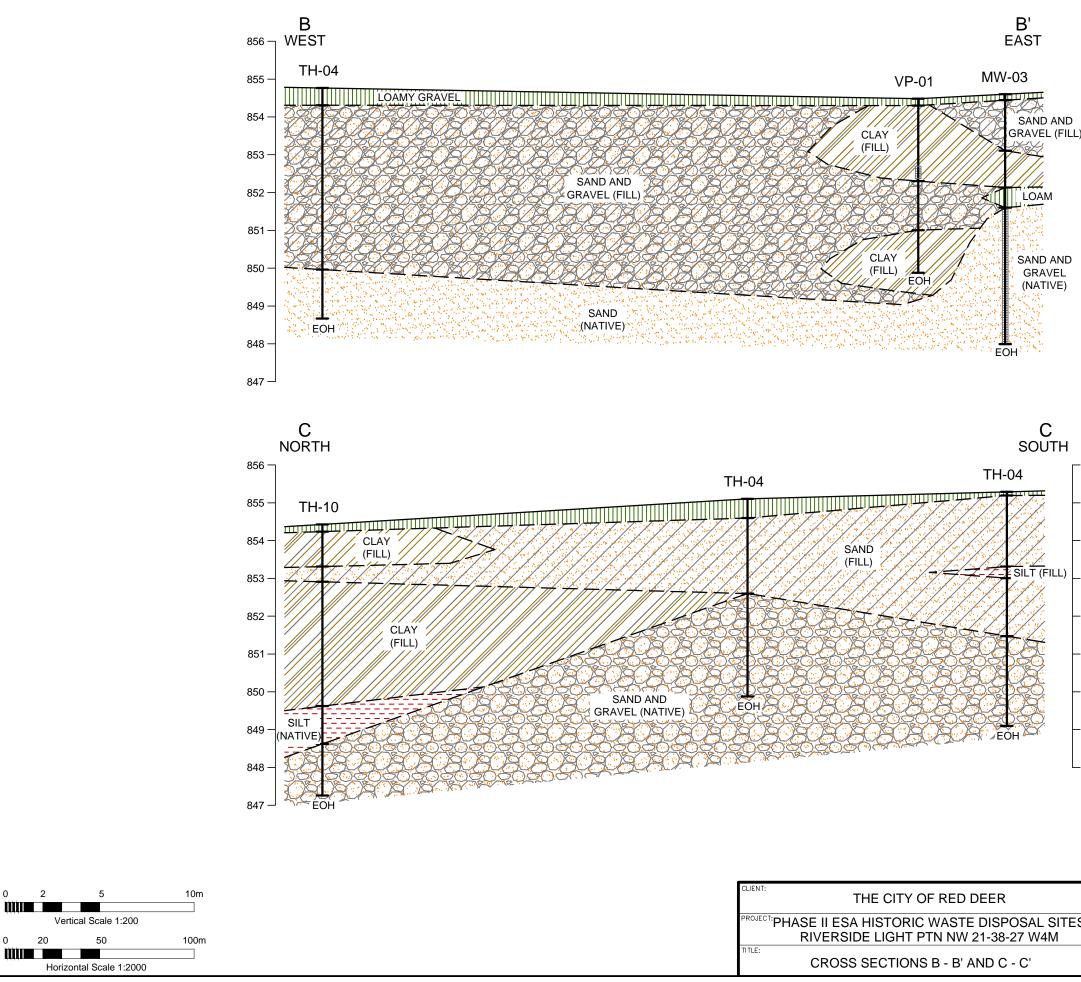

5) * - Semiquanititative (response factor set at 5).

6) # - Unstable, poor detectability, commercial standards tested.


7) For further information, the reader should refer to the laboratory report in Appendix A.

FIGURES

=S				
	SCALE:	DATE:	PROJECT NO .:	FIGURE NO .:
	1 : 5000	April 10/14	12-435	
	DRAWN BY:	CHECKED BY:	CAD FILE NO.:	FIGURE 2
	LCH	LTM	Phase II ESA v1.04.dwg	



0 2 5 10m	CLIENT: THE CITY OF RED DEER
Vertical Scale 1:200 0 20 50 100m	PROJECT: PHASE II ESA HISTORIC WASTE DISPOSAL SITE RIVERSIDE LIGHT PTN NW 21-38-27 W4M
Horizontal Scale 1:2000	CROSS SECTION A - A'

NOTE:

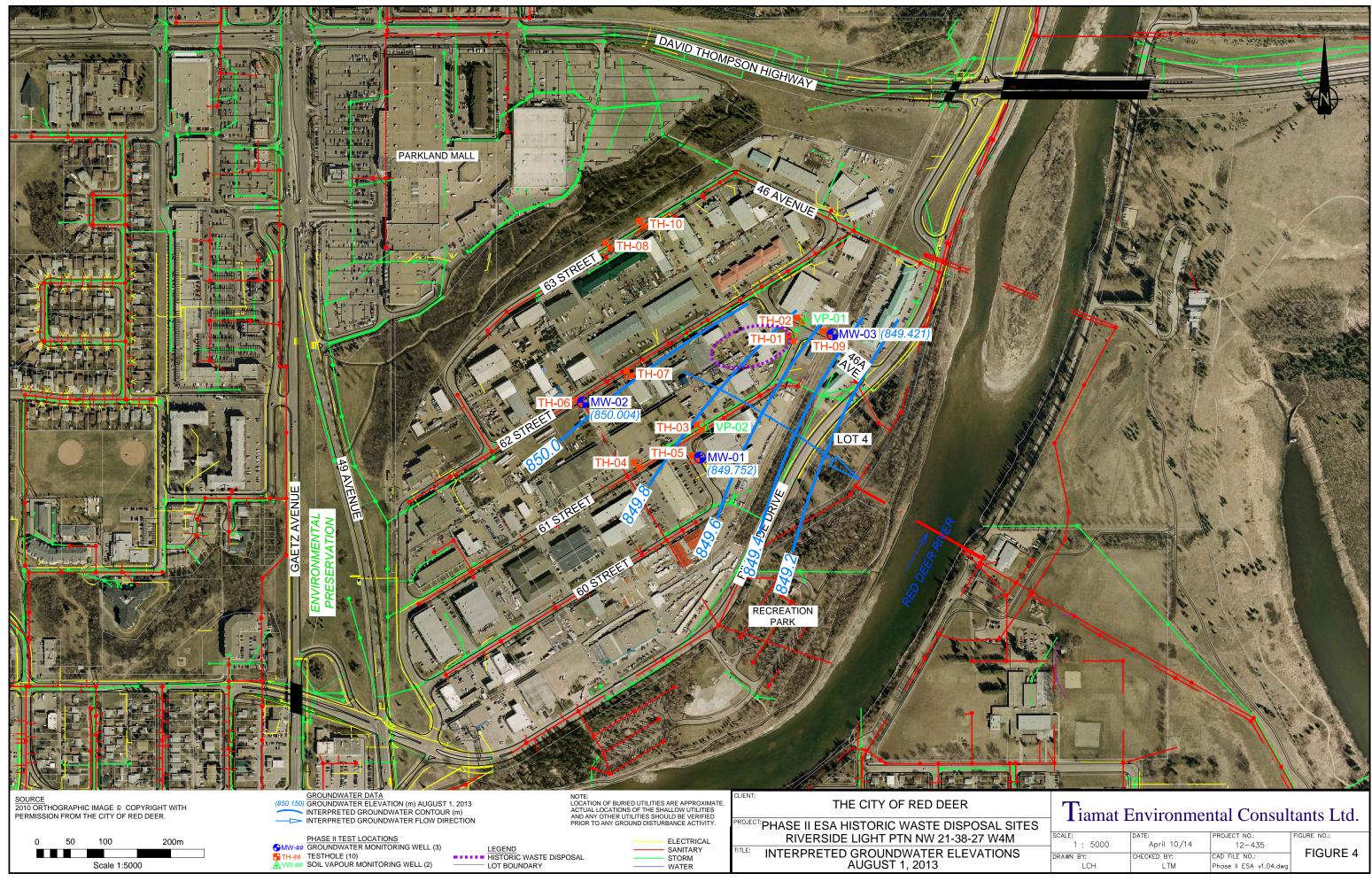
THE GEOLOGIC AND STRATIGRAPHIC SECTIONS SHOWN ON THIS DRAWING ARE INTERPRETED FROM BOREHOLE LOGS. STRATIGRAPHY IS KNOWN WITH CERTAINTY ONLY AT THE BOREHOLE LOCATIONS. ACTUAL STRATIGRAPHY AND GEOLOGIC CONDITIONS BETWEEN BOREHOLES MAY VARY FROM THAT INDICATED ON THIS DRAWING.

ĒS	Tiamat E	tants Ltd.		
	SCALE:	DATE:	PROJECT NO .:	FIGURE NO .:
	AS SHOWN	April 10/14	12-435	
	DRAWN BY:	CHECKED BY:	CAD FILE NO.:	FIGURE 3A
	LCH	LTM	Phase II ESA Sections v1.02	

2

20

nт


0

^ع ٦	356			
- 8	55			
	54			
-) - 8	53			
- e	52			
- 8	351			
- 8	50			
– e	49			
– e	48			
Le	47			
- 856				
000				
- 855	i			
- 854	L			
- 853	;			
- 852	2			
- 851				
- 850)			
- 849	1			
- 848	ł			
NO	TE·			
			SECTIONS SHOWN	
DR/ IS k AC	AWING ARE INTE (NOWN WITH CE TUAL STRATIGR/	RPRETED FROM E RTAINTY ONLY AT APHY AND GEOLO	BOREHOLE LOGS. THE BOREHOLE LOGS GIC CONDITIONS B NDICATED ON THIS	STRATIGRAPHY DCATIONS. ETWEEN
S	Tiamat	Environme	ntal Consul	tants Ltd.
5	SCALE: AS SHOWN	DATE: April 10/14	PROJECT NO.: 12-435	FIGURE NO.:
	DRAWN BY:	CHECKED BY:	CAD FILE NO.:	FIGURE 3B

LCH

LTM

Phase II ESA Sections v1.02

RE 4

12-435 Phase II ESA – Riverside Light Industrial Park Historic Waste Disposal Site, The City of Red Deer

APPENDIX A

FIELD PROTOCOLS AND ANALYTICAL DATA, ASCM INFORMATION AND LABORATORY REPORTS

Monitoring Headspace Vapours and Liquid Levels

Headspace Vapours

Headspace vapours were measured with an RKI Eagle II portable dual sensor gas meter. The combustible vapour sensor is calibrated to hexane; the volatile vapour sensor is calibrated to isobutylene. The sample pump operates at a flow rate of about 944 ml/minute and the instrument response time is rated at 90% reading within 30 seconds, more or less.

Below is a list of the general headspace vapour monitoring protocol employed by Tiamat staff.

- 1. Allow the combustible and volatile sensors in the RKI Eagle II to stabilize after turning the instrument on. Typically, the instrument will stabilize within 3 to 5 minutes. Check the display voltage for the instrument is within the specified normal operating range. Should the display not show zero in ambient air, verify there are no interfering sources of Volatile Organic Compound (VOC) or combustible vapours and perform an instrument "fresh air zero" in a fresh air environment.
- 2. Prior to measuring headspace vapours, the monitoring well screw caps were loosened just before monitoring was conducted.
- 3. The probe tip of the RKI Eagle II was inserted into the top section of the monitoring well using a gloved hand. The gloved hand is held against the top of the monitoring well to limit influences of air currents at the ground surface mixing with the headspace during the period of measurement. Measurement is for a minimum of 30 seconds and maximum of approximately 2 minutes.
- 4. The highest reading from each sensor of the RKI Eagle was recorded in ppm, unless otherwise noted.
- 5. Should a low oxygen alarm activate during the measurement period, monitor the display and withdraw the probe tip once the reading has peaked. Observe the reading while the probe draws fresh air. Record the maximum reading. Repeat this if necessary.

Liquid Levels

Liquid levels are measured by a Heron electronic oil-water interface meter. The interface probe is lowered into the monitoring well until an audible signal is established by the probe. Liquid readings are taken during the lowering of the probe to minimize effects of surface tension and potential erroneous readings. The measurement is taken to the highest point on the monitoring well pipe.

The interface probe is washed with a detergent solution and thoroughly rinsed with clean water between each monitoring well.

Measurement of Water Quality Indices

Standard water quality parameters (pH, electrical conductivity, temperature, dissolved oxygen, total dissolved solids and redox potential) were field measured by a YSI Pro Plus multi-meter. The multi-meter is calibrated prior to each sampling event. Calibration is performed and documented in-house at Tiamat and re-checked by an independent third-party service provider between every third or fourth in-house instrument calibration event. Calibration and service records are maintained on file.

Groundwater Sampling

Groundwater sampling is conducted using either a disposable polyethylene bailer or portable stainless steel submersible pump. The specific sample pump utilizes a low flow sampling technique to minimize losses of VOCs by degassing during collection of water sample. In circumstances where insufficient water is present in a groundwater monitoring well, a dedicated polyethylene bailer is used.

Sampling by Disposable Polyethylene Bailer

Field procedures to perform groundwater sampling using a disposable polyethylene bailer are as follow:

- 1. Loosen the well screw caps and measure the liquid level with a Heron interface probe. Lower the interface probe to the highest side of the monitoring well pipe and take the first reading when an audible signal is established. The probe is rinsed with a detergent solution and clean water between each well.
- 2. Measure the nylon string to an approximate length of about 1 m or so greater than the expected sampling depth.
- 3. Tie the string to the bailer, make a big loop at the other end of the string and tie it to the sampler's hand.
- 4. Lower the bailer into the well, bail the stagnant water and dispose into a pail. Note subjectively any attributes of the purged ground water such as, odour, colour and phase-separate liquid.
- 5. During and following purging, the water indices (pH, electrical conductivity, temperature, dissolved O_2 , total dissolved solids, and redox) are measured by a YSI multi-meter using a sample container and bailer or a flow cell and pump combination.
- 6. Repeat steps 4-5 until pH, electrical conductivity and temperature exhibit less than 10% variation, indicating a stabilized groundwater condition.

- 7. Once the indices indicate a stabilized state, water samples are bottled into laboratory supplied bottles and preservatives as per the laboratory instruction.
- 8. Note the approximate volume of water extracted, the visual quality of water, any unusual odour or discolouration and the water indices at the time of sample collection.
- 9. New bailer, nylon string and disposable nitrile gloves are used at each well to prevent cross contamination and preserve sample integrity.

Low Flow Sampling

Field procedures to perform low flow sampling are as follow:

- 1. Loosen the well screw caps and measure the liquid level with a Heron interface probe. Lower the interface probe to the highest side of the monitoring well pipe and take the first reading when an audible signal is established. The probe will be rinsed with a detergent solution and clean water between each well.
- 2. Once the liquid level is measured, the distance between the bottom of the monitoring well and the liquid level is calculated. The pump will be set near the middle of the water column in order to avoid stirring of sediments at the bottom of the well.
- 3. The required length of the Teflon tubing is determined by adding the length of the middle water column and an additional length to allow for water discharge into a pail. If the monitoring well is an aboveground casing, the length of the aboveground casing will be added as well.
- 4. New Teflon tubing is used at each well to avoid cross contamination.
- 5. Set up 12 V Monsoon stainless steel submersible pump and flow controller with Teflon tubing. Slowly lower the pump to the middle of the water column.
- 6. Adjust the voltage on the flow controller to acquire the required flow rate. Measure the liquid level using the interface probe from time to time. Minimal drawdown is attained once the liquid level drops and stays within the 10% range of the first measurement.
- 7. Once the required flow rate is achieved, attach the Teflon tubing to the inlet of the flow cell with the YSI multi-meter probe and measure the indices with the YSI multi-meter. Connect a discharge Teflon tube to the outlet of the flow cell to allow for water to discharge from the flow cell into a pail.
- 8. Collect groundwater samples after pH, electrical conductivity and temperature stabilize within 10% variation. Apply preservatives as per the laboratory instruction.

- 9. After collecting samples, transfer the pump into a clean pail filled with clean water and let it run for a moment to remove entrapped sediments. Then run the pump in a second pail to ensure thorough flush following the first rinse.
- 10. To avoid confusion, label pails in the sequence where the pump is rinsed. Replace with clean water in the pail as required.

Groundwater Sample Handling

The laboratory requires six (6) 40 ml clear glass vials and two (2) 250 ml amber bottles for analyses of Volatile Organic Compounds (VOCs), Benzene, Toluene, Ethylbenzene, Xylenes (BTEX), petroleum hydrocarbon fractions F1 and F2. Check the white preservative tablets are present in each 40 ml vial and 250 ml amber bottle. As well, once filled and capped, confirm each vial and bottle exhibits no notable headspace. If necessary, discard and resample with new vials and bottles.

A 45 micron filter is used to field filter groundwater for analyses of dissolved metals. The filter outlet is placed on top of a sample bottle while water is decanted through a dedicated Teflon tubing attached to the inlet of the filter. Laboratory provided nitric acid is used to preserve the sample. New filter and Teflon tubing are used for each well location.

During field sampling disposable nitrile gloves are worn during sampling and changed between wells. In the event where suspicious cross-contamination occurs, nitrile gloves and sampling bottles are discarded and replaced. Each set of samples is properly labelled and bagged into a dedicated poly bag to prevent potential cross contamination between sample bottles from different well locations. Samples are stored in a cooler with ice to maintain temperature at about 5° C. The coolers are dropped off at a secure laboratory depot with a completed chain of custody at the end of each sampling day for delivery to the laboratory in Calgary, Alberta.

Soil Sampling During Drilling

Soil samples were collected during the advancement of testholes using solid stem auger, hollow stem auger or ODEX tooling. A Geoprobe or small track or truck-mounted drill rig was determined pending the presence of soft ground and the ability to access test locations in a confined or steep slope (more than 10%).

Solid stem auger was used at most of the sites to enable collection of representative soil samples. However, in cases where the test location lies near the river bank or on top of gravels, hollow stem auger or ODEX was employed to drill through the hard sediments and prevent sloughing and enable the installation of a groundwater or soil vapour monitoring well.

When waste material is noted in soil, the drilling continues to the depth where the waste ends and/or the native soil is encountered to ensure complete profiling of the waste material. Bulk soil samples underlying the waste were collected for laboratory analyses; soil samples from each soil bag were also submitted for laboratory analyses. Pending laboratory results, drill cuttings in the soil bags may be disposed at The City of Red Deer Waste Management Facility.

Sampling Soil Vapour Using Summa Canister[®]

- 1. Unlock the steel well casing and remove the brass cap from the vapour probe valve. Connect the lab provided Teflon tubing with Swagelok[®] fitting to the probe valve. Hand-tighten the fitting plus ¹/₄ additional turn using a 9/16 inch wrench. To avoid damage and short circuit of the Swagelok[®], care should be taken to avoid over tightening the Swagelok[®] fitting.
- 2. Connect the probe tip of the RKI Eagle II with the Teflon tubing attached to the vapour probe. Open the vapour valve to allow the vapour to flow into the monitoring instrument.
- 3. Start the stop watch to count the purge time. The purge time is calculated by dividing the volume of the 1 inch PVC pipe with the flow rate of the RKI Eagle II.
- 4. For sites with heavy municipal solid waste (MSW) i.e. Lindsay Thurber Comprehensive High School, McKenzie Trail, Montfort, Red Deer College and Red Deer Motors, a minimum of three (3) equivalent volumes of soil vapour are purged prior to collecting a well vapour sample.
- 5. Record combustible and volatile vapours between the initial 30 seconds to two (2) minutes during purging.
- 6. Using the digital Cole-Palmer absolute pressure gauge, record the ambient and probe barometric pressures. The probe pressure is measured by connecting the gauge tip with the Teflon tubing attached to the vapour probe. The vapour probe and the pressure gauge should be on during the measurement.
- 7. Remove the brass cap from the 1.4 L Summa Canister[®] valve with a 9/16 inch wrench.
- 8. Attach the flow controller to the canister and remove the brass cap from the gauge adapter. Hand tighten the fittings and tighten another ¹/₄ turn using a 9/16 wrench.
- 9. Open the valve, record the canister vacuum (this should read between -29 to -25 in Hg and close the valve.
- 10. Connect the adapter with the Teflon tubing to the vapour probe. Hand-tighten the fitting and tighten another ¹/₄ turn using a 9/16 inch wrench.

- 11. Open the vapour probe and open the canister valve. Check the gauge periodically to ensure sample flow rate is acceptable.
- 12. When the vacuum reads about -5 inches Hg, close the vapour probe and the valve, disassemble the flow controller and the Teflon tubing, then place the protective brass cap back on the canister valve. Hand tighten the cap and perform another ¹/₄ turn using a 9/16 inch wrench.
- 13. It is always a good practice to maintain some vacuum in the canister following sampling. The residual vacuum serves as a check for the integrity of the canister during transport to the laboratory.
- 14. Record the canister and the flow controller serial numbers on the field sheet and the chain of custody.
- 15. A dedicated set of Teflon tubing, Swagelok[®] fitting and gauge with flow controller assembly must be used at each sample well location to prevent cross contamination.

Sampling Soil Vapour Using Tedlar Bag[®]

- 1. Place the 1 L Tedlar Bag[®] inside the lung box. Connect the Tedlar Bag[®] nozzle with the tubing attached to the brass nipple inside the lung box.
- 2. Perform a full turn counter clockwise to open the valve and go another ¹/₄ turn clockwise. This is to ensure that the valve is properly opened for sampling.
- 3. Connect the Teflon tubing attached to the vapour probe with the exterior brass nipple on the lung box.
- 4. Connect the other exterior brass nipple of the lung box to the SKC pump. Ensure the lung box is closed to prevent air leak during sampling.
- 5. Open the vapour probe valve and activate the SKC pump. The pump will evacuate the lung box causing the Tedlar Bag[®] to expand drawing a sample of soil vapour.
- 6. The SKC pump was set at a flow rate of 0.5 L/min and the volume of the lung box is 4 L. The estimated sampling time is approximately 8 minutes. Check the Tedlar Bag[®] at about 8 minutes or periodically to verify the progress of sample collection.
- 7. When the Tedlar Bag[®] is approximately 80% full, close the bag valve by turning it clockwise until it is tight. Then turn off the SKC pump and close the vapour probe. To ensure the bag is sufficiently filled, repeat steps 5-7, if necessary.

8. Avoid over filling the Tedlar Bag[®]. This will prevent damage to the bag if exposure to change of temperature, altitude and barometric pressure occurs during transport by ground and/or air.

Validation of Analytical Data

Alberta Environment and Sustainable Resource Development (ESRD), formerly Alberta Environment, implemented a Laboratory Data Quality Assurance Policy in October 2001. This policy requires laboratories providing environmental analytical data to meet the accreditation standards set by ESRD. ALS Canada Ltd. and Maxxam Analytics are each accredited by Standards Council of Canada (SCC), which is administered by the Canadian Association for Laboratory Accreditation Inc. (CALA). This accreditation demonstrates ALS Canada Ltd. Laboratories and Maxxam Analytics have consistent laboratory procedures and quality controls meeting national and international standards for staff training, equipment maintenance and documentation of parameters. The laboratory protocols must be maintained to demonstrate the in lab quality assurance/quality control (QA/QC) procedures are consistently maintained and are paramount to the integrity and reliability of the reported results.

A data quality review was performed for all analytical results reported. The data quality review comprised of the following actions by Tiamat.

- Ensure the Chain of Custody form are properly completed and signed;
- Ensure the requested analyses were performed and reported for the correct samples;
- Calculate and review relative percent differences (RPD), where available, to assess the laboratory precision and analytical variability for each batch of samples;
- Perform independent review of the internal quality control (QC) and quality assurance (QA) practices for the laboratory;
- Confirm the applicable holding times and extraction times for each sample have been met by the laboratory;
- Identify and resolve additional data quality issues with the laboratory.

The Chain of Custody forms submitted for each work order for this project appeared to be properly completed. The Chain of Custody forms show the sample temperature (where applicable) upon receipt at the laboratory and the appropriate sample custody signatures.

Laboratory QC protocols include surrogate recoveries, laboratory duplicates, method blanks, matrix spikes and reference materials, where applicable. QC results published

A-8 of 9

with the sample report comply with the prescribed laboratory QC limits. Thus, analytical results are deemed to be within acceptable variability and a corresponding acceptable level of precision and accuracy.

Tiamat reviews all QA/QC outcomes published with the respective laboratory reports. Discrepancies are reported to the laboratory for follow-up. The laboratory's analytical processes for the specific testing program for this project appear to be acceptable.

The holding times experienced by all samples submitted met the recommended holding time limit for the specified parameter where applicable. Overall, the review and data validation process indicates the analytical results are valid and reliable.

For the Riverside Light Industrial Park, a total of 3 groundwater samples, 2 Summa Canister[®] and 2 Tedlar Bags[®] were collected for this Phase II ESA. Note, duplicate Tedlar Bag[®] samples were collected for QA/QC purposes.

Sample containers were provided by the laboratory. Collected samples are appropriately packed in sample coolers and shipped from Red Deer to Calgary by a third-party courier contracted by the respective laboratory. It is presumed the courier handles the sample coolers with appropriate care. There were no reported issues with the samples upon receipt at the laboratory.

Tiamat applies a uniform field protocol consistent with industry practice to ensure the integrity of each sample collected for laboratory analysis. Coupled with the in-house laboratory control measures implemented by each laboratory, the overall QA/QC objectives are deemed to be satisfied.

Field Duplicate Evaluation

An evaluation of duplicate variation is undertaken to assess the precision of field sampling and laboratory analyses. For comparison, the relative percent difference (RPD) is calculated.

RPD is defined as the absolute difference between two results divided by the average of the two results multiplied by one hundred. Where one result is below detection limit, and its duplicate result is above detection limit, the non-detect concentration is assigned the detection limit for the purposes of calculating RPD.

Groundwater duplicates should be taken during groundwater sampling events at an average of every ten (10) samples or about 10% of the sample set.

For groundwater samples, the objective for RPD values is to be not more than 20%.

Field Blank Assessment

A field blank is a sample of laboratory-supplied reverse osmosis water poured into a laboratory supplied sample container in the field and shipped to the laboratory with the field samples using a unique sample identifier. The purpose of a field blank is to assess potential cross contamination from field conditions during sampling. For this initial

12-435 Phase II ESA – Riverside Light Industrial Park Historic Waste Disposal Sites, The City of Red Deer

assessment, no previous site specific analyte data was available, thus field blanks were not deemed to be necessary.

Trip Blank Assessment

A trip blank is a clean sample container of reverse osmosis water that is taken to the sampling site and transported back to the laboratory for analysis without having been exposed to sampling procedures. The trip blanks prepared by the laboratory are kept within the sample containers at all times and never opened in the field. Analyses of trip blanks indicate whether a sample was contaminated during shipment from the laboratory to the field and from the field to the laboratory. Tiamat's standard sample bottle procedure is to have each set of sample bottles placed into clean new plastic bags. This prevents direct contact between other sample bottles in the sample cooler.

Field Duplicates

Duplicate samples are samples collected sequentially at the time of sampling. Generally the same compounds should be detected in both samples. For this initial assessment, there have been no history of problematic analytical parameters and field duplicates were not warranted.

Laboratory Quality Control

The following sections outline the quality control measures which the laboratory implements. Generally, Maxxam's and ALS's QA/QC samples were tested at least once per analytical batch.

Laboratory Duplicate Assessment

Lab duplicates are two separate aliquots of water (from one location but from different vials) that are analysed in the laboratory to assess laboratory analytical precision. For comparison between duplicates a calculation of relative percent difference (RPD) was carried out by the laboratory. No laboratory duplicate had any analytes with an RPD greater than the laboratory control limits. This quantitatively affirms the QA/QC and the precision of a sample result.

Matrix Spike Assessment

A matrix spike is a sample prepared by adding a known mass of a target analyte(s) to a specified amount of sample (matrix). Spiked samples are used to determine the effect of the matrix on a method's recovery efficiency. The laboratory states their control limits based on 99% confidence interval in the quality control report section of the laboratory analytical report. Control limits for recoveries are often statistically determined by the method, but under some conditions may revert to standard method limits.

Generally, matrix spike recoveries for groundwater tests were within laboratory control limits. The results of matrix spike recovery confirm the protocols and the acceptable limits established by the laboratory for precision and accuracy was met.

Terms and Conditions for use of Alberta Survey Control Marker Data

- 1. The distribution of this digital data is provided as a service to the user and is under copyright to the Government of Alberta.
- Redistribution of the data in whole or in part, whether alone or part of a value added product, is not permitted without the prior written consent of Alberta Sustainable Resource Development on behalf of the Minister of Alberta Sustainable Resource Development, Government of Alberta.
- In view of the dated nature of the data, it is the responsibility of the user of the data:

 a) Confirm with the Alberta Sustainable Resource Development whether later versions are
 available before making use of the data.
 - b) Advise users of the age and status of the data if the Minister permits the user to provide the data to other users.
- 4. The user agrees that the data and each part thereof, any formatting or presentation thereof, any storage media on which it is provided, and any communication of any kind, incidental or in relation thereto, is provided to the user by the Minister and the Crown without warranty or representation as to any matter including but not limited to whether the data and storage media is correct, accurate or free from error, defect, danger, or hazard, and whether it is otherwise useful or suitable for any use the user may make of it.
- 5. The Crown in right of Alberta, the Minister and their employees and agents, shall not be liable for any claims, costs, losses, or damages, including any special, indirect, incidental or consequential loss or damage, which the user may incur or experience as a result of the use or possession of the data or associated storage media.

SURVEYING AND MAPPING DIVISION

Alberta Survey Control Marker (ASCM) Information MASCOT DSS-1

	MASCOT DSS-1
Horz Datum NAD83 Updated: 1994-05-24	ASCM 36574
Latitude 52 17 43.12829 dms	Marker Installed 67-03
Longitude 113 47 52.26311 dms	Tablet Markings 793+16.23.4
Horz Class INTEGRATED , ORDER 2	Date Printed 2013-08-21
	Last Updated 2003-03-12 Mapsheet Name RED DEER
Vert Datum CVD28 Updated: 1983-12-08	Mapsheet Number 5793 + 016
Elevation 850.471 m	For current information call Geodetic Survey
Vert Class INTEGRATED , SPIRIT LEVELS	(780) 427-3143 FAX: (780) 427-1493 Marker Condition GOOD 92-02-20
3TM COORDINATES	ADJACENT MARKERS (calculated) Updated: 1994-06-07
Scale Factor 0.999900 At Ref Mer 114	ASCM Tablet Horizontal Std PPM/ Grid/ Grnd Grid Std T-t
	To Markings Distance Dev Order Factor Bearing Dev Corr (m)(cm) (dms) (s) (s)
Northing 5795642.746 m	(m)(cm) (dms) (s) (s) 67884 793+16.23.3 427.874 1 28/1 0.999774 29 42 37.77 2.4 0.01
Easting 13790.274 m Convergence 0 09 35.77 dms	14266 793+16.24.3 427.874 1 2871 0.999774 29 42 37.77 2.4 0.01
Station Ellipsoid Factor 0.999870	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Station Combined Factor 0.999772	
	225466 793+16.96 491.603 1 45/2 0.999770 249 07 53.21 3.6 -0.01
GEOID DATA (GSD95) Updated: 96-01-06	225466 793+16.96 491.603 1 45/2 0.999770 249 07 53.21 3.6 -0.01 266627 793+16.90 530.988 1 38/2 0.999770 301 13 12.35 3.1 0.01
Component Magnitude Std Dev	MARKER TYPE Updated: 1992-03-27
Meridian Defl,XI(+N) 2.1 s 2 s	ASC BRASS TABLET MKD 793+16.23.4 ON 7.0CM HEAVY WALL STEEL PIPE.
Prime Vert Defl,ETA(+E) 4.4 s 2 s	9 CM BGL IN A MH & COVER, LANDSCAPED
Geoid_Ellip Separation -18.29 m 1 m	
COORDINATE HISTORY HORZ VERT	
	LOCATED ON THE WEST SIDE OF RIVERSIDE DRIVE - SOUTH OF 42 AVENUE SHOWN ON PLAN
Originating Project 70033 70033	#5495 MCL; 7.0 M NORTH OF CENTRE LINE OF RIVERSIDE DRIVE; 117.7 M SOUTH OF
Originating Project 70033 70033 Published 83-12-08 83-12-08	CENTRE LINE OF STORM SEWER CROSSING MARKED WITH SIGN "AUTHORIZED VEHICLES ONLY
Published 83-12-08 83-12-08	
Published 83-12-08 83-12-08 Revising Project NAD83	CENTRE LINE OF STORM SEWER CROSSING MARKED WITH SIGN "AUTHORIZED VEHICLES ONLY
Published 83-12-08 83-12-08 Revising Project NAD83 Published 94-05-24	CENTRE LINE OF STORM SEWER CROSSING MARKED WITH SIGN "AUTHORIZED VEHICLES ONLY
Published 83-12-08 83-12-08 Revising Project NAD83 Published 94-05-24 Revising Project	CENTRE LINE OF STORM SEWER CROSSING MARKED WITH SIGN "AUTHORIZED VEHICLES ONLY
Published 83-12-08 83-12-08 Revising Project NAD83 Published 94-05-24 Revising Project Published	CENTRE LINE OF STORM SEWER CROSSING MARKED WITH SIGN "AUTHORIZED VEHICLES ONLY
Published 83-12-08 83-12-08 Revising Project NAD83 Published 94-05-24 Revising Project Published Revising Project	CENTRE LINE OF STORM SEWER CROSSING MARKED WITH SIGN "AUTHORIZED VEHICLES ONLY
Published 83-12-08 83-12-08 Revising Project NAD83 Published 94-05-24 Revising Project Published Revising Project Published	CENTRE LINE OF STORM SEWER CROSSING MARKED WITH SIGN "AUTHORIZED VEHICLES ONLY BEYOND THIS POINT"; COUNTER SUNK IN STEEL SLEEVE WITH REMOVABLE LID.
Published 83-12-08 83-12-08 Revising Project NAD83 Published 94-05-24 Revising Project Published Revising Project	CENTRE LINE OF STORM SEWER CROSSING MARKED WITH SIGN "AUTHORIZED VEHICLES ONLY BEYOND THIS POINT"; COUNTER SUNK IN STEEL SLEEVE WITH REMOVABLE LID.
Published 83-12-08 83-12-08 Revising Project NAD83 Published 94-05-24 Revising Project Published Revising Project Published	CENTRE LINE OF STORM SEWER CROSSING MARKED WITH SIGN "AUTHORIZED VEHICLES ONLY BEYOND THIS POINT"; COUNTER SUNK IN STEEL SLEEVE WITH REMOVABLE LID.
Published 83-12-08 83-12-08 Revising Project NAD83 Published 94-05-24 Revising Project Published Revising Project Published NON COORDINATE REVISIONS 1971-05-19 FIRST MARKER LOCATION	CENTRE LINE OF STORM SEWER CROSSING MARKED WITH SIGN "AUTHORIZED VEHICLES ONLY BEYOND THIS POINT"; COUNTER SUNK IN STEEL SLEEVE WITH REMOVABLE LID.
Published 83-12-08 83-12-08 Revising Project NAD83 Published 94-05-24 Revising Project Published Revising Project Published NON COORDINATE REVISIONS 1971-05-19 FIRST MARKER LOCATION DESCRIPTION ENTERED	CENTRE LINE OF STORM SEWER CROSSING MARKED WITH SIGN "AUTHORIZED VEHICLES ONLY BEYOND THIS POINT"; COUNTER SUNK IN STEEL SLEEVE WITH REMOVABLE LID. MARKER CONDITION COMMENTS Inspected Updated
Published 83-12-08 83-12-08 Revising Project NAD83 Published 94-05-24 Revising Project Published Revising Project Published NON COORDINATE REVISIONS 1971-05-19 FIRST MARKER LOCATION DESCRIPTION ENTERED 2003-03-12 "MAPSHEET NAME" AND/OR	CENTRE LINE OF STORM SEWER CROSSING MARKED WITH SIGN "AUTHORIZED VEHICLES ONLY BEYOND THIS POINT"; COUNTER SUNK IN STEEL SLEEVE WITH REMOVABLE LID. MARKER CONDITION COMMENTS Inspected Updated MARKER REPORTED IN GOOD CONDITION 1992-02-20 1992-03-27
Published 83-12-08 83-12-08 Revising Project NAD83 Published 94-05-24 Revising Project Published Revising Project Published NON COORDINATE REVISIONS 1971-05-19 FIRST MARKER LOCATION DESCRIPTION ENTERED	CENTRE LINE OF STORM SEWER CROSSING MARKED WITH SIGN "AUTHORIZED VEHICLES ONLY BEYOND THIS POINT"; COUNTER SUNK IN STEEL SLEEVE WITH REMOVABLE LID. MARKER CONDITION COMMENTS Inspected Updated MARKER REPORTED IN GOOD CONDITION 1992-02-20 1992-03-27 MARKER REPORTED IN GOOD CONDITION. 1989-02-08 1989-06-07
Published 83-12-08 83-12-08 Revising Project NAD83 Published 94-05-24 Revising Project Published Revising Project Published NON COORDINATE REVISIONS 1971-05-19 FIRST MARKER LOCATION DESCRIPTION ENTERED 2003-03-12 "MAPSHEET NAME" AND/OR	CENTRE LINE OF STORM SEWER CROSSING MARKED WITH SIGN "AUTHORIZED VEHICLES ONLY BEYOND THIS POINT"; COUNTER SUNK IN STEEL SLEEVE WITH REMOVABLE LID. MARKER CONDITION COMMENTS Inspected Updated MARKER REPORTED IN GOOD CONDITION 1992-02-20 1992-03-27
Published 83-12-08 83-12-08 Revising Project NAD83 Published 94-05-24 Revising Project Published Revising Project Published NON COORDINATE REVISIONS 1971-05-19 FIRST MARKER LOCATION DESCRIPTION ENTERED 2003-03-12 "MAPSHEET NAME" AND/OR	CENTRE LINE OF STORM SEWER CROSSING MARKED WITH SIGN "AUTHORIZED VEHICLES ONLY BEYOND THIS POINT"; COUNTER SUNK IN STEEL SLEEVE WITH REMOVABLE LID. MARKER CONDITION COMMENTS Inspected Updated MARKER REPORTED IN GOOD CONDITION 1992-02-20 1992-03-27 MARKER REPORTED IN GOOD CONDITION. 1989-02-08 1989-06-07
Published 83-12-08 83-12-08 Revising Project NAD83 Published 94-05-24 Revising Project Published Revising Project Published NON COORDINATE REVISIONS 1971-05-19 FIRST MARKER LOCATION DESCRIPTION ENTERED 2003-03-12 "MAPSHEET NAME" AND/OR	CENTRE LINE OF STORM SEWER CROSSING MARKED WITH SIGN "AUTHORIZED VEHICLES ONLY BEYOND THIS POINT"; COUNTER SUNK IN STEEL SLEEVE WITH REMOVABLE LID. MARKER CONDITION COMMENTS Inspected Updated MARKER REPORTED IN GOOD CONDITION 1992-02-20 1992-03-27 MARKER REPORTED IN GOOD CONDITION. 1989-02-08 1989-06-07
Published 83-12-08 83-12-08 Revising Project NAD83 Published 94-05-24 Revising Project Published Revising Project Published NON COORDINATE REVISIONS 1971-05-19 FIRST MARKER LOCATION DESCRIPTION ENTERED 2003-03-12 "MAPSHEET NAME" AND/OR	CENTRE LINE OF STORM SEWER CROSSING MARKED WITH SIGN "AUTHORIZED VEHICLES ONLY BEYOND THIS POINT"; COUNTER SUNK IN STEEL SLEEVE WITH REMOVABLE LID. MARKER CONDITION COMMENTS MARKER REPORTED IN GOOD CONDITION MARKER REPORTED IN GOOD CONDITION. MARKER REPORTED IN GOOD CONDITION.
Published 83-12-08 83-12-08 Revising Project NAD83 Published 94-05-24 Revising Project Published NON COORDINATE REVISIONS 1971-05-19 FIRST MARKER LOCATION DESCRIPTION ENTERED 2003-03-12 "MAPSHEET NAME" AND/OR "MAPSHEET NO" CHANGED	CENTRE LINE OF STORM SEWER CROSSING MARKED WITH SIGN "AUTHORIZED VEHICLES ONLY BEYOND THIS POINT"; COUNTER SUNK IN STEEL SLEEVE WITH REMOVABLE LID. MARKER CONDITION COMMENTS MARKER REPORTED IN GOOD CONDITION MARKER REPORTED IN GOOD CONDITION. MARKER REPORTED IN GOOD CONDITION.
Published 83-12-08 83-12-08 Revising Project NAD83 Published 94-05-24 Revising Project Published Revising Project Published NON COORDINATE REVISIONS 1971-05-19 FIRST MARKER LOCATION DESCRIPTION ENTERED 2003-03-12 "MAPSHEET NAME" AND/OR	CENTRE LINE OF STORM SEWER CROSSING MARKED WITH SIGN "AUTHORIZED VEHICLES ONLY BEYOND THIS POINT"; COUNTER SUNK IN STEEL SLEEVE WITH REMOVABLE LID. MARKER CONDITION COMMENTS MARKER REPORTED IN GOOD CONDITION MARKER REPORTED IN GOOD CONDITION. MARKER REPORTED IN GOOD CONDITION.
Published 83-12-08 83-12-08 Revising Project NAD83 Published 94-05-24 Revising Project Published NON COORDINATE REVISIONS 1971-05-19 FIRST MARKER LOCATION DESCRIPTION ENTERED 2003-03-12 "MAPSHEET NAME" AND/OR "MAPSHEET NO" CHANGED	CENTRE LINE OF STORM SEWER CROSSING MARKED WITH SIGN "AUTHORIZED VEHICLES ONLY BEYOND THIS POINT"; COUNTER SUNK IN STEEL SLEEVE WITH REMOVABLE LID. MARKER CONDITION COMMENTS Inspected Updated MARKER REPORTED IN GOOD CONDITION 1992-02-20 1992-03-27 MARKER REPORTED IN GOOD CONDITION. 1989-02-08 1989-06-07 MARKER REPORTED IN GOOD CONDITION. 1988-11-24 1988-12-01

SURVEYING AND MAPPING DIVISION

Alberta Survey Control Marker (ASCM) Information

MASCOT DSS-1 Horz Datum NAD83 Updated: 1994-05-24 ASCM 124339 Latitude 52 17 27.60973 dms Marker Installed 82-12 Longitude 113 47 55.28404 dms Tablet Markings 793+16.103 Horz Class INTEGRATED , ORDER 2 Date Printed 2013-08-21 Last Updated 2003-03-12 Mapsheet Name RED DEER Vert Datum CVD28 Updated: 1984-07-04 Mapsheet Number 5793 + 016 Elevation 854.345 m For current information call Geodetic Survey Vert Class INTEGRATED , SPIRIT LEVELS (780) 427-3143 FAX: (780) 427-1493 Marker Condition GOOD 92-02-20 ADJACENT MARKERS (calculated) 3TM COORDINATES Updated: 1994-06-06 Scale Factor 0.999900 At Ref Mer 114 ASCM Tablet Horizontal Std PPM/ Grid/ Grnd Grid Std T-t Distance Dev Order Factor Bearing Dev Corr (m)(cm) (dms) (s) (s) To Markings Northing 5795162.970 m Northing5795162.970 m(m) (cm)(dms)(s)(s)Easting13734.363 m109843793+16.104314.801173/20.999771271 1435.246.10.00Convergence00933.34 dms257030085220323.950152/20.9997692160736.984.3-0.01StationEllipsoidFactor0.99977184251793+16.13.2373.193140/20.9997701324132.093.3-0.01StationCombinedFactor0.99977184251793+16.105389.892151/20.9997712431824.124.3-0.01GEOIDDATA<(GSD95)</td>Updated:96-01-06119826793+16.97473.445140/20.999771292283.40.01 _____ Magnitude Std Dev MARKER TYPE Component Updated: 1992-03-27 Meridian Defl,XI(+N) 2.1 s 2 s ASC BRASS TABLET ON A 5CM X 250CM HEAVY WALL SQ STEEL PIPE WITH HELIX. Prime Vert Defl,ETA(+E) 4.3 s 2 s FLUSH WITH GROUND. 1 GP, LANDSCAPED Geoid_Ellip Separation -18.28 m 1 m _____ ----- MARKER LOCATION Updated: 1989-06-07 COORDINATE HISTORY HORZ VERT LOCATED ON THE WEST SIDE OF RIVERSIDE DRIVE AND NORTH OF 67 STREET (BRIDGE) Originating Project 82042 82042 Published 84-07-04 84-07-04 ARCHO F VALUE AND ADDITIONAL AND A 52.4 M SOUTH OF FD I AT SOUTH POINT OF LOT 21, BLOCK 1, PLAN #782-2383; 23.3 M WEST OF THIRD LIGHT STANDARD NORTH OF BRIDGE ON OFF RAMP. Revising Project NAD83 Published 94-05-24 Revising Project Published Revising Project Published _____ NON COORDINATE REVISIONS _____ 1984-07-04 FIRST MARKER LOCATION MARKER CONDITION COMMENTS Inspected Updated DESCRIPTION ENTERED 2003-03-12 "MAPSHEET NAME" AND/OR MARKER REPORTED IN GOOD CONDITION 1992-02-20 1992-03-27 "MAPSHEET NO" CHANGED MARKER REPORTED IN GOOD CONDITION. 1989-02-08 1989-06-07 MARKER REPORTED IN GOOD CONDITION. 1988-11-24 1988-12-01 _____ COORDINATE HISTORY COMMENTS HORZ 94-05-24 ALBERTA NAD83 READJUSTMENT _____ HISTORICAL/OTHER MARKER NAMES VERT OLD ASC # 57933 16 103

12-435 Phase II ESA – Riverside Light Industrial Park Historic Waste Disposal Site, The City of Red Deer

SOIL REPORTS

Tiamat Environmental 07/16/12 Received Riverside Light

TIAMAT ENVIRONMENTAL ATTN: LEON MAH UNIT 107, 2719 - 7TH AVENUE NE CALGARY AB T2A 2L9

.

Date Received: 28-JUN-13 Report Date: 16-JUL-13 14:53 (MT) Version: FINAL

Client Phone: 403-640-9009

Certificate of Analysis

Lab Work Order #: L1324834

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 12-435 10-317479

Tonica Gibson

Monica Gibson Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

ALS LABORATORY GROUP CHEMICAL ANALYSIS REPORT

Lab ID Sample ID Test Description	Result	Qualifier	D.L.	Units	Extracted	Analyzed	Ву
1324834-1 RIVERSIDE LIGHT COMPOSITE SOIL BAG #1	:						/ :
ample Date: JAL/ LTM on 26-JUN-13		;			•	•	-
fatrix: SOIL						1	
	:				- - 		
Total Organic Carbon	0.85		0.1	%	12-JUL-13	12-JUL-13	: XH
Class II Landfill Pkg w/ Paint Filter					-		1
Paint Filter Test	PASS					06-JUL-13	NP
Flash Point	>75	1	30	Deg. C		06-JUL-13	NP
Mercury (Hg)-Leachate	<0.010		0.01	mg/L		08-JUL-13	SH
				_	,		:
Hq	8.47		0.1	рН		08-JUL-13	· KJ,
TCLP Leachable Metals	0.50				•	00 00 10	
Silver (Ag)-Leachable.	<0.50 <0.20		0.5 0.2	mg/L	•	06-JUL-13 06-JUL-13	LG
Arsenic (As)-Leachable Boron (B)-Leachable	<0.20		0.2 5	mg/L mg/l		06-JUL-13	LG
Barium (Ba)-Leachable	<5.0	1	5 5	mg/L mg/L		06-JUL-13	LG
Berylium (Be)-Leachable	<0.50		0.5	mg/L		06-JUL-13	- 1G
Cadmium (Cd)-Leachable	<0.050		0.05	mg/L		06-JUL-13	LG
Cobalt (Co)-Leachable	<5.0		5	mg/L		06-JUL-13	LG
Chromium (Cr)-Leachable	<0.50		0.5	mg/L		06-JUL-13	LG
Copper (Cu)-Leachable	<5.0		5	mg/L		06-JUL-13	: LG
Iron (Fe)-Leachable	<5.0		5	mg/L		06-JUL-13	: LG
Nickel (Ni)-Leachable	<0.50		0.5	mg/L		06-JUL-13	; LG
Lead (Pb)-Leachable	<0.50		0.5	mg/t_		06-JUL-13	LG
Antimony (Sb)-Leachable	<5.0	:	5	mg/L	ĺ	06-JUL-13	LG
Selenium (Se)-Leachable	<0.20		0.2	mg/L	1	06-JUL-13	LG
Thallium (TI)-Leachable	<0.50		0.5	mg/L		06-JUL-13	LG
Uranium (U)-Leachable	<1.0		1	mg/L		06-JUL-13	່ LG
Vanadium (V)-Leachable	<5.0	4	5 5	mg/L		06-JUL-13	
Zinc (Zn)-Leachable Zirconium (Zr)-Leachable	<5.0 <5.0	1	ວ 5	mg/L mg/L		06-JUL-13 06-JUL-13	LG
	<0.0		5	nığır.		00-004-13	1 10
TCLP Leachable BTEX Benzene	<0.0050	-	0.005	mg/L	06-JUL-13	06-JUL-13	VV
Toluene	<0.0050		0.005	mg/L	06-JUL-13	06-JUL-13	VV
Ethylbenzene	<0.0050		0.005	mg/L	06-JUL-13	06-JUL-13	vv
Xylenes	<0.0050		0.005	mg/L	06-JUL-13	06-JUL-13	i vv
324834-2 RIVERSIDE LIGHT COMPOSITE SOIL BAG #2		<u>د</u> ر الم				+	+
ample Date: JAL/ LTM on 26-JUN-13	s						i
atrix: SOL	:						÷
						•	1
Totat Organic Carbon	0.36		0.1	%	12-JUL-13	12-JUL-13	XH
Class II Landfill Pkg w/ Paint Filter							: :
Flash Point	>75		30	Deg. C		. 06-JUL-13	NP
Paint Filter Test	PASS					06-JUL-13	NP
ρH	8.80		0.1	pН		08-JUL-13	KJ
Mercury (Hg)-Leachate	<0.010		0.01	mg/L		08-JUL-13	SH
TCLP Leachable Metals							Į.
Silver (Ag)-Leachable	<0.50		0.5	mg/L		06-JUL-13	LG
Arsenic (As)-Leachable	<0.20	(0.2	mg/L		06-JUL-13	LG
Boron (B)-Leachable	<5.0		5	mg/L		06-JUL-13	LG
Barium (Ba)-Leachable	<5.0		5	mg/L		06-JUL-13	LG
Beryllium (Be)-Leachable	<0.50	;	0.5	mg/L		06-JUL-13	LG
Cadmium (Cd)-Leachable	<0.050		0.05	mg/L	l	06-JUL-13	i LG

ALS LABORATORY GROUP CHEMICAL ANALYSIS REPORT

	Sample ID	Test Description	Result	Qualifier	D.L.	Units	Extracted	Analyzed	By
1324834-2	RIVERSIDE LIGHT C	OMPOSITE SOIL BAG #2					•		
ample Date: J	AL/ LTM on 26-JUN-13						•		:
Aatrix: S	OIL						•	!	
	Class II Landfill Pkg	w/ Daint Filter							:
	TCLP Leachable								:
	Cobait (Co)-Lea		<5.0	• •	5	mg/L		06-JUL-13	LGR
	Chromium (Cr)-		<0.50		0.5	mg/L		06-JUL-13	LGP
	Copper (Cu)-Le		<5.0		5	mg/L		06-JUL-13	LGF
	Iron (Fe)-Leach		<5.0		5	mg/L		06-JUL-13	LGF
	Nickel (Ni)-Lead		<0.50		0.5	mg/L		06-JUL-13	LGF
			<0.50	-	0.5	mg/⊑ mg/L		06-JUL-13	LGF
	Lead (Pb)-Leac		<5.0		5	mg/L		06-JUL-13	LGF
	Antimony (Sb)-I		<0.20		0.2	-		06-JUL-13	LG
	Selenium (Se)-l			-	0.2	mg/L		06-JUL-13	LGI
	Thallium (Ti)-Le		<0.50			mg/L		06-JUL-13	
	Uranium (U)-Le		<1.0		1	mg/L	:	1	LGI
	Vanadium (V)-L		<5.0		5	mg/L	<u>/</u>	06-JUL-13	LGI
	Zinc (Zn)-Leach		<5.0		5	mg/L		06-JUL-13	LG
	Zirconium (Zr)-		<5.0		5	mg/L		06-JUL-13	LG
	TCLP Leachable I	BTEX							:
	Benzene		<0.0050	-	0.005	mg/L	06-JUL-13	06-JUL-13	VV
	Toluene		<0.0050	1	0.005	mg/L	06-JUL-13	06-JUL-13	VV
	Ethylbenzene		<0.0050		0.005	mg/L	06-JUL-13	06-JUL-13	٧V
	Xylenes		<0.0050		0.005	mg/L	06-JUL-13	06-JUL-13	VV V
			:						
			:				2		:
							•	•	:
							1		:
							1		1
				:			: :	:	:
					İ				1
									:
					1				
							1		
							i		
					•				
								· ·	
					· · · · · ·			· · · · · · · · · · · · · · · · · · ·	
					· · · · · · · · · · · · · · · · · · ·				

Methodology Reference

ALS Test Code

Test Description

Methodology Reference (In-House Standard **Operating Procedures which Generally Follow:)**

NO2-SAR-CL	Nitrite-N
HG-TCLP-CL	Mercury (Hg) - TCLP
F2-4-TMB-CL	CCME F2-4 Hydrocarbons
HG-200.2-CVAA-ED	Mercury in Soil by CVAAS
NO3-SAR-CL	Nitrate-N
SAL-MG/KG-CALC-CL	Salinity in mg/kg
SAT-PCNT-CL	% Saturation
BTX-TCLP-CL	TCLP Leachable BTEX
CL-SAR-CL	Chloride (CI) (Saturated Paste)
C-TOT-ORG-LECO-SK	Organic Carbon by combustion method
FLASH-PMCC-AUTO-CL	Pensky-Martens Closed Cup Flashpoint
MET-200.2-CCMS-ED	Metals in Soil by CRC ICPMS
PREP-200.2-ED	Acid Digestion Prep for Metals in Soil
PREP-MOISTURE-CL	% Moisture
VOC-8260-CL	EPA 8260 Volatile Organics
PAINT FILTER-CL	Paint Filter Test
PH-1:2-CL	pH (1:2 Soil:Water Extraction)
BTXS,F1-CL	BTEX, Styrene and F1 (C6-C10)
MET-TCLP-ICP-CL	TCLP Leachable Metals
B-HOTW-CL	Available Boron, Hot Water
CR-CR6-3060-ED	Chromium, Hexavalent (Cr +6)
F1-4-CALC-CL	CCME Total Hydrocarbons

APHA 4110 B - ION CHROMATOGRAPHY APHA 3112 B-AAS Cold Vapor CCME CWS-PHC Dec-2000 - Pub# 1310 EPA 200.2/245.1 APHA 4110 B - IC Manual Calculation CSSS 18.2-Calculation EPA 5030/8015& 8260-P&T GC-MS/FID CSSS CH15/EPA300.1 SSSA (1996) p. 973 ASTM D-93-10a Flash point tester EPA 200.2/6020A EPA 200.2 Oven dry 105C-Gravimetric SW 846 8260-GC-MS EPA SW846-9095 CSSS 16.3 - pH of 1:2 water extract CCME CWS-PHC Dec-2000 - Pub# 1310 EPA SW846 METHODS 1311 AND 6010B APHA 3120/CSSS 9.2.2-ICP-OES APHA 3500-CR C, EPA 3060A ALKALINE CCME CWS-PHC Dec-2000 - Pub# 1310

Sample Param	eter Qualifier key listed:
Qualifier	Description
DLA	Detection Limit adjusted for required dilution
<u></u>	

12-435 Phase II ESA – Riverside Light Industrial Park Historic Waste Disposal Site, The City of Red Deer

GROUNDWATER REPORTS

Your Project #: 12-435 Site Location: RIVERSIDE LIGHT Your C.O.C. #: A078664

Attention: JESSICA LEE

TIAMAT ENVIRONMENTAL CONSULTANTS Unit #107, 2719-7 Avenue NE CALGARY, AB CANADA T2A 2L9

Report Date: 2013/12/12

This report supersedes all previous reports with the same Maxxam job number

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B367060

Maxxam

Received: 2013/08/02, 07:30

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Acetic Acid, Formic Acid, Propionic Acid	3	N/A	2013/08/08	CAL SOP-00063	Dionex #031181, R05
Alkalinity @25C (pp, total), CO3,HCO3,OH	3	N/A	2013/08/03	AB SOP-00005	SM 2320-B
Organic Halogen (Adsorbable) (1)	3	N/A	2013/08/09	PTC SOP-00250	Coulometric - Titr.
Biochemical Oxygen Demand	3	2013/08/02	2013/08/07	AB SOP-00017	SM 5210 B
BTEX/F1 in Water by HS GC/MS	3	N/A	2013/08/06	AB SOP-00039	CCME, EPA 8260C
Cadmium - low level CCME - Dissolved	3	N/A	2013/08/08	AB SOP-00043	EPA 200.8
Cadmium - low level CCME (Total)	2	2013/08/02	2013/08/08	AB SOP-00043	EPA 200.8
Cadmium - low level CCME (Total)	1	2013/08/02	2013/08/09	AB SOP-00043	EPA 200.8
Chloride by Automated Colourimetry	3	N/A	2013/08/07	AB SOP-00020	SM 4500 CI-G
Chemical Oxygen Demand	3	N/A	2013/08/07	AB SOP-00016	SM 5220-D
Conductivity @25C	3	N/A	2013/08/03	AB SOP-00005	SM 2510-B
CCME Hydrocarbons in Water (F2; C10-C16)	1	2013/08/06	2013/08/07	AB SOP-00040AB SOP-000	EPA3510C/CCME PHCCWS
CCME Hydrocarbons in Water (F2; C10-C16)	2	2013/08/06	2013/08/08	AB SOP-00040AB SOP-000	EPA3510C/CCME PHCCWS
Elements by ICP - Dissolved	3	N/A	2013/08/07	AB SOP-00042	EPA 200.7
Elements by ICP - Total	3	2013/08/07	2013/08/07	AB SOP-00042	EPA 200.7
Elements by ICPMS - Dissolved	3	N/A	2013/08/08	AB SOP-00043	EPA 200.8
Elements by ICPMS - Total	3	2013/08/07	2013/08/08	AB SOP-00043	EPA 200.8
Nitrogen (total), Calc. TKN, NO3, NO2	3	N/A	2013/08/07	AB WI-00065	SM 4500-N A
Ammonia-N (Total)	3	N/A	2013/08/07	AB SOP-00007	EPA 350.1
Nitrate and Nitrite	2	N/A	2013/08/06	AB SOP-00023	SM4110B
Nitrate and Nitrite	1	N/A	2013/08/07	AB SOP-00023	SM4110B
Nitrate + Nitrite-N (calculated)	2	N/A	2013/08/06	AB SOP-00023	SM 4110-B
Nitrate + Nitrite-N (calculated)	1	N/A	2013/08/07	AB SOP-00023	SM 4110-B
Nitrogen, (Nitrite, Nitrate) by IC	3	N/A	2013/08/03	AB SOP-00023	SM 4110-B
pH @25°C (Alkalinity titrator)	3	N/A	2013/08/03	AB SOP-00005	SM 4500-H+B
Sulphate by Automated Colourimetry	3	N/A	2013/08/07	AB SOP-00018	SM 4500 SO4-E
Total Trihalomethanes Calculation	3	N/A	2013/08/08	CAL SOP-00104	EPA 8260 C
Total Kjeldahl Nitrogen	3	2013/08/07	2013/08/07	AB SOP-00008	EPA 351.1, 351.2
Carbon (Total Organic) (2)	3	N/A	2013/08/07	CAL SOP-00077	MMCW 119
VOCs in Water by HS GC/MS (Std List)	3	N/A	2013/08/07	CAL SOP-00227	EPA 8260 C

Remarks:

All Blank values are reported. Associated data are not blank corrected. 'MDL' = Method Detection Limit, '<' = Less than MDL, '---' Not Analyzed

Maxxam

Your Project #: 12-435 Site Location: RIVERSIDE LIGHT Your C.O.C. #: A078664

Attention: JESSICA LEE

TIAMAT ENVIRONMENTAL CONSULTANTS Unit #107, 2719-7 Avenue NE CALGARY, AB CANADA T2A 2L9

Report Date: 2013/12/12

This report supersedes all previous reports with the same Maxxam job number

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B367060

Received: 2013/08/02, 07:30

Solids results are based on dry weight except Biota Analyses & Special Waste Oil & Grease

Organic analyses are not corrected for extraction recovery standards except for Isotope Dilution methods, (i.e. CARB 429 PAH, all PCDD/F and DBD/DBF analyses)

All CCME results met required criteria unless otherwise stated in the report. All data on final reports are validated by technical personnel. Signature on file at the laboratory. Deviations from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method:

F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction

All Groundwater samples except BTEX/VOC's or Purgeable Hydrocarbons are decanted and/or filtered prior to analysis unless otherwise mandated by regulatory agency

All analysis data reported was generated when the analytical methods were in statistical control and criteria for spike recoveries, reference material recoveries, method blanks data and duplicate precision were met unless otherwise stated

This report shall not be reproduced except in full, without the written approval of the laboratory

Reporting results to two significant figures at the RDL is to permit statistical evaluation and is not intended to be an indication of analytical precision.

Methods used by Maxxam are based upon those found in 'Standard Methods for the Examination of Water and Wastewater', 22nd Edition, published by the American Public Health Association, or on US EPA, protocols found in the 'Test Methods for Evaluating Solid Waste, Physical/Chemical Method, SW846, 3rd Edition. Other procedures are based on the methodologies accepted by the appropriate regulatory agency. Methodology briefs are available by written request.

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies, quality assurance and quality control procedures except where otherwise agreed to by the client and testing company in writing. Liability for any and all use of these test results shall be limited to the actual cost of the pertinent analysis done. There is no other warranty expressed or implied. Your samples will be retained at Maxxam for a period of 60 days from receipt of data or as per contract.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Edmonton Petroleum

(2) TOC present in the sample should be considered as non-purgeable TOC.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Kayla Brassard, Project Manager Email: KBrassard@maxxam.ca Phone# (403)735-2258

This report has been generated and distributed using a secure automated process. Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Total Cover Pages : 2 Page 2 of 19

AT1 BTEX AND F1-F2 (WATER)

Maxxam ID		HC0071	HC0072	HC0073		
Sampling Date		2013/08/01	2013/08/01	2013/08/01		
COC Number		A078664	A078664	A078664		
	Units	MW-01	MW-02	MW-03	RDL	QC Batch
Hydrocarbons						
F2 (C10-C16 Hydrocarbons)	mg/L	<0.10	<0.10	<0.10	0.10	7046697
Volatiles						
Benzene	ug/L	<0.40	<0.40	<0.40	0.40	7051829
Toluene	ug/L	<0.40	<0.40	<0.40	0.40	7051829
Ethylbenzene	ug/L	<0.40	<0.40	<0.40	0.40	7051829
m & p-Xylene	ug/L	<0.80	<0.80	<0.80	0.80	7051829
o-Xylene	ug/L	<0.40	<0.40	<0.40	0.40	7051829
Xylenes (Total)	ug/L	<0.80	<0.80	<0.80	0.80	7051829
F1 (C6-C10) - BTEX	ug/L	<100	<100	<100	100	7051829
(C6-C10)	ug/L	<100	<100	<100	100	7051829
Surrogate Recovery (%)						
1,4-Difluorobenzene (sur.)	%	102	99	104		7051829
4-BROMOFLUOROBENZENE (sur.)	%	99	102	96		7051829
D4-1,2-DICHLOROETHANE (sur.)	%	99	99	100		7051829
O-TERPHENYL (sur.)	%	128	122	119		7046697
RDL = Reportable Detection Limit		·	·			

REGULATED METALS (CCME/AT1) - DISSOLVED

Maxxam ID		HC0071	HC0071	HC0072	HC0073		
Sampling Date		2013/08/01	2013/08/01	2013/08/01	2013/08/01		
COC Number		A078664	A078664	A078664	A078664		
	Units	MW-01	MW-01 Lab-Dup	MW-02	MW-03	RDL	QC Batch
Elements							
Aluminum (Al)	mg/L	<0.0030	<0.0030	<0.0030	<0.0030	0.0030	7057489
Antimony (Sb)	mg/L	<0.00060	<0.00060	<0.00060	<0.00060	0.00060	7057489
Arsenic (As)	mg/L	0.00033	0.00032	0.00051	0.0059	0.00020	7057489
Barium (Ba)	mg/L	0.15		0.20	0.55	0.010	7057490
Beryllium (Be)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	0.0010	7057489
Boron (B)	mg/L	0.11		0.057	0.16	0.020	7057490
Calcium (Ca)	mg/L	230		110	210	0.30	7057490
Chromium (Cr)	mg/L	<0.0010	0.0014	<0.0010	<0.0010	0.0010	7057489
Cobalt (Co)	mg/L	0.0015	0.0015	0.00073	0.0092	0.00030	7057489
Copper (Cu)	mg/L	0.0019	0.0021	0.0021	0.0012	0.00020	7057489
Iron (Fe)	mg/L	0.080		<0.060	4.1	0.060	7057490
Lead (Pb)	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	0.00020	7057489
Lithium (Li)	mg/L	0.035		0.021	0.035	0.020	7057490
Magnesium (Mg)	mg/L	73		35	80	0.20	7057490
Manganese (Mn)	mg/L	0.22		0.14	1.8	0.0040	7057490
Molybdenum (Mo)	mg/L	0.0013	0.0014	0.0017	0.0039	0.00020	7057489
Nickel (Ni)	mg/L	0.0086	0.0089	0.0022	0.012	0.00050	7057489
Phosphorus (P)	mg/L	<0.10		<0.10	0.13	0.10	7057490
Potassium (K)	mg/L	7.5		4.7	26	0.30	7057490
Selenium (Se)	mg/L	0.00047	0.00044	0.0016	0.00028	0.00020	7057489
Silicon (Si)	mg/L	6.8		5.2	8.1	0.10	7057490
Silver (Ag)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	0.00010	7057489
Sodium (Na)	mg/L	68		36	140	0.50	7057490
Strontium (Sr)	mg/L	1.1		0.58	1.7	0.020	7057490
Sulphur (S)	mg/L	44		9.3	9.0	0.20	7057490
Thallium (Tl)	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	0.00020	7057489
Tin (Sn)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	0.0010	7057489
Titanium (Ti)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	0.0010	7057489
Uranium (U)	mg/L	0.0078	0.0075	0.0028	0.0035	0.00010	7057489
Vanadium (V)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	0.0010	7057489
Zinc (Zn)	mg/L	<0.0030	0.0031	<0.0030	0.0077	0.0030	7057489
Low Level Elements							
Cadmium (Cd)	ug/L	0.080		0.040	0.047	0.0050	7046381
RDL = Reportable Detection Lim	it						
Lab-Dup = Laboratory Initiated [Duplicate						

REGULATED METALS (CCME/AT1) - TOTAL

Maxxam ID		HC0071	HC0072	HC0073		
Sampling Date		2013/08/01	2013/08/01	2013/08/01		
COC Number		A078664	A078664	A078664		
	Units	MW-01	MW-02	MW-03	RDL	QC Batch
Elements						
Aluminum (Al)	mg/L	21	9.3	8.7	0.0030	7057234
Antimony (Sb)	mg/L	0.00098	0.00079	0.00087	0.00060	7057234
Arsenic (As)	mg/L	0.035	0.018	0.017	0.00020	7057234
Barium (Ba)	mg/L	1.4	0.53	0.95	0.010	7057243
Beryllium (Be)	mg/L	0.0018	<0.0010	<0.0010	0.0010	7057234
Boron (B)	mg/L	0.12	0.061	0.17	0.020	7057243
Calcium (Ca)	mg/L	350	150	250	0.30	7057243
Chromium (Cr)	mg/L	0.049	0.019	0.021	0.0010	7057234
Cobalt (Co)	mg/L	0.019	0.010	0.017	0.00030	7057234
Copper (Cu)	mg/L	0.072	0.031	0.025	0.00020	7057234
Iron (Fe)	mg/L	62	24	30	0.060	7057243
Lead (Pb)	mg/L	0.034	0.014	0.015	0.00020	7057234
Lithium (Li)	mg/L	0.075	0.036	0.051	0.020	7057243
Magnesium (Mg)	mg/L	110	48	96	0.20	7057243
Manganese (Mn)	mg/L	1.6	0.68	2.2	0.0040	7057243
Molybdenum (Mo)	mg/L	0.0035	0.0030	0.0049	0.00020	7057234
Nickel (Ni)	mg/L	0.071	0.032	0.035	0.00050	7057234
Phosphorus (P)	mg/L	1.8	0.63	0.69	0.10	7057243
Potassium (K)	mg/L	13	7.3	29	0.30	7057243
Selenium (Se)	mg/L	0.0020	0.0028	0.00077	0.00020	7057234
Silicon (Si)	mg/L	59	27	31	0.10	7057243
Silver (Ag)	mg/L	0.00066	0.00031	0.00021	0.00010	7057234
Sodium (Na)	mg/L	70	36	150	0.50	7057243
Strontium (Sr)	mg/L	1.2	0.63	1.7	0.020	7057243
Sulphur (S)	mg/L	47	10	11	0.20	7057243
Thallium (Tl)	mg/L	0.00040	<0.00020	<0.00020	0.00020	7057234
Tin (Sn)	mg/L	0.0012	<0.0010	0.0015	0.0010	7057234
Titanium (Ti)	mg/L	0.29	0.15	0.16	0.0010	7057234
Uranium (U)	mg/L	0.0099	0.0040	0.0047	0.00010	7057234
Vanadium (V)	mg/L	0.067	0.030	0.025	0.0010	7057234
Zinc (Zn)	mg/L	0.19	0.094	0.10	0.0030	7057234
Low Level Elements			•			•
Cadmium (Cd)	ug/L	0.81	0.47	0.46	0.0050	7045788
RDL = Reportable Detectior	n Limit					

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		HC0071		HC0072		HC0073		
Sampling Date		2013/08/01		2013/08/01		2013/08/01		
COC Number		A078664		A078664		A078664		
	Units	MW-01	RDL	MW-02	RDL	MW-03	RDL	QC Batch
Calculated Parameters								
Nitrate (NO3)	mg/L	86	0.13	5.5	0.013	<0.013	0.013	7046384
Nitrate plus Nitrite (N)	mg/L	20	0.030	1.3	0.0030	<0.0030	0.0030	7046345
Nitrite (NO2)	mg/L	3.0	0.0099	<0.0099	0.0099	<0.0099	0.0099	7046384
Demand Parameters								
Biochemical Oxygen Demand	mg/L	2.2	2.0	<2.0	2.0	2.2	2.0	7046543
Chemical Oxygen Demand	mg/L	210	5.0	130	5.0	190	5.0	7054227
Misc. Inorganics	-	•						•
Conductivity	uS/cm	1800	1.0	910	1.0	2300	1.0	7046994
рН	рН	7.07		7.48		7.23		7046993
Organic Carbon (C)	mg/L	5.2	0.50	2.9	0.50	16	0.50	7056880
Anions								
Alkalinity (PP as CaCO3)	mg/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	7046990
Alkalinity (Total as CaCO3)	mg/L	620	0.50	350	0.50	940	0.50	7046990
Bicarbonate (HCO3)	mg/L	750	0.50	430	0.50	1100	0.50	7046990
Carbonate (CO3)	mg/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	7046990
Hydroxide (OH)	mg/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	7046990
Sulphate (SO4)	mg/L	160	1.0	39	1.0	34	1.0	7054149
Chloride (Cl)	mg/L	110	1.0	59	1.0	190	1.0	7054104
Nutrients								
Ammonia (N)	mg/L	<0.050	0.050	<0.050	0.050	16 (1)	0.50	7053981
Nitrogen (N)	mg/L	23	0.050	2.1	0.050	14	0.050	7046499
Total Kjeldahl Nitrogen	mg/L	2.4 (2)	0.25	0.86	0.050	14 (2)	0.50	7056189
Nitrite (N)	mg/L	0.91	0.0030	<0.0030	0.0030	<0.0030	0.0030	7047026
Nitrate (N)	mg/L	19 (2)	0.030	1.3	0.0030	<0.0030	0.0030	7047026
Organic Acids	•							•
Acetic Acid	mg/L	<50	50	<50	50	<50	50	7049414
Formic Acid	mg/L	<50	50	<50	50	<50	50	7049414
Propionic Acid	mg/L	<50	50	<50	50	<50	50	7049414
Misc. Organics						·1		
Organic halogen	mg/L	0.075	0.004	0.055	0.004	0.05	0.02	7029167

(1) Detection limits raised due to dilution to bring analyte within the calibrated range. Ammonia greater than TKN. Results are within acceptable limits of precision.

(2) Detection limits raised due to dilution to bring analyte within the calibrated range.

VOLATILE ORGANICS BY GC-MS (WATER)

Maxxam ID		HC0071	HC0072	HC0073		
Sampling Date		2013/08/01	2013/08/01	2013/08/01		
COC Number		A078664	A078664	A078664		
	Units	MW-01	MW-02	MW-03	RDL	QC Batch
Volatiles						
Total Trihalomethanes	ug/L	<2.0	<2.0	<2.0	2.0	7045085
Bromodichloromethane	ug/L	<0.50	<0.50	<0.50	0.50	7054234
Bromoform	ug/L	<0.50	<0.50	<0.50	0.50	7054234
Bromomethane	ug/L	<2.0	<2.0	<2.0	2.0	7054234
Carbon tetrachloride	ug/L	<0.50	<0.50	<0.50	0.50	7054234
Chlorobenzene	ug/L	<0.50	<0.50	<0.50	0.50	7054234
Chlorodibromomethane	ug/L	<1.0	<1.0	<1.0	1.0	7054234
Chloroethane	ug/L	<1.0	<1.0	<1.0	1.0	7054234
Chloroform	ug/L	<0.50	<0.50	<0.50	0.50	7054234
Chloromethane	ug/L	<2.0	<2.0	<2.0	2.0	7054234
1,2-dibromoethane	ug/L	<0.50	<0.50	<0.50	0.50	7054234
1,2-dichlorobenzene	ug/L	<0.50	<0.50	<0.50	0.50	7054234
1,3-dichlorobenzene	ug/L	<0.50	<0.50	<0.50	0.50	7054234
1,4-dichlorobenzene	ug/L	<0.50	<0.50	<0.50	0.50	7054234
1,1-dichloroethane	ug/L	<0.50	<0.50	<0.50	0.50	7054234
1,2-dichloroethane	ug/L	<0.50	<0.50	<0.50	0.50	7054234
1,1-dichloroethene	ug/L	<0.50	<0.50	<0.50	0.50	7054234
cis-1,2-dichloroethene	ug/L	<0.50	<0.50	<0.50	0.50	7054234
trans-1,2-dichloroethene	ug/L	<0.50	<0.50	<0.50	0.50	7054234
Dichloromethane	ug/L	<2.0	<2.0	<2.0	2.0	7054234
1,2-dichloropropane	ug/L	<0.50	<0.50	<0.50	0.50	7054234
cis-1,3-dichloropropene	ug/L	<0.50	<0.50	<0.50	0.50	7054234
trans-1,3-dichloropropene	ug/L	<0.50	<0.50	<0.50	0.50	7054234
Methyl methacrylate	ug/L	<0.50	<0.50	<0.50	0.50	7054234
Methyl-tert-butylether (MTBE)	ug/L	<0.50	<0.50	<0.50	0.50	7054234
Styrene	ug/L	<0.50	<0.50	<0.50	0.50	7054234
1,1,1,2-tetrachloroethane	ug/L	<2.0	<2.0	<2.0	2.0	7054234
1,1,2,2-tetrachloroethane	ug/L	<2.0	<2.0	<2.0	2.0	7054234
Tetrachloroethene	ug/L	<0.50	<0.50	<0.50	0.50	7054234
1,2,3-trichlorobenzene	ug/L	<1.0	<1.0	<1.0	1.0	7054234
1,2,4-trichlorobenzene	ug/L	<1.0	<1.0	<1.0	1.0	7054234
1,3,5-trichlorobenzene	ug/L	<0.50	<0.50	<0.50	0.50	7054234
1,1,1-trichloroethane	ug/L	<0.50	<0.50	<0.50	0.50	7054234
1,1,2-trichloroethane	ug/L	<0.50	<0.50	<0.50	0.50	7054234
Trichloroethene	ug/L	<0.50	<0.50	<0.50	0.50	7054234
Trichlorofluoromethane	ug/L	<0.50	<0.50	<0.50	0.50	7054234

VOLATILE ORGANICS BY GC-MS (WATER)

Maxxam ID		HC0071	HC0072	HC0073		
Sampling Date		2013/08/01	2013/08/01	2013/08/01		
COC Number		A078664	A078664	A078664		
	Units	MW-01	MW-02	MW-03	RDL	QC Batch
1,2,4-trimethylbenzene	ug/L	<0.50	<0.50	<0.50	0.50	7054234
1,3,5-trimethylbenzene	ug/L	<0.50	<0.50	<0.50	0.50	7054234
Vinyl chloride	ug/L	<0.50	<0.50	<0.50	0.50	7054234
Surrogate Recovery (%)			-			
1,4-Difluorobenzene (sur.)	%	99	99	101		7054234
4-BROMOFLUOROBENZENE (sur.)	%	95	94	94		7054234
D4-1,2-DICHLOROETHANE (sur.)	%	100	97	104		7054234
RDL = Reportable Detection Limit						

GENERAL COMMENTS

Each te	emperature is the	average of up to	three cooler temperatures taken at receipt
	Package 1	5.3°C	
			RESULTS OF CHEMICAL ANALYSES OF WATER Comments
Sample	e HC0320-02 Acet	ic Acid, Formic A	id, Propionic Acid: Detection limits raised due to sample matrix.
Sample	e HC0071-02 Acet	ic Acid, Formic A	id, Propionic Acid: Detection limits raised due to sample matrix.
Sample	e HC0072-02 Acet	ic Acid, Formic A	id, Propionic Acid: Detection limits raised due to sample matrix.
Sample	e HC0073-02 Acet	ic Acid, Formic A	id, Propionic Acid: Detection limits raised due to sample matrix.
Result	s relate only to th	e items tested.	

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
7029167	MN2	QC Standard	Organic halogen	2013/08/09		86	%	84 - 111
7029167	MN2	Method Blank	Organic halogen	2013/08/09	<0.5		mg/L	
7046543	LS0	Spiked Blank	Biochemical Oxygen Demand	2013/08/07		86	%	85 - 115
7046543	LS0	Method Blank	Biochemical Oxygen Demand	2013/08/07	<2.0		mg/L	
7046543	LS0	RPD	Biochemical Oxygen Demand	2013/08/07	NC		%	20
7046697	NK3	Matrix Spike	O-TERPHENYL (sur.)	2013/08/07		108	%	50 - 130
			F2 (C10-C16 Hydrocarbons)	2013/08/07		NC	%	50 - 130
7046697	NK3	Spiked Blank	O-TERPHENYL (sur.)	2013/08/07		113	%	50 - 130
			F2 (C10-C16 Hydrocarbons)	2013/08/07		94	%	70 - 130
7046697	NK3	Method Blank	O-TERPHENYL (sur.)	2013/08/07		117	%	50 - 130
			F2 (C10-C16 Hydrocarbons)	2013/08/07	<0.10		mg/L	
7046697	NK3	RPD	F2 (C10-C16 Hydrocarbons)	2013/08/07	NC		%	40
7046990	CT6	Spiked Blank	Alkalinity (Total as CaCO3)	2013/08/03		95	%	80 - 120
7046990	CT6	Method Blank	Alkalinity (PP as CaCO3)	2013/08/03	<0.50		mg/L	
			Alkalinity (Total as CaCO3)	2013/08/03	<0.50		mg/L	
			Bicarbonate (HCO3)	2013/08/03	<0.50		mg/L	
			Carbonate (CO3)	2013/08/03	<0.50		mg/L	
			Hydroxide (OH)	2013/08/03	<0.50		mg/L	
7046990	CT6	RPD	Alkalinity (PP as CaCO3)	2013/08/03	NC		%	20
			Alkalinity (Total as CaCO3)	2013/08/03	2.8		%	20
			Bicarbonate (HCO3)	2013/08/03	2.8		%	20
			Carbonate (CO3)	2013/08/03	NC		%	20
			Hydroxide (OH)	2013/08/03	NC		%	20
7046993	CT6	Spiked Blank	рН	2013/08/03		101	%	97 - 102
7046993	CT6	RPD	рН	2013/08/03	0.06		%	5
7046994	CT6	Spiked Blank	Conductivity	2013/08/03		103	%	90 - 110
7046994	CT6	Method Blank	Conductivity	2013/08/03	<1.0		uS/cm	
7046994	CT6	RPD	Conductivity	2013/08/03	1		%	20
7047026	CT6	Matrix Spike	Nitrite (N)	2013/08/03		93	%	80 - 120
7047026	070		Nitrate (N)	2013/08/03		NC	%	80 - 120
7047026	CT6	Spiked Blank	Nitrite (N)	2013/08/03		96	%	90 - 110
7047020	CTC	Mathead Diami	Nitrate (N)	2013/08/03	-0.0020	98	%	90 - 110
7047026	CT6	Method Blank	Nitrite (N)	2013/08/03	<0.0030 <0.0030		mg/L	
7047026	CT6	RPD	Nitrate (N)	2013/08/03			mg/L	20
7047026	CIO	RPD	Nitrite (N) Nitrate (N)	2013/08/03 2013/08/03	NC 0.07		% %	20 20
7049414	FM0	Matrix Spike	Acetic Acid	2013/08/08	0.07	103	%	70 - 130
7049414	FIVIO	Matrix Spike	Formic Acid	2013/08/08		103	%	70 - 130
			Propionic Acid	2013/08/08		91	%	70 - 130
7049414	FM0	Spiked Blank	Acetic Acid	2013/08/08		117	%	70 - 130
7043414	11010	Spiked blank	Formic Acid	2013/08/08		109	%	70 - 130
			Propionic Acid	2013/08/08		105	%	70 - 130
7049414	FM0	Method Blank	Acetic Acid	2013/08/08	<0.50	104	mg/L	70 150
7049414	11410	Wiethou Blank	Formic Acid	2013/08/08	<0.50		mg/L	
			Propionic Acid	2013/08/08	<0.50		mg/L	
7049414	FM0	RPD	Acetic Acid	2013/08/08	NC		%	40
/010121			Formic Acid	2013/08/08	NC		%	40
			Propionic Acid	2013/08/08	NC		%	40
7051829	WZ0	Matrix Spike	1,4-Difluorobenzene (sur.)	2013/08/07		103	%	70 - 130
			4-BROMOFLUOROBENZENE (sur.)	2013/08/07		105	%	70 - 130
			D4-1,2-DICHLOROETHANE (sur.)	2013/08/07		111	%	70 - 130
			Benzene	2013/08/07		104	%	70 - 130
			Toluene	2013/08/07		101	%	70 - 130
			Ethylbenzene	2013/08/07		120	%	70 - 130
			m & p-Xylene	2013/08/07		118	%	70 - 130
			o-Xylene	2013/08/07		115	%	70 - 130
			(C6-C10)	2013/08/07		87	%	70 - 130
7051829	WZ0	Spiked Blank	1,4-Difluorobenzene (sur.)	2013/08/06		105	%	70 - 130
		-	4-BROMOFLUOROBENZENE (sur.)	2013/08/06		108	%	70 - 130
			D4-1,2-DICHLOROETHANE (sur.)	2013/08/06		105	%	70 - 130
			Benzene	2013/08/06		108	%	70 - 130
			Toluene	2013/08/06		107	%	70 - 130
			Toluene Ethylbenzene m & p-Xylene	2013/08/06 2013/08/06 2013/08/06		107 113	% %	70 - 130 70 - 130

Page 10 of 19

TIAMAT ENVIRONMENTAL CONSULTANTS Client Project #: 12-435 Site Location: RIVERSIDE LIGHT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
		•••	o-Xylene	2013/08/06		118	%	70 - 130
			(C6-C10)	2013/08/06		92	%	70 - 130
7051829	WZ0	Method Blank	1,4-Difluorobenzene (sur.)	2013/08/06		111	%	70 - 130
			4-BROMOFLUOROBENZENE (sur.)	2013/08/06		96	%	70 - 130
			D4-1,2-DICHLOROETHANE (sur.)	2013/08/06		100	%	70 - 130
			Benzene	2013/08/06	<0.40		ug/L	
			Toluene	2013/08/06	<0.40		ug/L	
			Ethylbenzene	2013/08/06	<0.40		ug/L	
			m & p-Xylene	2013/08/06	<0.80		ug/L	
			o-Xylene	2013/08/06	<0.40		ug/L	
			Xylenes (Total)	2013/08/06	<0.80		ug/L	
			F1 (C6-C10) - BTEX	2013/08/06	<100		ug/L	
			(C6-C10)	2013/08/06	<100		ug/L	
7051829	WZ0	RPD	Benzene	2013/08/07	NC		%	40
			Toluene	2013/08/07	NC		%	40
			Ethylbenzene	2013/08/07	NC		%	40
			m & p-Xylene	2013/08/07	NC		%	40
			o-Xylene	2013/08/07	NC		%	40
			Xylenes (Total)	2013/08/07	NC		%	40
			F1 (C6-C10) - BTEX	2013/08/07	NC		%	40
			(C6-C10)	2013/08/07	NC		%	40
7053981	IA0	Matrix Spike	Ammonia (N)	2013/08/07		101(1)	%	80 - 120
7053981	IA0	Spiked Blank	Ammonia (N)	2013/08/07		99	%	80 - 120
7053981	IA0	Method Blank	Ammonia (N)	2013/08/07	<0.050		mg/L	
7053981	IA0	RPD	Ammonia (N)	2013/08/07	NC		%	20
7054104	ZI	Matrix Spike	Chloride (Cl)	2013/08/07		105	%	80 - 120
7054104	ZI	Spiked Blank	Chloride (Cl)	2013/08/07		105	%	80 - 120
7054104	ZI	Method Blank	Chloride (Cl)	2013/08/07	<1.0		mg/L	
7054104	ZI	RPD	Chloride (Cl)	2013/08/07	NC		%	20
7054149	ZI	Matrix Spike	Sulphate (SO4)	2013/08/07		NC	%	80 - 120
7054149	ZI	Spiked Blank	Sulphate (SO4)	2013/08/07		107	%	80 - 120
7054149	ZI	Method Blank	Sulphate (SO4)	2013/08/07	<1.0		mg/L	
7054149	ZI	RPD	Sulphate (SO4)	2013/08/07	0.5		%	20
7054227	TSJ	Matrix Spike	Chemical Oxygen Demand	2013/08/07		96	%	80 - 120
7054227	TSJ	Spiked Blank	Chemical Oxygen Demand	2013/08/07		98	%	80 - 120
7054227	TSJ	Method Blank	Chemical Oxygen Demand	2013/08/07	<5.0		mg/L	
7054227	TSJ	RPD	Chemical Oxygen Demand	2013/08/07	NC		%	20
7054234	MJ0	Matrix Spike	1,4-Difluorobenzene (sur.)	2013/08/07		114	%	70 - 130
			4-BROMOFLUOROBENZENE (sur.)	2013/08/07		110	%	70 - 130
			D4-1,2-DICHLOROETHANE (sur.)	2013/08/07		123	%	70 - 130
			Bromodichloromethane	2013/08/07		98	%	70 - 130
			Bromoform	2013/08/07		97	%	70 - 130
			Bromomethane	2013/08/07		82	%	70 - 130
			Carbon tetrachloride	2013/08/07		102	%	70 - 130
			Chlorobenzene	2013/08/07		89	%	70 - 130
			Chlorodibromomethane	2013/08/07		93	%	70 - 130
			Chloroethane	2013/08/07		83	%	70 - 130
			Chloroform	2013/08/07		95	%	70 - 130
			Chloromethane	2013/08/07		79	%	70 - 130
			1,2-dibromoethane	2013/08/07		90	%	70 - 130
			1,2-dichlorobenzene	2013/08/07		87	%	70 - 130
			1,3-dichlorobenzene	2013/08/07		85	%	70 - 130
			1,4-dichlorobenzene	2013/08/07		85	%	70 - 130
			1,1-dichloroethane	2013/08/07		92	%	70 - 130
			1,2-dichloroethane	2013/08/07		96	%	70 - 130
			1,1-dichloroethene	2013/08/07		96	%	70 - 130
			cis-1,2-dichloroethene	2013/08/07		93	%	70 - 130
			trans-1,2-dichloroethene	2013/08/07		92	%	70 - 130
			Dichloromethane	2013/08/07		92	%	70 - 130
			1,2-dichloropropane	2013/08/07		94	%	70 - 130
			1,2-dichloropropane cis-1,3-dichloropropene	2013/08/07 2013/08/07		95		70 - 130 70 - 130
			1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene	2013/08/07 2013/08/07 2013/08/07		95 95	% % %	70 - 130 70 - 130 70 - 130
			1,2-dichloropropane cis-1,3-dichloropropene	2013/08/07 2013/08/07		95	% %	70 - 130 70 - 130

TIAMAT ENVIRONMENTAL CONSULTANTS Client Project #: 12-435 Site Location: RIVERSIDE LIGHT

Batch Init QC Type Parameter Analyzed Value Recovery Units QC Limits Styrene 2013/06/07 84 % 70 130 1,1,1,2-tetrachlorechane 2013/06/07 87 % 70 130 1,1,2-tetrachlorechene 2013/06/07 85 % 70 130 1,1,2-trichlorechene 2013/06/07 85 % 70 130 1,1,3-trichlorechenzene 2013/06/07 95 % 70 130 1,1,2-trichlorechenzene 2013/06/07 92 % 70 130 1,1,2-trichlorechenzene 2013/06/07 92 % 70 130 1,1,2-trichlorechenzene 2013/06/07 13 % 70 130 1,1,2-trichlorechenzene 2013/06/07 11 % 70 130 1,1,2-trichlorechenzene 2013/06/07 11 % 70 130 1,1,2-trichlorechenzene 2013/06/07 13 % 70	QA/QC				Date				
7054234 MU0 Spiked Blank 1,1,1,2-tetrachloroethane 1,1,2,1-tetrachloroethane 2013/08/07 94 % 70 - 130 7054234 MU0 Spiked Blank 7,1,2,2-tetrachloroethane 1,1,2,1-trichoroethane 2013/08/07 95 % 70 - 130 7054234 MU0 Spiked Blank 7,1,2,2-tetrachloroethane 2013/08/07 95 % 70 - 130 7054234 MU0 Spiked Blank 7,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,		Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
7054234 MU0 Spiked Blank 1,1,2,2-tetrachlorathene 2013/08/07 95 % 70-130 7054234 MU0 Spiked Blank 1,2,3-trichlorathene 2013/08/07 95 % 70-130 7054234 MU0 Spiked Blank 1,2,4-trichlorathene 2013/08/07 95 % 70-130 7054234 MU0 Spiked Blank 1,2,4-trichlorathene 2013/08/07 97 % 70-130 7054234 MU0 Spiked Blank 1,2,4-trimethylberzene 2013/08/07 97 % 70-130 7054234 MU0 Spiked Blank 1,2,4-trimethylberzene 2013/08/07 10,3 % 70-130 7054234 MU0 Spiked Blank 1,3,5-trimethylberzene 2013/08/07 10,3 % 70-130 7054234 MU0 Spiked Blank 1,4 1,4 <tri>1,4 2013/08/07 10,3 % 70-130 7054234 MU0 Spiked Blank 1,4 2013/08/07 10,3 % 70-130 %</tri>				Styrene			97	%	70 - 130
Tetrachtorothene 2013/08/07 95 % 70-130 1,2,3-trichlorobenzene 2013/08/07 96 % 70-130 1,2,4-trichlorobenzene 2013/08/07 96 % 70-130 1,1,1-trichlorobenzene 2013/08/07 97 % 70-130 1,1,1-trichlorobenzene 2013/08/07 97 % 70-130 1,1,1-trichlorobenzene 2013/08/07 97 % 70-130 1,2,4-trintehylbenzene 2013/08/07 97 % 70-130 1,3,5-trintehylbenzene 2013/08/07 97 % 70-130 1,3,5-trintehylbenzene 2013/08/07 115 % 70-130 1,3,5-trintehylbenzene 2013/08/07 116 % 70-130 1,4-bfluorobenzene (sur.) 2013/08/07 104 % 70-130 1,4-bfluorobenzene 2013/08/07 104 % 70-130 1,4-bfluorobenzene 2013/08/07 104 % 70-130 1,4-bfluorobenzene 2013/08/07 9				1,1,1,2-tetrachloroethane	2013/08/07		94	%	70 - 130
7054234 MJ0 Spiked Blank 1.2.3 *trichlorobenzene 2013/08/07 96 % 70-130 7054234 MJ0 Spiked Blank 1.1.1 *trichlorocthane 2013/08/07 97 % 70-130 7054234 MJ0 Spiked Blank 1.1.2 *trichlorocthane 2013/08/07 97 % 70-130 7054234 MJ0 Spiked Blank 1.4.5 *trimethybenzene 2013/08/07 71 % 70-130 7054234 MJ0 Spiked Blank 1.4.5 *trimethybenzene 2013/08/07 71 % 70-130 7054234 MJ0 Spiked Blank 1.4.5 *trimethybenzene 2013/08/07 106 % 70-130 7054234 MJ0 Spiked Blank 1.4.5 *trimethybenzene 2013/08/07 106 % 70-130 7054234 MJ0 Spiked Blank 1.4.6 *trimethybenzene 2013/08/07 106 % 70-130 70 F10 F10 F10 F10 F10 F10 F10 F10 F10 F1				1,1,2,2-tetrachloroethane	2013/08/07		87	%	70 - 130
1,2,4-trichtorobenzene 2013/08/07 96 % 70-130 1,3,5-trichtorobenzene 2013/08/07 95 % 70-130 1,1,1-trichtoroethane 2013/08/07 95 % 70-130 1,1,2-trichtoroethane 2013/08/07 97 % 70-130 1,2,4-trinethybenzene 2013/08/07 97 % 70-130 1,2,4-trinethybenzene 2013/08/07 97 % 70-130 1,2,4-trinethybenzene 2013/08/07 71 % 70-130 1,2,4-trinethybenzene 2013/08/07 115 % 70-130 1,2,4-trinethybenzene 2013/08/07 111 % 70-130 1,4-Difluorobenzene (sur.) 2013/08/07 106 % 70-130 D4-1,2-DiCHLOROETHANE (sur.) 2013/08/07 104 % 70-130 D4-1,2-DICHLOROETHANE (sur.) 2013/08/07 104 % 70-130 Chiorodenzene 2013/08/07 9 % 70-130 Chiorodenzene 2013/08/07 9				Tetrachloroethene	2013/08/07		95	%	70 - 130
1,3,5-trichtorobenzene 2013/08/07 96 % 70-130 1,1,1-trichtoroethane 2013/08/07 97 % 70-130 1,1,2-trichtoroethane 2013/08/07 97 % 70-130 1,2,4-trintertlybenzene 2013/08/07 97 % 70-130 1,2,4-trintertlybenzene 2013/08/07 97 % 70-130 1,2,4-trintertlybenzene 2013/08/07 115 % 70-130 1,2,4-trintertlybenzene 2013/08/07 116 % 70-130 1,2,4-trintertlybenzene 2013/08/07 116 % 70-130 1,2,4-trintertlybenzene 2013/08/07 106 % 70-130 NU0 Spiked Blank 4-BROMOFLUGROBENZENE (sur.) 2013/08/07 103 % 70-130 Bromodichinorethane 2013/08/07 103 % 70-130 % 70-130 Chorooform 2013/08/07 80 % 70-130 % 70-130 Chorooform 2013/08/07 81 %				1,2,3-trichlorobenzene	2013/08/07		96	%	70 - 130
7054234 MJ0 Spiked Blank 1.1.2-trichloroethane 2013/08/07 97 % 70-130 7054234 MJ0 Spiked Blank 1.1.2-trichloroethane 2013/08/07 97 % 70-130 7054234 MJ0 Spiked Blank 1.3.5-trimethylberzene 2013/08/07 97 % 70-130 7054234 MJ0 Spiked Blank 1.4.6/MOFLIGORDEX/EE (cur) 2013/08/07 10.5 % 70-130 7054234 MJ0 Spiked Blank 1.4.6/MOFLIGORDEX/EE (cur) 2013/08/07 103 % 70-130 7054234 MJ0 Spiked Blank 1.4.6/MOFLIGORDEX/EE (cur) 2013/08/07 103 % 70-130 70-120 Spiked Blank 1.4.6/MOFLIGORDEX/EE (cur) 2013/08/07 103 % 70-130 70-130 Spiked Blank 1.4.6/MOFLIGORDEX/EE (cur) 2013/08/07 103 % 70-130 70-130 Spiked Blank 1.4.6/MORLIGORDEX/EE (cur) 2013/08/07 103 % 70-130 % 70-130 %<				1,2,4-trichlorobenzene	2013/08/07		96	%	70 - 130
7054234 MJ0 Spiked Blank 1,1,2-trichloroethene Trichlorobertzene 1,2,4-trimethylberzene 2013/08/07 97 % 70 - 130 7054234 MJ0 Spiked Blank 1,4,4-trimethylberzene 2013/08/07 97 % 70 - 130 7054234 MJ0 Spiked Blank 1,4,4-trimethylberzene 2013/08/07 11.5 % 70 - 130 7054234 MJ0 Spiked Blank 1,4-bifuoroberzene 2013/08/07 11.5 % 70 - 130 7054234 MJ0 Spiked Blank 1,4-bifuoroberzene 2013/08/07 111.5 % 70 - 130 7054234 MJ0 Spiked Blank 1,4-bifuoroberzene 2013/08/07 111.8 % 70 - 130 7054234 MJ0 Spiked Blank 1,4-bifuoroberzene 2013/08/07 111.4 % 70 - 130 7054234 MJ0 Spiked Blank 1,4-bifuoroberzene 2013/08/07 103 % 70 - 130 7054234 MJ0 Spiked Blank 1,2-bifuoroethene 2013/08/07 98 % 70 - 130 7054234 MJ0 Spiked Blank 1,4-bifuoroethene 2				1,3,5-trichlorobenzene	2013/08/07		96	%	70 - 130
Trichlorosthene 2013/08/07 92 % 70 - 130 7054234 MJ0 Spiked Blank Trichlorostherane 2013/08/07 97 % 70 - 130 7054234 MJ0 Spiked Blank 1,2,4-trimethylberzene 2013/08/07 71 % 70 - 130 7054234 MJ0 Spiked Blank 1,4-01/burotoberzene (sur.) 2013/08/07 116 % 70 - 130 7054234 MJ0 Spiked Blank 1,4-01/burotoberzene (sur.) 2013/08/07 103 % 70 - 130 8 Tornondichloromethane 2013/08/07 103 % 70 - 130 8 Tornondichloromethane 2013/08/07 103 % 70 - 130 8 Tornondichloromethane 2013/08/07 98 % 70 - 130 10 Chloroditoromethane 2013/08/07 98 % 70 - 130 11 1,4-01/borobenzene 2013/08/07 98 % 70 - 130 1,2-dichlorobenzene 2013/08/07 90 % 70 - 1				1,1,1-trichloroethane	2013/08/07			%	
7054234 MJ0 Spiked Blank Trichlorofluoromethane 2013/08/07 97 % 70-130 7054234 MJ0 Spiked Blank 1,2,4-trimethylbenzene 2013/08/07 71 % 70-130 7054234 MJ0 Spiked Blank 1,4-Difluorobenzene (sur.) 2013/08/07 115 % 70-130 7054234 MJ0 Spiked Blank 1,4-Difluorobenzene (sur.) 2013/08/07 116 % 70-130 7054234 MJ0 Spiked Blank 1,4-Difluorobenzene (sur.) 2013/08/07 106 % 70-130 8070062000 2013/08/07 106 % 70-130 % 70-130 9070 130 106 2013/08/07 99 % 70-130 14.2-016/0701 106 \$ 70-130 \$ 70-130 \$ 70-130 \$ 70-130 \$ 70-130 \$ 70-130 \$ 70-130 \$ 70-130 \$ 70-130 \$ 70-130 \$ 70-130 <				1,1,2-trichloroethane					70 - 130
7054234 MJ0 Spiked Blank 1,2,4-trimethylbenzene 2013/08/07 97 % 70-130 7054234 MJ0 Spiked Blank 1,2,6-trimethylbenzene 2013/08/07 115 % 70-130 7054234 MJ0 Spiked Blank 1,4-trimethylbenzene 2013/08/07 115 % 70-130 7054234 MJ0 Spiked Blank 1,2-DicHLOROBENZENE (sur.) 2013/08/07 111 % 70-130 8 romoform 2013/08/07 106 % 70-130 8 romoform 2013/08/07 106 % 70-130 10 Chiorobenzene 2013/08/07 106 % 70-130 11 Chiorobenzene 2013/08/07 98 % 70-130 12 othorobenzene 2013/08/07 95 % 70-130 12 othorobenzene 2013/08/07 96 % 70-130 12 othorobenzene 2013/08/07 96 % 70-130									
1.3,5:Trimethylbenzene 2013/08/07 71 % 70:54234 7054234 MJ0 Spiked Blank 1.4:Difluorobenzene (sur.) 2013/08/07 115 % 70:130 7054234 MJ0 Spiked Blank 1.4:Difluorobenzene (sur.) 2013/08/07 115 % 70:130 7054234 MJ0 Spiked Blank 1.4:Difluorobenzene (sur.) 2013/08/07 103 % 70:130 7054234 MJ0 Spiked Blank Chiorobenzene 2013/08/07 104 % 70:130 6 Chiorobenzene 2013/08/07 93 % 70:130 7.054234 MJ0 Keinomethane 2013/08/07 85 % 70:130 7.054234 MJ0 Keinomethane 2013/08/07 85 % 70:130 7.054234 MJ0 Keinomethane 2013/08/07 85 % 70:130 7.054234 MJ0 Keinomethane 2013/08/07 96 % 70:130 1.4:dichiorobenzene 2013/08/07									
Vinyi chorde 2013/08/07 71 % 70 70 7054234 MU0 Spiked Blank 1.4Diffuorberzene (sur.) 2013/08/07 115 % 70 130 4-BROMOFLUOROEE/XENE (sur.) 2013/08/07 111 % 70 130 % 70									
7054234 M00 Spiked Blank 1.4-Diffuorobenzene (sur.) 2013/08/07 115 % 70-130 P054234 M00 Spiked Blank 1.4-Diffuorobenzene (sur.) 2013/08/07 105 % 70-130 P041,2-DICHLOROETHANE (sur.) 2013/08/07 104 % 70-130 Bromodichloromethane 2013/08/07 104 % 70-130 Bromodichloromethane 2013/08/07 106 % 70-130 Chloroethane 2013/08/07 93 % 70-130 1,2-dichlorobenzene 2013/08/07 95 % 70-130 1,2-dichlorobenzene 2013/08/07 96 % 70-130 1,2-dichlorophenzene 2013/08/07 96 % 70-130 1,2-dichlorophenzene 2013/08/07 96 % <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
A 4-BROMOFLUOROBENERYE (sur.) 2013/08/07 116 % 7 0-130 Bromodichloromethane 2013/08/07 103 % 7 0-130 Bromodichloromethane 2013/08/07 103 % 7 0-130 Bromodorm 2013/08/07 103 % 7 0-130 Carbon tetrachoride 2013/08/07 87 % 7 0-130 Chorobenzene 2013/08/07 93 % 7 0-130 Chlorodbromonthane 2013/08/07 96 % 7 0-130 Chlorodbromonthane 2013/08/07 95 % 7 0-130 1,2-dibromoethane 2013/08/07 90 % 7 0-130 1,2-dibromoethane 2013/08/07 90 % 7 0-130 1,2-dibromoethane 2013/08/07 89 % 7 0-130 1,2-dichlorobenzene 2013/08/07 90 % 7 0-130 1,2-dichloropthane 2013/08/07 90 % 7 0-130 1,2-dichloropthane 2013/08/07 97 %									
7054234 M0 Method Blank D4-1,2-DICHLOROETHANE (sur.) 2013/08/07 111 % 70-130 Bromodichloromethane 2013/08/07 104 % 70-130 Bromodichloromethane 2013/08/07 104 % 70-130 Bromodichloromethane 2013/08/07 106 % 70-130 Carbon tetrachloride 2013/08/07 93 % 70-130 Chlorodetname 2013/08/07 93 % 70-130 Chlorodetname 2013/08/07 83 % 70-130 1,2-dichloroberaene 2013/08/07 87 % 70-130 1,2-dichloroberaene 2013/08/07 87 % 70-130 1,2-dichloroberaene 2013/08/07 98 % 70-130 1,2-dichloroberaene 2013/08/07 98 % 70-130 1,2-dichlorocethane 2013/08/07 96 % 70-130 1,2-dichlorocethane 2013/08/07 96 % 70-130 1,2-dichlorocethane	7054234	MJO	Spiked Blank						
7054234 M0 Method Blank 2013/08/07 103 % 70-130 8000050000 2013/08/07 103 % 70-130 Bromomethane 2013/08/07 87 % 70-130 Carbon tetrachloride 2013/08/07 93 % 70-130 Chiorobenzene 2013/08/07 96 % 70-130 Chiorobenzene 2013/08/07 96 % 70-130 Chioromethane 2013/08/07 83 % 70-130 1.2-dichonoethane 2013/08/07 93 % 70-130 1.2-dichonoethane 2013/08/07 90 % 70-130 1.2-dichonoethane 2013/08/07 87 % 70-130 1.2-dichonoethane 2013/08/07 90 % 70-130 1.2-dichonoethane 2013/08/07 97 % 70-130 1.2-dichonoethane 2013/08/07 97 % 70-130 1.2-dichonoethane 2013/08/07 97 % 70-130									
7054234 Bromderm 2013/08/07 104 % 70 130 Brommethane 2013/08/07 106 % 70 130 Chlorobenzene 2013/08/07 93 % 70 130 Chlorobenzene 2013/08/07 99 % 70 130 Chlorobenzene 2013/08/07 99 % 70 130 Chlorobenzene 2013/08/07 99 % 70 130 Chlorobenzene 2013/08/07 90 % 70 130 1,2-dichlorobenzene 2013/08/07 90 % 70 130 1,4-dichlorobenzene 2013/08/07 90 % 70 130 1,1-dichlorobenzene 2013/08/07 98 % 70 130 1,2-dichlorobenzene 2013/08/07 98 % 70 130 1,2-dichloropentene 2013/08/07 98 % 70 130 1,2-dichloropentene 2013/08/07 98									
Bromomethane 2013/08/07 87 % 70-130 Carbon tetrachloride 2013/08/07 93 % 70-130 Chlorodibromethane 2013/08/07 93 % 70-130 Chlorodibromethane 2013/08/07 93 % 70-130 Chlorodibromethane 2013/08/07 86 % 70-130 Chlorodibromethane 2013/08/07 83 % 70-130 1,2-dibromethane 2013/08/07 87 % 70-130 1,2-dichloroethane 2013/08/07 96 % 70-130 1,2-dichloroethane 2013/08/07 96 % 70-130 1,2-dichloroethane 2013/08/07 97 % 70-130 1,2-dichloroethane 2013/08/07 98 % 70-130									
Carbon tetrachloride 2013/08/07 106 % 70-130 Chlorobenzene 2013/08/07 93 % 70-130 Chlorobenzene 2013/08/07 99 % 70-130 Chlorodinromomethane 2013/08/07 99 % 70-130 Chlorodinrom 2013/08/07 99 % 70-130 Chloromethane 2013/08/07 99 % 70-130 1,2-dichlorobenzene 2013/08/07 90 % 70-130 1,2-dichlorobenzene 2013/08/07 87 % 70-130 1,4-dichlorobenzene 2013/08/07 89 % 70-130 1,4-dichlorobenzene 2013/08/07 96 % 70-130 1,4-dichlorobenzene 2013/08/07 97 % 70-130 1,4-dichlorobenzene 2013/08/07 97 % 70-130 1,4-dichloropropane 2013/08/07 97 % 70-130 1,2-dichloroptene 2013/08/07 98 % 70-130									
Chlorobenzene 2013/08/07 93 % 70-130 Chlorodinormomethane 2013/08/07 86 % 70-130 Chlorodinormomethane 2013/08/07 86 % 70-130 Chlorodirom 2013/08/07 86 % 70-130 Chlorodirom 2013/08/07 93 % 70-130 1,2-dichlorobenzene 2013/08/07 90 % 70-130 1,2-dichlorobenzene 2013/08/07 97 % 70-130 1,4-dichlorobenzene 2013/08/07 96 % 70-130 1,4-dichlorobenzene 2013/08/07 96 % 70-130 1,4-dichlorobenzene 2013/08/07 98 % 70-130 1,2-dichlorobenzene 2013/08/07 98 % 70-130 1,2-dichloroptene 2013/08/07 98 % 70-130 1,2-dichloropropane 2013/08/07 98 % 70-130 1,2-dichloropropane 2013/08/07 98 % 70-130									
Chlorodiloromomethane 2013/08/07 99 % 70-130 Chlorothane 2013/08/07 86 % 70-130 Chlorothane 2013/08/07 99 % 70-130 Chloromethane 2013/08/07 99 % 70-130 1.2-dichorobenzene 2013/08/07 95 % 70-130 1.2-dichlorobenzene 2013/08/07 87 % 70-130 1.3-dichlorobenzene 2013/08/07 89 % 70-130 1.4-dichlorobenzene 2013/08/07 96 % 70-130 1.4-dichlorobenzene 2013/08/07 96 % 70-130 1.4-dichlorobenzene 2013/08/07 96 % 70-130 1.4-dichlorothane 2013/08/07 97 % 70-130 1.4-dichloropropane 2013/08/07 97 % 70-130 1.2-dichloropopane 2013/08/07 96 % 70-130 Methyl-tert-butylether (MTBE) 2013/08/07 92 % 70-130									
Chloroethane 2013/08/07 86 % 70-130 Chlorooform 2013/08/07 93 % 70-130 1,2-dibromethane 2013/08/07 93 % 70-130 1,2-dibromethane 2013/08/07 90 % 70-130 1,2-dichorobenzene 2013/08/07 90 % 70-130 1,3-dichlorobenzene 2013/08/07 87 % 70-130 1,4-dichlorobenzene 2013/08/07 96 % 70-130 1,1-dichloroethane 2013/08/07 96 % 70-130 1,2-dichloroethene 2013/08/07 97 % 70-130 1,2-dichloroethene 2013/08/07 97 % 70-130 1,2-dichloroethene 2013/08/07 98 % 70-130 1,2-dichloropropane 2013/08/07 98 % 70-130 1,2-dichloropropene 2013/08/07 98 % 70-130 1,1,12-tetrachloroethene 2013/08/07 98 % 70-130 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>									
Chloroform 2013/08/07 99 % 70-130 Chloromethane 2013/08/07 95 % 70-130 1,2-dichlorobenzne 2013/08/07 95 % 70-130 1,2-dichlorobenzne 2013/08/07 90 % 70-130 1,3-dichlorobenzene 2013/08/07 87 % 70-130 1,4-dichloroethane 2013/08/07 96 % 70-130 1,1-dichloroethane 2013/08/07 98 % 70-130 1,2-dichloroethane 2013/08/07 97 % 70-130 1,2-dichloroethene 2013/08/07 97 % 70-130 1,2-dichloroethene 2013/08/07 98 % 70-130 1,2-dichloropropene 2013/08/07 96 % 70-130 1,2-dichloropropene 2013/08/07 96 % 70-130 1,2-dichloropropene 2013/08/07 96 % 70-130 1,2-dichloropropene 2013/08/07 98 % 70-130									
Chloromethane 2013/08/07 83 % 70-130 1,2-dichlorobenzene 2013/08/07 95 % 70-130 1,3-dichlorobenzene 2013/08/07 90 % 70-130 1,3-dichlorobenzene 2013/08/07 87 % 70-130 1,4-dichlorobenzene 2013/08/07 88 % 70-130 1,1-dichloroethane 2013/08/07 96 % 70-130 1,2-dichloroethane 2013/08/07 98 % 70-130 1,1-dichloroethene 2013/08/07 98 % 70-130 1,2-dichloroethene 2013/08/07 98 % 70-130 trans-1,2-dichloropropene 2013/08/07 98 % 70-130 trans-1,2-dichloropropene 2013/08/07 98 % 70-130 trans-1,3-dichloropropene 2013/08/07 96 % 70-130 trans-1,3-dichloropropene 2013/08/07 96 % 70-130 trans-1,2-dichloroethane 2013/08/07 98 %									
1.2-dibromethane 2013/08/07 95 % 70-130 1.2-dibrombenzene 2013/08/07 90 % 70-130 1.3-dichlorobenzene 2013/08/07 87 % 70-130 1.4-dichlorobenzene 2013/08/07 89 % 70-130 1.1-dichloroethane 2013/08/07 96 % 70-130 1.2-dichloroethene 2013/08/07 97 % 70-130 1.1-dichloroethene 2013/08/07 97 % 70-130 1.1-dichloroethene 2013/08/07 97 % 70-130 01chloromethane 2013/08/07 97 % 70-130 1.2-dichloropropane 2013/08/07 98 % 70-130 1.2-dichloropropane 2013/08/07 96 % 70-130 1.2-dichloropropane 2013/08/07 100 % 70-130 1.2-dichloropropene 2013/08/07 106 % 70-130 1.2-dichloropropene 2013/08/07 106 % 70-130 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
12-dichlorobenzene 2013/08/07 90 % 70-130 1,3-dichlorobenzene 2013/08/07 87 % 70-130 1,4-dichlorobenzene 2013/08/07 89 % 70-130 1,1-dichlorobenzene 2013/08/07 96 % 70-130 1,1-dichlorobethane 2013/08/07 96 % 70-130 1,1-dichlorobethene 2013/08/07 98 % 70-130 0:Gi-1,2-dichloroethene 2013/08/07 96 % 70-130 1,2-dichloropthene 2013/08/07 96 % 70-130 1,2-dichloroptopene 2013/08/07 96 % 70-130 1,1,2-tetrachloropthene 2013/08/07 96 % 70-130 1,1,1,2-tetrachloropthane 2013/08/07 98 % <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
1.3-dichlorobenzene 2013/08/07 87 % 70-130 1.4-dichlorobenzene 2013/08/07 89 % 70-130 1.4-dichlorobenzene 2013/08/07 96 % 70-130 1.2-dichloroethane 2013/08/07 101 % 70-130 1.2-dichloroethene 2013/08/07 97 % 70-130 cis-1.2-dichloroethene 2013/08/07 97 % 70-130 Dichloroethene 2013/08/07 97 % 70-130 0.51.3-dichloropropene 2013/08/07 98 % 70-130 1.2-dichloropropene 2013/08/07 96 % 70-130 1.2-dichloropropene 2013/08/07 96 % 70-130 Kerne 2013/08/07 98 % 70-130 Styrene 2013/08/07 92 % 70-130 1.1,2.2-tetrachloroethane 2013/08/07 98 % 70-130 1.1,1.2.2-tetrachloroethane 2013/08/07 98 % 70-130 <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td>				,					
1.4-dichlorobenzene 2013/08/07 89 % 70-130 1.1-dichloroethane 2013/08/07 96 % 70-130 1.2-dichloroethane 2013/08/07 101 % 70-130 1.1-dichloroethene 2013/08/07 98 % 70-130 cis-1.2-dichloroethene 2013/08/07 96 % 70-130 Dichloromethane 2013/08/07 96 % 70-130 1.2-dichloroptopane 2013/08/07 96 % 70-130 1.2-dichloroptopane 2013/08/07 96 % 70-130 trans-1.3-dichloroptopane 2013/08/07 96 % 70-130 trans-1.3-dichloroptopane 2013/08/07 96 % 70-130 Methyl methacrylate 2013/08/07 92 % 70-130 Styrene 2013/08/07 92 % 70-130 1.1,2.2-tetrachloroethane 2013/08/07 98 % 70-130 1.1,2.4-trichlorobenzene 2013/08/07 98 %									
1,1-dichloroethane 2013/08/07 96 % 70-130 1,2-dichloroethane 2013/08/07 101 % 70-130 1,1-dichloroethane 2013/08/07 98 % 70-130 cis-1,2-dichloroethene 2013/08/07 97 % 70-130 Dichloroethane 2013/08/07 96 % 70-130 1,2-dichloropethane 2013/08/07 98 % 70-130 1,2-dichloropropane 2013/08/07 96 % 70-130 cis-1,3-dichloropropene 2013/08/07 96 % 70-130 trans-1,3-dichloropropene 2013/08/07 96 % 70-130 Methyl-tert-butylether (MTBE) 2013/08/07 96 % 70-130 1,1,2-tetrachloroethane 2013/08/07 92 % 70-130 1,1,2,2-tetrachloroethane 2013/08/07 98 % 70-130 1,1,2,2-tetrachloroethane 2013/08/07 98 % 70-130 1,2,3-trichlorobenzene 2013/08/07 98									
12-dichloroethane 2013/08/07 101 % 70-130 1,1-dichloroethene 2013/08/07 98 % 70-130 cis-1,2-dichloroethene 2013/08/07 96 % 70-130 Dichloroethene 2013/08/07 96 % 70-130 1,2-dichloroethene 2013/08/07 96 % 70-130 1,2-dichloropropane 2013/08/07 98 % 70-130 1,2-dichloropropane 2013/08/07 98 % 70-130 trans-1,3-dichloropropene 2013/08/07 100 % 70-130 trans-1,3-dichloropropene 2013/08/07 98 % 70-130 Methyl-tert-butylether (MTBE) 2013/08/07 98 % 70-130 1,1,2-tetrachloroethane 2013/08/07 98 % 70-130 1,1,2-tetrachloroethane 2013/08/07 98 % 70-130 1,2,2-tetrachloroethane 2013/08/07 98 % 70-130 1,2,4-trichlorobenzene 2013/08/07 98									
1,1-dichloroethene 2013/08/07 98 % 70-130 cis-1,2-dichloroethene 2013/08/07 97 % 70-130 trans-1,2-dichloroethene 2013/08/07 96 % 70-130 Dichloromethane 2013/08/07 97 % 70-130 1,2-dichloropropane 2013/08/07 98 % 70-130 cis-1,3-dichloropropene 2013/08/07 96 % 70-130 Methyl methacrylate 2013/08/07 96 % 70-130 Methyl methacrylate 2013/08/07 96 % 70-130 Styrene 2013/08/07 98 % 70-130 1,1,1,2-tetrachloroethane 2013/08/07 92 % 70-130 1,1,2-tetrachloroethane 2013/08/07 98 % 70-130 1,1,2-tetrachloroethane 2013/08/07 98 % 70-130 1,2,3-trichlorobenzene 2013/08/07 98 % 70-130 1,2,3-trichlorobenzene 2013/08/07 98 %									
cis-1,2-dichloroethene 2013/08/07 97 % 70 - 130 trans-1,2-dichloroethene 2013/08/07 96 % 70 - 130 Dichloromethane 2013/08/07 97 % 70 - 130 1,2-dichloropropane 2013/08/07 98 % 70 - 130 cis-1,3-dichloropropene 2013/08/07 100 % 70 - 130 trans-1,3-dichloropropene 2013/08/07 96 % 70 - 130 Methyl-tert-butylether (MTBE) 2013/08/07 96 % 70 - 130 Methyl-tert-butylether (MTBE) 2013/08/07 92 % 70 - 130 1,1,2-tetrachloroethane 2013/08/07 98 % 70 - 130 1,1,2-tetrachloroethane 2013/08/07 98 % 70 - 130 1,2,2-tetrachloroethane 2013/08/07 98 % 70 - 130 1,2,3-trichlorobenzene 2013/08/07 98 % 70 - 130 1,2,4-trichlorobenzene 2013/08/07 98 % 70 - 130 1,3,5-trinethylbenzene									
trans-1,2-dichloroethene 2013/08/07 96 % 70-130 Dichloromethane 2013/08/07 97 % 70-130 1,2-dichloropropane 2013/08/07 98 % 70-130 cis-1,3-dichloropropene 2013/08/07 96 % 70-130 trans-1,3-dichloropropene 2013/08/07 96 % 70-130 Methyl metharcylate 2013/08/07 96 % 70-130 Methyl methacrylate 2013/08/07 96 % 70-130 Styrene 2013/08/07 92 % 70-130 1,1,2-tetrachloroethane 2013/08/07 98 % 70-130 1,2,2-tetrachloroethane 2013/08/07 98 % 70-130 1,2,2-tetrachloroethane 2013/08/07 98 % 70-130 1,2,2-tetrachloroethane 2013/08/07 98 % 70-130 1,2,3-trichlorobenzene 2013/08/07 98 % 70-130 1,2,4-trichlorobenzene 2013/08/07 98 %									
Dichloromethane 2013/08/07 97 % 70 - 130 1,2-dichloropropane 2013/08/07 98 % 70 - 130 cis-1,3-dichloropropene 2013/08/07 96 % 70 - 130 trans-1,3-dichloropropene 2013/08/07 96 % 70 - 130 Methyl-tert-butylether (MTBE) 2013/08/07 96 % 70 - 130 Methyl-tert-butylether (MTBE) 2013/08/07 92 % 70 - 130 Styrene 2013/08/07 98 % 70 - 130 1,1,2-tetrachloroethane 2013/08/07 98 % 70 - 130 1,2,3-trichloroethane 2013/08/07 98 % 70 - 130 1,2,4-trichloroethane 2013/08/07 98 % 70 - 130 1,2,3-trichloroetnane 2013/08/07 98 % 70 - 130 1,2,4-trichloroetnane 2013/08/07 98 % 70 - 130 1,2,4-trichloroetnane 2013/08/07 98 % 70 - 130 1,1,1-trichloroetnane 2013/08/07									
1,2-dichloropropane 2013/08/07 98 % 70 - 130 cis-1,3-dichloropropene 2013/08/07 100 % 70 - 130 trans-1,3-dichloropropene 2013/08/07 106 % 70 - 130 Methyl methacrylate 2013/08/07 106 % 70 - 130 Methyl-tert-butylether (MTBE) 2013/08/07 106 % 70 - 130 Styrene 2013/08/07 98 % 70 - 130 1,1,2-tetrachloroethane 2013/08/07 98 % 70 - 130 1,1,2-tetrachloroethane 2013/08/07 98 % 70 - 130 1,2,2-tetrachloroethane 2013/08/07 98 % 70 - 130 1,2,3-trichlorobenzene 2013/08/07 98 % 70 - 130 1,2,4-trichlorobenzene 2013/08/07 98 % 70 - 130 1,2,4-trichlorobenzene 2013/08/07 98 % 70 - 130 1,2,4-trichlorobenzene 2013/08/07 102 % 70 - 130 1,3,5-trichlorobenzene 2013/08/0									
cis-1,3-dichloropropene 2013/08/07 100 % 70-130 trans-1,3-dichloropropene 2013/08/07 96 % 70-130 Methyl methacrylate 2013/08/07 106 % 70-130 Methyl-tert-butylether (MTBE) 2013/08/07 92 % 70-130 Nethyl-tert-butylether (MTBE) 2013/08/07 92 % 70-130 1,1,1,2-tetrachloroethane 2013/08/07 98 % 70-130 1,1,2,2-tetrachloroethane 2013/08/07 98 % 70-130 1,2,3-trichlorobenzene 2013/08/07 98 % 70-130 1,2,3-trichlorobenzene 2013/08/07 98 % 70-130 1,2,4-trichlorobenzene 2013/08/07 98 % 70-130 1,3,5-trichlorobenzene 2013/08/07 98 % 70-130 1,1,2-trichloroethane 2013/08/07 98 % 70-130 1,1,2-trichloroethane 2013/08/07 90 % 70-130 1,2,4-trimethylbenzene 2013/08/07 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>							-		
trans-1,3-dichloropropene 2013/08/07 96 % 70 - 130 Methyl methacrylate 2013/08/07 106 % 70 - 130 Methyl-tert-butylether (MTBE) 2013/08/07 92 % 70 - 130 Styrene 2013/08/07 92 % 70 - 130 1,1,1,2-tetrachloroethane 2013/08/07 98 % 70 - 130 1,2,2-tetrachloroethane 2013/08/07 98 % 70 - 130 1,2,3-trichloroethane 2013/08/07 98 % 70 - 130 1,2,3-trichlorobenzene 2013/08/07 98 % 70 - 130 1,2,4-trichlorobenzene 2013/08/07 98 % 70 - 130 1,2,4-trichlorobenzene 2013/08/07 98 % 70 - 130 1,1,1-trichloroethane 2013/08/07 98 % 70 - 130 1,1,2-trichloroethane 2013/08/07 98 % 70 - 130 1,1,2-trichloroethane 2013/08/07 90 % 70 - 130 1,2,4-trimethylbenzene 2013/08/07 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Methyl methacrylate 2013/08/07 106 % 70 - 130 Methyl-tert-butylether (MTBE) 2013/08/07 92 % 70 - 130 Styrene 2013/08/07 101 % 70 - 130 1,1,2-tetrachloroethane 2013/08/07 98 % 70 - 130 1,1,2-tetrachloroethane 2013/08/07 98 % 70 - 130 1,1,2-tetrachloroethane 2013/08/07 98 % 70 - 130 1,2,3-trichloroethane 2013/08/07 98 % 70 - 130 1,2,3-trichlorobenzene 2013/08/07 98 % 70 - 130 1,3,5-trichlorobenzene 2013/08/07 98 % 70 - 130 1,1,1-trichloroethane 2013/08/07 98 % 70 - 130 1,1,1-trichloroethane 2013/08/07 98 % 70 - 130 1,1,2-trichloroethane 2013/08/07 90 % 70 - 130 1,1,2-trichloroethane 2013/08/07 100 % 70 - 130 1,2,4-trimethylbenzene 2013/08/07									
Methyl-tert-butylether (MTBE) 2013/08/07 92 % 70 - 130 Styrene 2013/08/07 101 % 70 - 130 1,1,1,2-tetrachloroethane 2013/08/07 98 % 70 - 130 1,1,2,2-tetrachloroethane 2013/08/07 98 % 70 - 130 1,2,2-tetrachloroethane 2013/08/07 98 % 70 - 130 1,2,3-trichloroethane 2013/08/07 98 % 70 - 130 1,2,3-trichlorobenzene 2013/08/07 98 % 70 - 130 1,2,3-trichlorobenzene 2013/08/07 98 % 70 - 130 1,3,5-trichlorobenzene 2013/08/07 98 % 70 - 130 1,1,1-trichloroethane 2013/08/07 98 % 70 - 130 1,1,1-trichloroethane 2013/08/07 98 % 70 - 130 1,2,4-trichdrobenzene 2013/08/07 90 % 70 - 130 1,2,4-trichlorobenzene 2013/08/07 101 % 70 - 130 1,2,4-trichlorobenzene 2013/08/07									
Styrene 2013/08/07 101 % 70 - 130 1,1,1,2-tetrachloroethane 2013/08/07 98 % 70 - 130 1,1,2,2-tetrachloroethane 2013/08/07 98 % 70 - 130 1,1,2,2-tetrachloroethane 2013/08/07 98 % 70 - 130 1,2,2-trichlorobenzene 2013/08/07 98 % 70 - 130 1,2,3-trichlorobenzene 2013/08/07 98 % 70 - 130 1,2,4-trichlorobenzene 2013/08/07 98 % 70 - 130 1,3,5-trichlorobenzene 2013/08/07 98 % 70 - 130 1,1,1-trichloroethane 2013/08/07 98 % 70 - 130 1,1,2-trichloroethane 2013/08/07 102 % 70 - 130 1,1,2-trichloroethane 2013/08/07 90 % 70 - 130 1,2,4-trimethylbenzene 2013/08/07 100 % 70 - 130 1,3,5-trimethylbenzene 2013/08/07 90 % 70 - 130 1,4-Difluorobenzene (sur.) 2013/08/0									
1,1,1,2-tetrachloroethane 2013/08/07 98 % 70 - 130 1,1,2,2-tetrachloroethane 2013/08/07 92 % 70 - 130 Tetrachloroethane 2013/08/07 98 % 70 - 130 1,2,3-trichlorobenzene 2013/08/07 98 % 70 - 130 1,2,3-trichlorobenzene 2013/08/07 98 % 70 - 130 1,2,4-trichlorobenzene 2013/08/07 98 % 70 - 130 1,3,5-trichlorobenzene 2013/08/07 98 % 70 - 130 1,1,1-trichloroethane 2013/08/07 98 % 70 - 130 1,1,2-trichloroethane 2013/08/07 90 % 70 - 130 1,1,2-trichloroethane 2013/08/07 90 % 70 - 130 1,2,4-trimethylbenzene 2013/08/07 100 % 70 - 130 1,3,5-trimethylbenzene 2013/08/07 101 % 70 - 130 1,3,5-trimethylbenzene 2013/08/07 96 % 70 - 130 1,3,5-trimethylbenzene 2013/08									
1,1,2,2-tetrachloroethane 2013/08/07 92 % 70 - 130 Tetrachloroethene 2013/08/07 98 % 70 - 130 1,2,3-trichlorobenzene 2013/08/07 98 % 70 - 130 1,2,3-trichlorobenzene 2013/08/07 99 % 70 - 130 1,2,4-trichlorobenzene 2013/08/07 98 % 70 - 130 1,3,5-trichlorobenzene 2013/08/07 98 % 70 - 130 1,1,1-trichloroethane 2013/08/07 98 % 70 - 130 1,1,2-trichloroethane 2013/08/07 98 % 70 - 130 1,1,2-trichloroethane 2013/08/07 94 % 70 - 130 1,2,4-trimethylbenzene 2013/08/07 90 % 70 - 130 1,2,4-trimethylbenzene 2013/08/07 101 % 70 - 130 1,2,4-trimethylbenzene 2013/08/07 99 % 70 - 130 1,2,4-trimethylbenzene 2013/08/07 99 % 70 - 130 1,2,4-trimethylbenzene 2013/08/07<									
Tetrachloroethene 2013/08/07 98 % 70 - 130 1,2,3-trichlorobenzene 2013/08/07 99 % 70 - 130 1,2,3-trichlorobenzene 2013/08/07 98 % 70 - 130 1,2,4-trichlorobenzene 2013/08/07 98 % 70 - 130 1,3,5-trichlorobenzene 2013/08/07 98 % 70 - 130 1,1,1-trichloroethane 2013/08/07 98 % 70 - 130 1,1,2-trichloroethane 2013/08/07 94 % 70 - 130 1,1,2-trichloroethane 2013/08/07 90 % 70 - 130 1,2,4-trimethylbenzene 2013/08/07 90 % 70 - 130 1,2,4-trimethylbenzene 2013/08/07 100 % 70 - 130 1,3,5-trimethylbenzene 2013/08/07 101 % 70 - 130 1,3,5-trimethylbenzene 2013/08/07 99 % 70 - 130 1,3,5-trimethylbenzene 2013/08/07 99 % 70 - 130 1,4-Difluorobenzene (sur.) 2013/08/0					, ,				
1,2,3-trichlorobenzene 2013/08/07 99 % 70 - 130 1,2,4-trichlorobenzene 2013/08/07 98 % 70 - 130 1,3,5-trichlorobenzene 2013/08/07 99 % 70 - 130 1,3,5-trichlorobenzene 2013/08/07 98 % 70 - 130 1,1,1-trichloroethane 2013/08/07 98 % 70 - 130 1,1,2-trichloroethane 2013/08/07 102 % 70 - 130 1,1,2-trichloroethane 2013/08/07 102 % 70 - 130 1,2,4-trimethylbenzene 2013/08/07 90 % 70 - 130 1,2,4-trimethylbenzene 2013/08/07 100 % 70 - 130 1,3,5-trimethylbenzene 2013/08/07 101 % 70 - 130 1,3,5-trimethylbenzene (sur.) 2013/08/07 99 % 70 - 130 1,4-Difluorobenzene (sur.) 2013/08/07 99 % 70 - 130 1,4-BROMOFLUOROBENZENE (sur.) 2013/08/07 96 % 70 - 130 04-1,2-DICHLOROETHANE (sur.)									
1,2,4-trichlorobenzene 2013/08/07 98 % 70 - 130 1,3,5-trichlorobenzene 2013/08/07 99 % 70 - 130 1,1,1-trichloroethane 2013/08/07 98 % 70 - 130 1,1,1-trichloroethane 2013/08/07 98 % 70 - 130 1,1,2-trichloroethane 2013/08/07 102 % 70 - 130 Trichloroethene 2013/08/07 94 % 70 - 130 Trichlorofluoromethane 2013/08/07 90 % 70 - 130 1,2,4-trimethylbenzene 2013/08/07 100 % 70 - 130 1,3,5-trimethylbenzene 2013/08/07 101 % 70 - 130 1,3,5-trimethylbenzene 2013/08/07 101 % 70 - 130 1,3,5-trimethylbenzene 2013/08/07 99 % 70 - 130 1,3,5-trimethylbenzene 2013/08/07 99 % 70 - 130 1,4-Difluorobenzene (sur.) 2013/08/07 97 % 70 - 130 D4-1,2-DICHLOROETHANE (sur.) 201									
1,3,5-trichlorobenzene 2013/08/07 99 % 70 - 130 1,1,1-trichloroethane 2013/08/07 98 % 70 - 130 1,1,2-trichloroethane 2013/08/07 102 % 70 - 130 1,1,2-trichloroethane 2013/08/07 102 % 70 - 130 Trichloroethene 2013/08/07 94 % 70 - 130 Trichloroethene 2013/08/07 90 % 70 - 130 1,2,4-trimethylbenzene 2013/08/07 90 % 70 - 130 1,2,4-trimethylbenzene 2013/08/07 100 % 70 - 130 1,3,5-trimethylbenzene 2013/08/07 101 % 70 - 130 1,3,5-trimethylbenzene 2013/08/07 75 % 70 - 130 Vinyl chloride 2013/08/07 99 % 70 - 130 4-BROMOFLUOROBENZENE (sur.) 2013/08/07 96 % 70 - 130 Bromodichloromethane 2013/08/07 <0.50									
1,1,1-trichloroethane 2013/08/07 98 % 70 - 130 1,1,2-trichloroethane 2013/08/07 102 % 70 - 130 Trichloroethene 2013/08/07 94 % 70 - 130 Trichloroethene 2013/08/07 90 % 70 - 130 1,2,4-trimethylbenzene 2013/08/07 100 % 70 - 130 1,3,5-trimethylbenzene 2013/08/07 101 % 70 - 130 1,3,5-trimethylbenzene 2013/08/07 101 % 70 - 130 Vinyl chlorobenzene (sur.) 2013/08/07 75 % 70 - 130 4-BROMOFLUOROBENZENE (sur.) 2013/08/07 99 % 70 - 130 4-BROMOFLUOROBENZENE (sur.) 2013/08/07 96 % 70 - 130 04-1,2-DICHLOROETHANE (sur.) 2013/08/07 97 % 70 - 130 Bromodichloromethane 2013/08/07 <0.50									
1,1,2-trichloroethane 2013/08/07 102 % 70 - 130 Trichloroethene 2013/08/07 94 % 70 - 130 Trichlorofluoromethane 2013/08/07 90 % 70 - 130 1,2,4-trimethylbenzene 2013/08/07 90 % 70 - 130 1,2,4-trimethylbenzene 2013/08/07 100 % 70 - 130 1,3,5-trimethylbenzene 2013/08/07 101 % 70 - 130 1,3,5-trimethylbenzene 2013/08/07 101 % 70 - 130 Vinyl chloride 2013/08/07 75 % 70 - 130 4-BROMOFLUOROBENZENE (sur.) 2013/08/07 99 % 70 - 130 04-BROMOFLUOROBENZENE (sur.) 2013/08/07 96 % 70 - 130 D4-1,2-DICHLOROETHANE (sur.) 2013/08/07 97 % 70 - 130 Bromodichloromethane 2013/08/07 <0.50				, , ,					
Trichloroethene 2013/08/07 94 % 70 - 130 Trichlorofluoromethane 2013/08/07 90 % 70 - 130 1,2,4-trimethylbenzene 2013/08/07 100 % 70 - 130 1,3,5-trimethylbenzene 2013/08/07 101 % 70 - 130 1,3,5-trimethylbenzene 2013/08/07 101 % 70 - 130 Vinyl chloride 2013/08/07 75 % 70 - 130 Vinyl chloride 2013/08/07 99 % 70 - 130 4-BROMOFLUOROBENZENE (sur.) 2013/08/07 96 % 70 - 130 04-1,2-DICHLOROETHANE (sur.) 2013/08/07 96 % 70 - 130 Bromodichloromethane 2013/08/07 97 % 70 - 130 Bromodichloromethane 2013/08/07 <0.50									
Trichlorofluoromethane 2013/08/07 90 % 70 - 130 1,2,4-trimethylbenzene 2013/08/07 100 % 70 - 130 1,3,5-trimethylbenzene 2013/08/07 101 % 70 - 130 1,3,5-trimethylbenzene 2013/08/07 101 % 70 - 130 Vinyl chloride 2013/08/07 75 % 70 - 130 Vinyl chloride 2013/08/07 99 % 70 - 130 4-BROMOFLUOROBENZENE (sur.) 2013/08/07 96 % 70 - 130 04-1,2-DICHLOROETHANE (sur.) 2013/08/07 97 % 70 - 130 Bromodichloromethane 2013/08/07 <0.50									
1,2,4-trimethylbenzene 2013/08/07 100 % 70 - 130 1,3,5-trimethylbenzene 2013/08/07 101 % 70 - 130 Vinyl chloride 2013/08/07 75 % 70 - 130 7054234 MJ0 Method Blank 1,4-Difluorobenzene (sur.) 2013/08/07 99 % 70 - 130 4-BROMOFLUOROBENZENE (sur.) 2013/08/07 96 % 70 - 130 D4-1,2-DICHLOROETHANE (sur.) 2013/08/07 96 % 70 - 130 Bromodichloromethane 2013/08/07 <0.50									
1,3,5-trimethylbenzene 2013/08/07 101 % 70 - 130 7054234 MJ0 Method Blank 1,4-Difluorobenzene (sur.) 2013/08/07 75 % 70 - 130 4-BROMOFLUOROBENZENE (sur.) 2013/08/07 99 % 70 - 130 04-1,2-DICHLOROETHANE (sur.) 2013/08/07 96 % 70 - 130 Bromodichloromethane 2013/08/07 97 % 70 - 130 Bromoform 2013/08/07 <0.50									
Vinyl chloride 2013/08/07 75 % 70 - 130 7054234 MJ0 Method Blank 1,4-Difluorobenzene (sur.) 2013/08/07 99 % 70 - 130 4-BROMOFLUOROBENZENE (sur.) 2013/08/07 96 % 70 - 130 D4-1,2-DICHLOROETHANE (sur.) 2013/08/07 96 % 70 - 130 Bromodichloromethane 2013/08/07 97 % 70 - 130 Bromoform 2013/08/07 <0.50									70 - 130
7054234 MJ0 Method Blank 1,4-Difluorobenzene (sur.) 2013/08/07 99 % 70 - 130 4-BROMOFLUOROBENZENE (sur.) 2013/08/07 96 % 70 - 130 D4-1,2-DICHLOROETHANE (sur.) 2013/08/07 97 % 70 - 130 Bromodichloromethane 2013/08/07 <0.50									
4-BROMOFLUOROBENZENE (sur.) 2013/08/07 96 % 70 - 130 D4-1,2-DICHLOROETHANE (sur.) 2013/08/07 97 % 70 - 130 Bromodichloromethane 2013/08/07 <0.50	7054234	MJ0	Method Blank	1,4-Difluorobenzene (sur.)					
D4-1,2-DICHLOROETHANE (sur.) 2013/08/07 97 % 70 - 130 Bromodichloromethane 2013/08/07 <0.50					2013/08/07		96	%	
Bromodichloromethane 2013/08/07 <0.50 ug/L Bromoform 2013/08/07 <0.50								%	70 - 130
Bromoform 2013/08/07 <0.50 ug/L Bromomethane 2013/08/07 <2.0				Bromodichloromethane		<0.50		ug/L	
Carbon tetrachloride 2013/08/07 <0.50 ug/L				Bromoform					
								ug/L	
				Chlorobenzene	2013/08/07	<0.50		ug/L	
Chlorodibromomethane 2013/08/07 <1.0 ug/L				Chlorodibromomethane	2013/08/07	<1.0		ug/L	

TIAMAT ENVIRONMENTAL CONSULTANTS Client Project #: 12-435 Site Location: RIVERSIDE LIGHT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
			Chloroethane	2013/08/07	<1.0		ug/L	
			Chloroform	2013/08/07	<0.50		ug/L	
			Chloromethane	2013/08/07	<2.0		ug/L	
			1,2-dibromoethane	2013/08/07	<0.50		ug/L	
			1,2-dichlorobenzene	2013/08/07	<0.50		ug/L	
			1,3-dichlorobenzene	2013/08/07	<0.50		ug/L	
			1,4-dichlorobenzene	2013/08/07	<0.50		ug/L	
			1,1-dichloroethane	2013/08/07	<0.50		ug/L	
			1,2-dichloroethane	2013/08/07	<0.50		ug/L	
			1,1-dichloroethene	2013/08/07	<0.50		ug/L	
			cis-1,2-dichloroethene	2013/08/07	<0.50		ug/L	
			trans-1,2-dichloroethene	2013/08/07	<0.50		ug/L	
			Dichloromethane	2013/08/07	<2.0		ug/L	
			1,2-dichloropropane	2013/08/07	<0.50		ug/L	
			cis-1,3-dichloropropene	2013/08/07	<0.50		ug/L	
			trans-1,3-dichloropropene	2013/08/07	<0.50		ug/L	
			Methyl methacrylate	2013/08/07	<0.50		ug/L	
			Methyl-tert-butylether (MTBE)	2013/08/07	<0.50		ug/L	
			Styrene	2013/08/07	<0.50		ug/L	
			1,1,1,2-tetrachloroethane	2013/08/07	<2.0		ug/L	
			1,1,2,2-tetrachloroethane	2013/08/07	<2.0		ug/L	
			Tetrachloroethene	2013/08/07	<0.50		ug/L	
			1,2,3-trichlorobenzene	2013/08/07	<1.0		ug/L	
			1,2,4-trichlorobenzene	2013/08/07	<1.0		ug/L	
			1,3,5-trichlorobenzene	2013/08/07	<0.50		ug/L	
			1,1,1-trichloroethane	2013/08/07	<0.50		ug/L	
			1,1,2-trichloroethane	2013/08/07	<0.50		ug/L	
			Trichloroethene	2013/08/07	<0.50		ug/L	
			Trichlorofluoromethane	2013/08/07	<0.50		ug/L	
			1,2,4-trimethylbenzene	2013/08/07	<0.50		ug/L	
			1,3,5-trimethylbenzene	2013/08/07	<0.50		ug/L	
			Vinyl chloride	2013/08/07	<0.50		ug/L	
7054234	MJ0	RPD	1,2-dibromoethane	2013/08/07	NC		%	40
			1,2-dichloroethane	2013/08/07	0.4		%	40
7056189	SK9	Matrix Spike	Total Kjeldahl Nitrogen	2013/08/07		94	%	80 - 120
7056189	SK9	QC Standard	Total Kjeldahl Nitrogen	2013/08/07		97	%	75 - 125
7056189	SK9	Spiked Blank	Total Kjeldahl Nitrogen	2013/08/07		96	%	80 - 120
7056189	SK9	Method Blank	Total Kjeldahl Nitrogen	2013/08/07	<0.050		mg/L	
7056189	SK9	RPD	Total Kjeldahl Nitrogen	2013/08/07	1.7		%	20
7056880	RW8	Matrix Spike	Organic Carbon (C)	2013/08/07		107	%	80 - 120
7056880	RW8	Spiked Blank	Organic Carbon (C)	2013/08/07		112	%	80 - 120
7056880	RW8	Method Blank	Organic Carbon (C)	2013/08/07	<0.50		mg/L	
7056880	RW8	RPD	Organic Carbon (C)	2013/08/07	NC		%	20
7057234	TDB	Matrix Spike	Aluminum (Al)	2013/08/08		NC	%	80 - 120
			Antimony (Sb)	2013/08/08		106	%	80 - 120
			Arsenic (As)	2013/08/08		98	%	80 - 120
			Beryllium (Be)	2013/08/08		96	%	80 - 120
			Chromium (Cr)	2013/08/08		101	%	80 - 120
			Cobalt (Co)	2013/08/08		102	%	80 - 120
			Copper (Cu)	2013/08/08		98	%	80 - 120
			Lead (Pb)	2013/08/08		95	%	80 - 120
			Molybdenum (Mo)	2013/08/08		106	%	80 - 120
			Nickel (Ni)	2013/08/08		98	%	80 - 120
			Selenium (Se)	2013/08/08		91	%	80 - 120
			Silver (Ag)	2013/08/08		104	%	80 - 120
			Thallium (TI)	2013/08/08		93	%	80 - 120
			Tin (Sn)	2013/08/08		102	%	80 - 120
			Titanium (Ti)	2013/08/08		103	%	80 - 120
			Uranium (U)	2013/08/08		100	%	80 - 120
			Vanadium (V)	2013/08/08		102	%	80 - 120
			Zinc (Zn)	2013/08/08		97	%	80 - 120
7057224	TDB	Spiked Blank	Aluminum (Al)	2013/08/08		99	%	80 - 120
7057234	IDD	opined blain						
7057234	IDD	opined blaint	Antimony (Sb)	2013/08/08		102	%	80 - 120

TIAMAT ENVIRONMENTAL CONSULTANTS Client Project #: 12-435 Site Location: RIVERSIDE LIGHT

TDB Method Blank Beryllum (tep) Chromium (Cr) 2013/08/08 101 % 80- C33/08/08 Capatr (Ca) 2013/08/08 102 % 80- Capatr (Ca) 2013/08/08 102 % 80- Capatr (Ca) Laad (Pa) 2013/08/08 102 % 80- Capatr (Ca) 2013/08/08 102 % 80- Capatr (Ca) Java (Pa) 2013/08/08 101 % 80- Capatr (Pa) 2013/08/08 101 % 80- Capatr (Pa) Silver (Pa) 2013/08/08 101 % 80- Tin (Sin) 2013/08/08 94 % 80- Tin (Sin) TDB Method Blank 2013/08/08 103 % 80- Tin (Sin) 2013/08/08 103 % 80- Tin (Sin) Zinc (Ca) 2013/08/08 0.0000 mg/L % 80- Tin (Sin) % 80- Ti	QA/QC				Date				
Chrömium (Cr) 2013/08/08 101 \$ 80- Cobpit (Co) 2013/08/08 102 \$ 80- Copper (Cu) 2013/08/08 102 \$ 80- Moh/halemum (Mo) 2013/08/08 102 \$ 80- Selectium (So) 2013/08/08 102 \$ 80- Selectium (So) 2013/08/08 102 \$ 80- Selectium (So) 2013/08/08 104 \$ 80- Thallium (Ti) 2013/08/08 98 \$ 80- Titanium (Ti) 2013/08/08 100 \$ 80- Titanium (Ti) 2013/08/08 100 \$ 80- Tota (Minory (Sb) 2013/08/08 100 \$ 80- Tota (Minory (Sb) 2013/08/08 0.0000 mg/L Aluminum (A) 2013/08/08 0.00000 mg/L Cromuum (Cr) 2013/08/08	Batch	Init	QC Type			Value			QC Limits
Cobait (Co) 2013/08/08 102 % 80- Copper (Cu) 2013/08/08 102 % 80- Lead (Pb) 2013/08/08 102 % 80- Micklerum (Mb) 2013/08/08 102 % 80- Silver (Ap) 2013/08/08 101 % 80- Silver (Ap) 2013/08/08 94 % 80- Thillium (TI) 2013/08/08 94 % 80- Tranium (TI) 2013/08/08 98 % 80- Tranium (TI) 2013/08/08 103 % 80- Tranium (TI) 2013/08/08 40.00 mg/L 80- ToB Method Blank Atuminami (Si) 2013/08/08 40.000 mg/L Cobait (Co) 2013/08/08 40.000 mg/L 80- Cobait (Co) 2013/08/08 40.0000 mg/L 80- Cobait (Co) 2013/08/08 40.00020 mg/L 80- Cobait (Co) 2013/08/									80 - 120
7057234 TDB Method Blank Copper (Cu) 2013/08/08 102 % 88. 7057234 TDB Method Blank 2013/08/08 102 % 88. 7057234 TDB Method Blank 2013/08/08 102 % 88. 7057234 TDB Method Blank 2013/08/08 100 % 88. 7057234 TDB Method Blank Aurinom (U) 2013/08/08 100 % 88. 7057234 TDB Method Blank Aurinom (G) 2013/08/08 -0.0030 mg/L 7057234 TDB Method Blank Aurinom (Sb) 2013/08/08 -0.0030 mg/L 7057234 TDB Method Blank Aurinom (Sb) 2013/08/08 -0.0030 mg/L 7057234 TDB Method Blank Aurinom (Mo) 2013/08/08 -0.00030 mg/L 7057234 TDB Method Blank Aurinom (Mo) 2013/08/08 -0.00020 mg/L 7057234 TDB <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>80 - 120</td></t<>									80 - 120
1 Lead (Pb) 2013/08/08 98 % 80- Nickel (NI) Nickel (NI) 2013/08/08 101 % 80- Nickel (NI) Silver (Ag) 2013/08/08 101 % 80- Nickel (NI) Silver (Ag) 2013/08/08 104 % 80- Nickel (NI) Tin Silver (Ag) 2013/08/08 104 % 80- Nickel (NI) Tin Silver (Ag) 2013/08/08 98 % 80- Nickel (NI) Tin Silver (Ag) 2013/08/08 103 % 80- Nickel (NI) Vanadium (V) 2013/08/08 103 % 80- Zin (Ca) Zin (Ca) 2013/08/08 -0.030 mg/L Aritoninum (Si) 2013/08/08 -0.0300 mg/L Aritoninum (Si) 2013/08/08 -0.0000 mg/L Cobeit (Co) 2013/08/08 -0.0000 mg/L Cobeit (Co) 2013/08/08 -0.00000 mg/L Seterinum (Se) 2013/08/08 -0.00000 mg/L Seterinum (Set 2013/08/08 -0.00000 mg/L Varadi (Pb) 2013/08/08 -0.00010 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>80 - 120</td>									80 - 120
7057234 TDB Method Blank Molyddenum (Mo) 2013/08/08 102 % 80 7057234 TDB Method Blank 7057234 TDB Method Blank 80 7057234 TDB Method Blank 7057234 TDB Method Blank 80 7057234 TDB Method Blank 7057234 TDB Method Blank 7057234 705 7057234 TDB Method Blank 7057234 705 7057234 705 7057234 705 705 7057234 705 705 7057234 705 700 7013/08/08 700020 707 705 705 705 700000 707 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>80 - 120</td>									80 - 120
Nicker (N) 2013/08/08 101 % 80- Selenium (Se) 2013/08/08 104 % 80- Silver (Ag) 2013/08/08 104 % 80- Tin (Sn) 2013/08/08 98 % 80- Toraium (Ti) 2013/08/08 0.0030 mg/L 80- Toraium (Ti) 2013/08/08 -0.0030 mg/L 80- Amminum (A) 2013/08/08 -0.0010 mg/L 80- Cobatt (Co) 2013/08/08 -0.0010 mg/L 80- Cobatt (Co) 2013/08/08 -0.0010 mg/L 80- Copper (Cu) 2013/08/08 -0.0020 mg/L 80- Cobatt (Ca) 2013/08/08 -0.0020 mg/L 80- Tin (Sn) 2013/08/08 -0.0020									80 - 120 80 - 120
Selenium (Se) 2013/08/08 92 % 80- Silver (Ag) 2013/08/08 94 % 80- Tin (Sin) 2013/08/08 98 % 80- Tin (Sin) 2013/08/08 98 % 80- Tin (Sin) 2013/08/08 98 % 80- Vanadum (V) 2013/08/08 100 % 80- Zin (Cla) 2013/08/08 0.0030 mg/L 80- Auminum (U) 2013/08/08 -0.0030 mg/L 80- Auminum (Sb) 2013/08/08 -0.00020 mg/L 80- Auminum (Sb) 2013/08/08 -0.00020 mg/L 80- Cobert (Co) 2013/08/08 -0.00020 mg/L 80- Cobert (Co) 2013/08/08 -0.00020 mg/L 80- Silver (Ag) 2013/08/08 -0.00020 mg/L 80- Cobert (Co) 2013/08/08 -0.00020 mg/L 80- Silver (Ag) 2013/08/08									80 - 120
Silver (Ag) 2013/06/08 10.0 % 80. Tin (Sn) 2013/06/08 98 % 80. Tin (Sn) 2013/06/08 98 % 80. Varaium (TI) 2013/06/08 98 % 80. Varaium (U) 2013/06/08 100 % 80. 7057234 TDB Method Blank Antimony (SD) 2013/06/08 <0.0030									80 - 120
7157234 TDB Method Blank Tin (Sn) 2013/08/08 98 % 80- Vanadium (V) 7057234 TDB Method Blank Aurimium (A) 2013/08/08 -0.0030 mg/L 7057234 TDB Method Blank Aurimium (A) 2013/08/08 -0.0030 mg/L 7057234 TDB Method Blank Aurimium (A) 2013/08/08 -0.0030 mg/L Arsenic (As) 2013/08/08 -0.00020 mg/L - Coball (Co) 2013/08/08 -0.00020 mg/L - Nickel (Ni) 2013/08/08 -0.00020 mg/L - Tinalium (Ti) 2013/08/08 -0.00020 mg/L - Tinalium (Ti) 2013/08/08 -0.00020 mg/L - Tinalium (Ti) 2013/08/08				Silver (Ag)	2013/08/08			%	80 - 120
7057234 TDB Method Blank Titanium (Ti) 2013/08/08 103 % 80- 2013/08/08 7057234 TDB Method Blank Aluminum (A) 2013/08/08 0.0030 mg/L 7057234 TDB Method Blank Aluminum (A) 2013/08/08 <0.0030									80 - 120
7057234 TDB Method Blank Uranium (U) 2013/08/08 100 % 80- 21nc (2n) 7057234 TDB Method Blank Autiminum (A) 2013/08/08 <0.00060									80 - 120
7057234 TDB Method Blank Aluminum (A) 2013/08/08 96 % 80 7057234 TDB Method Blank Aluminum (A) 2013/08/08 <0.00050									80 - 120
Zinc (Zn) 2013/08/08 96 % 80- 7057234 TDB Method Blank Antimory (Sb) 2013/08/08 <0.0000									80 - 120 80 - 120
7057234 TDB Method Blank Aluminum (A) Antimony (Sb) 2013/08/08 <0.00060 mg/L Artimony (Sb) 2013/08/08 <0.00060									80 - 120
Antimony (5b) 2013/08/08 -0.00060 mg/L Arsenic (As) 2013/08/08 -0.00020 mg/L Beryllium (Be) 2013/08/08 -0.0010 mg/L Cobalt (Co) 2013/08/08 -0.0010 mg/L Cobalt (Co) 2013/08/08 -0.00020 mg/L Cobalt (Co) 2013/08/08 -0.00020 mg/L Cobalt (Co) 2013/08/08 -0.00020 mg/L Lead (Pb) 2013/08/08 -0.00020 mg/L Nickel (Ni) 2013/08/08 -0.00020 mg/L Selenium (Se) 2013/08/08 -0.00020 mg/L Thalium (TI) 2013/08/08 -0.00020 mg/L Titanium (TI) 2013/08/08 -0.00010 mg/L Vanadium (V) 2013/08/08 -0.0010 mg/L Vanadium (V) 2013/08/08 -0.0010 mg/L Vanadium (V) 2013/08/08 -0.0010 mg/L Vanadium (V) 2013/08/08 NC % 2013/08/08 Cobalt (Co)<	7057234	TDB	Method Blank			<0.0030	50		00 120
7057234 TDB RPD Arsenic (As) 2013/08/08 <0.0010				()					
Chromium (Cr) 2013/08/08 <0.0010				Arsenic (As)	2013/08/08	<0.00020			
Cobalt (Co) 2013/08/08 c0.00030 mg/L Copper (Cu) 2013/08/08 c0.00020 mg/L Molyddenum (Mo) 2013/08/08 c0.00020 mg/L Molyddenum (Mo) 2013/08/08 c0.00020 mg/L Nickel (Ni) 2013/08/08 c0.00020 mg/L Selenium (Se) 2013/08/08 c0.00020 mg/L Silver (Ag) 2013/08/08 c0.00020 mg/L Thallium (TI) 2013/08/08 c0.00020 mg/L Titanium (TI) 2013/08/08 c0.0010 mg/L Uranium (U) 2013/08/08 c0.0010 mg/L Vanadium (V) 2013/08/08 c0.0010 mg/L Zinc (Zn) 2013/08/08 c0.0010 mg/L Vanadium (V) 2013/08/08 NC % 22 Zinc (Zn) 2013/08/08 NC % 22 Corbatt (Co) 2013/08/08 NC % 22 Copper (Cu) 2013/08/08 NC % 22 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>									
Copper (Cu) 2013/08/08 C0.0020 mg/L Lead (Pb) 2013/08/08 C0.0020 mg/L Molybdenum (Mo) 2013/08/08 C0.0020 mg/L Nickel (Ni) 2013/08/08 C0.0020 mg/L Silver (Ag) 2013/08/08 C0.00020 mg/L Silver (Ag) 2013/08/08 C0.00020 mg/L Thallium (TI) 2013/08/08 C0.00020 mg/L Titanium (TI) 2013/08/08 C0.0010 mg/L Uranium (TI) 2013/08/08 C0.0010 mg/L Vanadium (V) 2013/08/08 C0.0010 mg/L Vanadium (V) 2013/08/08 C0.0030 mg/L Zinc (Zn) Xarsenic (As) 2013/08/08 NC % Zinc (Zn) Xarsenic (As) 2013/08/08 NC % 22 Artsenic (As) 2013/08/08 NC % 22 Cobalt (Co) 2013/08/08 NC % 22 Cobalt (Co) 2013/08/08 NC %									
Leid (Pb) 2013/08/08 C0.00020 mg/L Molyddenum (Mo) 2013/08/08 c0.00020 mg/L Selenium (Se) 2013/08/08 c0.00020 mg/L Silver (Ag) 2013/08/08 c0.00020 mg/L Thallium (TI) 2013/08/08 c0.00020 mg/L Thallium (TI) 2013/08/08 c0.00010 mg/L Titanium (TI) 2013/08/08 c0.0010 mg/L Titanium (U) 2013/08/08 c0.0010 mg/L Vanadium (V) 2013/08/08 c0.0010 mg/L Vanadium (V) 2013/08/08 c0.0010 mg/L Zinc (Zn) 2013/08/08 c0.0010 mg/L Zinc (Zn) 2013/08/08 NC % 22 Antimory (Sb) 2013/08/08 NC % 22 Cobatt (Co) 2013/08/08 NC % 22 Cobatt (Co) 2013/08/08 NC % 22 Cobatt (Co) 2013/08/08 NC % 22									
Molybdenum (Mo) 2013/08/08 <0.00020 mg/L Nickel (Ni) 2013/08/08 <0.00005									
Nickel (Ni) 2013/08/08 <0.00050 mg/L Selenium (Se) 2013/08/08 <0.00020									
Selenium (se) 2013/08/08 <0.00020 mg/L Silver (Ag) 2013/08/08 0.00015, RDL=0.00 mg/L Thallium (TI) 2013/08/08 <0.0010									
Silver (Ag) 2013/08/08 0.00015, RDL=0.00 mg/L Thailium (TI) 2013/08/08 <0.0010				()					
Tin (Sn) 2013/08/08 <0.0010 mg/L Titanium (Ti) 2013/08/08 <0.0010				Silver (Ag)		0.00015, RDL=0.00			
7057234 TDB RPD Aliminum (U) 2013/08/08 <0.0010									
Uranium (U) 2013/08/08 <0.00010 mg/L Vanadium (V) 2013/08/08 <0.0010									
Vanadium (V) 2013/08/08 <0.0010 mg/L Zinc (Zn) 2013/08/08 <0.0030									
Zinc (Zn) 2013/08/08 <0.0030									
7057234 TDB RPD Aluminum (AI) 2013/08/08 23.5(2) % 22 Antimony (Sb) 2013/08/08 NC % 22 Arsenic (As) 2013/08/08 NC % 22 Beryllium (Be) 2013/08/08 NC % 22 Cobalt (Co) 2013/08/08 NC % 22 Molybdenum (Mo) 2013/08/08 NC % 22 Molybdenum (Se) 2013/08/08 NC % 22 Silver (Ag) 2013/08/08 NC % 22 Tin (Sn) 2013/08/08 NC % 22 Titanium (Ti) 2013/08/08 NC % 22 Vanadium (V) 2013/08/08 NC % 22 Titanium (Ga) 2013/08/07 105 80 20 Calcium (Ca) 2013/08/07									
Antimony (\$b) 2013/08/08 NC % 22 Arsenic (As) 2013/08/08 NC % 22 Beryllium (Be) 2013/08/08 NC % 22 Chromium (Cr) 2013/08/08 NC % 22 Cobalt (Co) 2013/08/08 NC % 22 Cobper (Cu) 2013/08/08 NC % 22 Lead (Pb) 2013/08/08 NC % 22 Molybdenum (Mo) 2013/08/08 NC % 22 Molybdenum (Mo) 2013/08/08 NC % 22 Silver (Ag) 2013/08/08 NC % 22 Silver (Ag) 2013/08/08 NC % 22 Thallium (Tl) 2013/08/08 NC % 22 Tin (Sn) 2013/08/08 NC % 22 Uranium (U) 2013/08/08 NC % 22 Uranium (U) 2013/08/08 NC % 22 Vanadium (V) 2013/08/08 NC % 22 C	7057234	TDB	RPD						20
Beryllium (Be) 2013/08/08 NC % 22 Chromium (Cr) 2013/08/08 NC % 22 Cobalt (Co) 2013/08/08 NC % 22 Copper (Cu) 2013/08/08 NC % 22 Lead (Pb) 2013/08/08 NC % 22 Molybdenum (Mo) 2013/08/08 NC % 22 Nickel (Ni) 2013/08/08 NC % 22 Silver (Ag) 2013/08/08 NC % 22 Thallium (TI) 2013/08/08 NC % 22 Tin (Sn) 2013/08/08 NC % 22 Titanium (TI) 2013/08/08 NC % 22 Vanadium (V) 2013/08/08 NC % 22 Vanadium (V) 2013/08/08 NC % 22 Vanadium (V) 2013/08/07 105 % 22 Vanadium (V) 2013/08/07 106 % 80 -				Antimony (Sb)					20
Chromium (Cr) 2013/08/08 NC % 24 Cobalt (Co) 2013/08/08 NC % 24 Copper (Cu) 2013/08/08 NC % 24 Lead (Pb) 2013/08/08 NC % 24 Molybdenum (Mo) 2013/08/08 NC % 24 Nickel (Ni) 2013/08/08 NC % 24 Selenium (Se) 2013/08/08 NC % 24 Silver (Ag) 2013/08/08 NC % 24 Thallium (Ti) 2013/08/08 NC % 24 Uranium (U) 2013/08/08 NC % 24 Vanadium (V) 2013/08/08 NC % 24 Uranium (U) 2013/08/08 NC % 24 Vanadium (V) 2013/08/07 115 % 80 Zinc (Zn) 2013/08/07 105 % 80 Icon (Fe) 2013/08/07 106 % 80									20
Cobalt (Co) 2013/08/08 NC % 24 Copper (Cu) 2013/08/08 NC % 24 Lead (Pb) 2013/08/08 NC % 24 Molybdenum (Mo) 2013/08/08 NC % 24 Nickel (Ni) 2013/08/08 NC % 24 Selenium (Se) 2013/08/08 NC % 24 Silver (Ag) 2013/08/08 NC % 24 Titalium (Ti) 2013/08/08 NC % 24 Titanium (Ti) 2013/08/08 NC % 24 Vanadium (V) 2013/08/08 NC % 24 Zinc (Zn) 2013/08/08 NC % 24 Vanadium (V) 2013/08/08 NC % 24 Zinc (Zn) 2013/08/08 NC % 24 Zinc (Zn) 2013/08/07 115 % 80 - Gono (B) 2013/08/07 106 % 80 -									20
Copper (Cu) 2013/08/08 NC % 24 Lead (Pb) 2013/08/08 NC % 24 Molybdenum (Mo) 2013/08/08 NC % 24 Molybdenum (Mo) 2013/08/08 NC % 24 Nickel (Ni) 2013/08/08 NC % 24 Silver (Ag) 2013/08/08 NC % 24 Thallium (TI) 2013/08/08 NC % 24 Titanium (Ti) 2013/08/08 NC % 24 Titanium (Ti) 2013/08/08 NC % 24 Vanadium (V) 2013/08/08 NC % 24 Vanadium (V) 2013/08/08 NC % 24 Zinc (Zn) 2013/08/07 99 % 80 - Golium (Ca) 2013/08/07 105 80 - 20 Zinc (Zn) 2013/08/07 103 % 80 - Golium (Ca) 2013/08/07 103 % 80 - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>20</td>									20
Lead (Pb) 2013/08/08 NC % 22 Molybdenum (Mo) 2013/08/08 NC % 22 Nickel (Ni) 2013/08/08 NC % 22 Nickel (Ni) 2013/08/08 NC % 22 Selenium (Se) 2013/08/08 NC % 22 Silver (Ag) 2013/08/08 NC % 22 Thallium (TI) 2013/08/08 NC % 22 Titanium (Ti) 2013/08/08 NC % 22 Vanadium (V) 2013/08/08 NC % 22 Vanadium (V) 2013/08/08 NC % 22 Vanadium (V) 2013/08/08 NC % 22 Zinc (Zn) 2013/08/07 % 20 20 Zinc (Zn) 2013/08/07 115 % 80 - Calcium (Ca) 2013/08/07 103 % 80 - Lirbium (Li) 2013/08/07 103 % 80 -									
Molybdenum (Mo) 2013/08/08 NC % 24 Nickel (Ni) 2013/08/08 NC % 24 Selenium (Se) 2013/08/08 NC % 24 Silver (Ag) 2013/08/08 NC % 24 Thallium (TI) 2013/08/08 NC % 24 Titanium (Ti) 2013/08/08 NC % 24 Uranium (U) 2013/08/08 NC % 24 Uranium (U) 2013/08/08 NC % 24 Uranium (U) 2013/08/08 NC % 24 Zinc (Zn) 2013/08/08 NC % 24 Zinc (Zn) 2013/08/07 99 % 80 - Calcium (Ca) 2013/08/07 115 % 80 - Calcium (Ca) 2013/08/07 103 % 80 - Uranium (Li) 2013/08/07 103 % 80 - Magnesium (Mg) 2013/08/07 103 % 80 -									20
Nickel (Ni) 2013/08/08 NC % 20 Selenium (Se) 2013/08/08 NC % 20 Silver (Ag) 2013/08/08 NC % 20 Thallium (TI) 2013/08/08 NC % 20 Tin (Sn) 2013/08/08 NC % 20 Titanium (TI) 2013/08/08 NC % 20 Vanadium (V) 2013/08/08 NC % 20 Zinc (Zn) 2013/08/08 NC % 20 7057243 STI Matrix Spike Barium (Ba) 2013/08/07 99 % 80 - Calcium (Ca) 2013/08/07 115 % 80 - Calcium (Ca) 2013/08/07 106 % 80 - Ichhium (Li) 2013/08/07 103 % 80 - Magnesium (Mg) 2013/08/07 103 % 80 - Magnesium (Mg) 2013/08/07 103 % 80 - Potassium (K) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>20</td></t<>									20
Selenium (Se) 2013/08/08 NC % 2013/08/08 Silver (Ag) 2013/08/08 NC % 2013/08/08 Thallium (TI) 2013/08/08 NC % 2013/08/08 Tin (Sn) 2013/08/08 NC % 2013/08/08 Titanium (TI) 2013/08/08 NC % 2013/08/08 Uranium (U) 2013/08/08 NC % 2013/08/08 Vanadium (V) 2013/08/08 NC % 2013/08/08 Vanadium (V) 2013/08/08 NC % 2013/08/07 7057243 STI Matrix Spike Barium (Ba) 2013/08/07 99 % 80 - Goldon (Ba) 2013/08/07 115 % 80 - Calcium (Ca) 2013/08/07 106 % 80 - Iron (Fe) 2013/08/07 103 % 80 - Magnesium (Mg) 2013/08/07 103 % 80 - Magnesium (Mg) 2013/08/07 103 % 80 - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>20</td>									20
Thallium (TI) 2013/08/08 NC % 20 Tin (Sn) 2013/08/08 NC % 20 Titanium (Ti) 2013/08/08 NC % 20 Titanium (Ti) 2013/08/08 NC % 20 Uranium (U) 2013/08/08 NC % 20 Vanadium (V) 2013/08/08 NC % 20 Zinc (Zn) 2013/08/08 NC % 20 7057243 STI Matrix Spike Barium (Ba) 2013/08/07 115 % 80 - Boron (B) 2013/08/07 NC % 80 - Calcium (Ca) 2013/08/07 106 % 80 - Iron (Fe) 2013/08/07 103 % 80 - Magnesium (Mg) 2013/08/07 103 % 80 - Magnesium (K) 2013/08/07 103 % 80 - Phosphorus (P) 2013/08/07 103 % 80 - Silicon (Si)				Selenium (Se)					20
Tin (Sn) 2013/08/08 NC % 2013/08/08 Titanium (Ti) 2013/08/08 NC % 2013/08/08 Uranium (U) 2013/08/08 NC % 2013/08/08 Vanadium (V) 2013/08/08 NC % 2013/08/08 Zinc (Zn) 2013/08/08 NC % 2013/08/07 7057243 STI Matrix Spike Barium (Ba) 2013/08/07 99 % 80 - Boron (B) 2013/08/07 115 % 80 - 115 % 80 - Calcium (Ca) 2013/08/07 106 % 80 - 115 % 80 - Iron (Fe) 2013/08/07 103 % 80 - 103 % 80 - Magnesium (Mg) 2013/08/07 103 % 80 - 103 % 80 - Magnesium (Mg) 2013/08/07 103 % 80 - 1013/08/07 103 % 80 - Potassium (K) 2013/08/07 103 <td></td> <td></td> <td></td> <td></td> <td>· · · · ·</td> <td>NC</td> <td></td> <td>%</td> <td>20</td>					· · · · ·	NC		%	20
Titanium (Ti) 2013/08/08 NC % 20 Uranium (U) 2013/08/08 7.3 % 20 Vanadium (V) 2013/08/08 NC % 20 Zinc (Zn) 2013/08/08 NC % 20 7057243 STI Matrix Spike Barium (Ba) 2013/08/07 99 % 80 - Boron (B) 2013/08/07 115 % 80 - Calcium (Ca) 2013/08/07 106 % 80 - Iron (Fe) 2013/08/07 103 % 80 - Magnesium (Mg) 2013/08/07 103 % 80 - Magnese (Mn) 2013/08/07 103 % 80 - Manganese (Mn) 2013/08/07 103 % 80 - Phosphorus (P) 2013/08/07 103 % 80 - Potassium (K) 2013/08/07 103 % 80 - Manganese (Mn) 2013/08/07 103 % 80 - Potassium (N) 2013/08/07 103 % 80 - Silicon (Si)									20
Uranium (U) 2013/08/08 7.3 % 20 Vanadium (V) 2013/08/08 NC % 20 Zinc (Zn) 2013/08/08 NC % 20 7057243 STI Matrix Spike Barium (Ba) 2013/08/07 99 % 80 - Boron (B) 2013/08/07 115 % 80 - Calcium (Ca) 2013/08/07 NC % 80 - Iron (Fe) 2013/08/07 106 % 80 - Magnesium (Mg) 2013/08/07 103 % 80 - Magnese (Mn) 2013/08/07 103 % 80 - Phosphorus (P) 2013/08/07 103 % 80 - Potassium (K) 2013/08/07 103 % 80 - Silicon (Si) 2013/08/07 103 % 80 - Sodium (Na) 2013/08/07 106 % 80 - Strontium (Sr) 2013/08/07 103 % 80 -									20
Vanadium (V) 2013/08/08 NC % 20 7057243 STI Matrix Spike Barium (Ba) 2013/08/07 99 % 80 - Boron (B) 2013/08/07 115 % 80 - Calcium (Ca) 2013/08/07 NC % 80 - Iron (Fe) 2013/08/07 106 % 80 - Lithium (Li) 2013/08/07 103 % 80 - Magnesium (Mg) 2013/08/07 103 % 80 - Magnesium (Mg) 2013/08/07 103 % 80 - Phosphorus (P) 2013/08/07 103 % 80 - Potassium (K) 2013/08/07 103 % 80 - Silicon (Si) 2013/08/07 103 % 80 - Potassium (K) 2013/08/07 103 % 80 - Sodium (Na) 2013/08/07 106 % 80 - Sodium (Na) 2013/08/07 106 % 80 - Stronti									
Zinc (Zn) 2013/08/08 NC % 20 7057243 STI Matrix Spike Barium (Ba) 2013/08/07 99 % 80 - Boron (B) 2013/08/07 115 % 80 - Calcium (Ca) 2013/08/07 NC % 80 - Iron (Fe) 2013/08/07 106 % 80 - Lithium (Li) 2013/08/07 103 % 80 - Magnesium (Mg) 2013/08/07 103 % 80 - Manganese (Mn) 2013/08/07 103 % 80 - Phosphorus (P) 2013/08/07 103 % 80 - Potassium (K) 2013/08/07 103 % 80 - Silicon (Si) 2013/08/07 103 % 80 - Potassium (K) 2013/08/07 103 % 80 - Sodium (Na) 2013/08/07 103 % 80 - Sodium (Na) 2013/08/07 103 % 80 - Strontium				· · ·					
7057243 STI Matrix Spike Barium (Ba) Boron (B) 2013/08/07 99 % 80 - 80 - Calcium (Ca) Iron (Fe) 2013/08/07 NC % 80 - 106 % 80 - 106 % 80 - 80 - 106 % 80 - 106 % 80 - 103 % 80 - 102 % 80 - 103 % 80 - 106 % % <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>20</td></td<>									20
Boron (B) 2013/08/07 115 % 80 - Calcium (Ca) 2013/08/07 NC % 80 - Iron (Fe) 2013/08/07 106 % 80 - Lithium (Li) 2013/08/07 103 % 80 - Magnesium (Mg) 2013/08/07 103 % 80 - Magnese (Mn) 2013/08/07 102 % 80 - Phosphorus (P) 2013/08/07 103 % 80 - Potassium (K) 2013/08/07 106 % 80 - Silicon (Si) 2013/08/07 103 % 80 - Sodium (Na) 2013/08/07 103 % 80 - Strontium (Sr) 2013/08/07 103 % 80 -	7057243	STI	Matrix Spike				99		80 - 120
Iron (Fe)2013/08/07106%80 -Lithium (Li)2013/08/07103%80 -Magnesium (Mg)2013/08/07103%80 -Manganese (Mn)2013/08/07102%80 -Phosphorus (P)2013/08/07103%80 -Potassium (K)2013/08/07106%80 -Silicon (Si)2013/08/07106%80 -Sodium (Na)2013/08/07103%80 -Strontium (Sr)2013/08/07101%80 -									80 - 120
Lithium (Li)2013/08/07103%80 -Magnesium (Mg)2013/08/07103%80 -Manganese (Mn)2013/08/07102%80 -Phosphorus (P)2013/08/07103%80 -Potassium (K)2013/08/07106%80 -Silicon (Si)2013/08/07106%80 -Sodium (Na)2013/08/07103%80 -Strontium (Sr)2013/08/07101%80 -									80 - 120
Magnesium (Mg) 2013/08/07 103 % 80 - Manganese (Mn) 2013/08/07 102 % 80 - Phosphorus (P) 2013/08/07 103 % 80 - Potassium (K) 2013/08/07 106 % 80 - Silicon (Si) 2013/08/07 106 % 80 - Sodium (Na) 2013/08/07 120 % 80 - Strontium (Sr) 2013/08/07 101 % 80 -									80 - 120
Manganese (Mn)2013/08/07102%80 -Phosphorus (P)2013/08/07103%80 -Potassium (K)2013/08/07106%80 -Silicon (Si)2013/08/07120%80 -Sodium (Na)2013/08/07103%80 -Strontium (Sr)2013/08/07101%80 -									80 - 120
Phosphorus (P)2013/08/07103%80 -Potassium (K)2013/08/07106%80 -Silicon (Si)2013/08/07120%80 -Sodium (Na)2013/08/07103%80 -Strontium (Sr)2013/08/07101%80 -									80 - 120
Potassium (K)2013/08/07106%80 -Silicon (Si)2013/08/07120%80 -Sodium (Na)2013/08/07103%80 -Strontium (Sr)2013/08/07101%80 -									80 - 120 80 - 120
Silicon (Si)2013/08/07120%80 -Sodium (Na)2013/08/07103%80 -Strontium (Sr)2013/08/07101%80 -									80 - 120 80 - 120
Sodium (Na) 2013/08/07 103 % 80 - Strontium (Sr) 2013/08/07 101 % 80 -									80 - 120
Strontium (Śr) 2013/08/07 101 % 80 -									80 - 120
				Strontium (Sr)	2013/08/07		101		80 - 120
7057243 STI Spiked Blank Barium (Ba) 2013/08/07 94 % 80 -	7057243	STI	Spiked Blank		2013/08/07		94	%	80 - 120

TIAMAT ENVIRONMENTAL CONSULTANTS Client Project #: 12-435 Site Location: RIVERSIDE LIGHT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
			Boron (B)	2013/08/07		113	%	80 - 120
			Calcium (Ca)	2013/08/07		100	%	80 - 120
			Iron (Fe) Lithium (Li)	2013/08/07 2013/08/07		96 98	% %	80 - 120 80 - 120
			Magnesium (Mg)	2013/08/07		98	%	80 - 120
			Manganese (Mn)	2013/08/07		98	%	80 - 120
			Phosphorus (P)	2013/08/07		96	%	80 - 120
			Potassium (K)	2013/08/07		101	%	80 - 120
			Silicon (Si)	2013/08/07		110	%	80 - 120
			Sodium (Na)	2013/08/07		99	%	80 - 120
7057243	STI	Method Blank	Strontium (Sr) Barium (Ba)	2013/08/07 2013/08/07	<0.010	97	%	80 - 120
7037243	311		Boron (B)		0.026, RDL=0.020		mg/L mg/L	
			Calcium (Ca)	2013/08/07	<0.30		mg/L	
			Iron (Fe)	2013/08/07	<0.060		mg/L	
			Lithium (Li)	2013/08/07	<0.020		mg/L	
			Magnesium (Mg)	2013/08/07	<0.20		mg/L	
			Manganese (Mn)	2013/08/07	<0.0040		mg/L	
			Phosphorus (P)	2013/08/07	<0.10 <0.30		mg/L	
			Potassium (K) Silicon (Si)	2013/08/07 2013/08/07	<0.30		mg/L mg/L	
			Sodium (Na)	2013/08/07	<0.10		mg/L	
			Strontium (Sr)	2013/08/07	<0.020		mg/L	
			Sulphur (S)	2013/08/07	<0.20		mg/L	
7057243	STI	RPD	Barium (Ba)	2013/08/07	NC		%	20
			Boron (B)	2013/08/07	NC		%	20
			Calcium (Ca)	2013/08/07 2013/08/07	0.03 NC		% %	20 20
			Iron (Fe) Lithium (Li)	2013/08/07	NC		%	20
			Magnesium (Mg)	2013/08/07	0.4		%	20
			Manganese (Mn)	2013/08/07	NC		%	20
			Phosphorus (P)	2013/08/07	NC		%	20
			Potassium (K)	2013/08/07	NC		%	20
			Silicon (Si)	2013/08/07	2.1		%	20 20
			Sodium (Na) Strontium (Sr)	2013/08/07 2013/08/07	1.7 1.1		% %	20
			Sulphur (S)	2013/08/07	0.3		%	20
7057489	TDB	Matrix Spike [HC0071]	Aluminum (Al)	2013/08/08	0.0	93	%	80 - 120
			Antimony (Sb)	2013/08/08		91	%	80 - 120
			Arsenic (As)	2013/08/08		104	%	80 - 120
			Beryllium (Be)	2013/08/08		98	%	80 - 120
			Chromium (Cr) Cobalt (Co)	2013/08/08 2013/08/08		99 94	% %	80 - 120 80 - 120
			Copper (Cu)	2013/08/08		89	%	80 - 120
			Lead (Pb)	2013/08/08		90	%	80 - 120
			Molybdenum (Mo)	2013/08/08		107	%	80 - 120
			Nickel (Ni)	2013/08/08		93	%	80 - 120
			Selenium (Se)	2013/08/08		104	%	80 - 120
			Silver (Ag)	2013/08/08		88 01	%	80 - 120
			Thallium (Tl) Tin (Sn)	2013/08/08 2013/08/08		91 96	% %	80 - 120 80 - 120
			Titanium (Ti)	2013/08/08		98	%	80 - 120
			Uranium (U)	2013/08/08		101	%	80 - 120
			Vanadium (V)	2013/08/08		104	%	80 - 120
7057155	T = -		Zinc (Zn)	2013/08/08		94	%	80 - 120
7057489	TDB	Spiked Blank	Aluminum (Al)	2013/08/08		92 91	%	80 - 120
			Antimony (Sb) Arsenic (As)	2013/08/08 2013/08/08		81 101	% %	80 - 120 80 - 120
			Beryllium (Be)	2013/08/08		95	%	80 - 120 80 - 120
			Chromium (Cr)	2013/08/08		94	%	80 - 120
			Cobalt (Co)	2013/08/08		94	%	80 - 120
			Copper (Cu)	2013/08/08		96	%	80 - 120
			Lead (Pb)	2013/08/08		94	%	80 - 120
			Molybdenum (Mo)	2013/08/08		96	%	80 - 120

Report Date: 2013/12/12

TIAMAT ENVIRONMENTAL CONSULTANTS Client Project #: 12-435 Site Location: RIVERSIDE LIGHT

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
			Nickel (Ni)	2013/08/08		95	%	80 - 120
			Selenium (Se)	2013/08/08		104	%	80 - 120
			Silver (Ag)	2013/08/08 2013/08/08		95 95	% %	80 - 120 80 - 120
			Thallium (Tl) Tin (Sn)	2013/08/08		89	%	80 - 120 80 - 120
			Titanium (Ti)	2013/08/08		89	%	80 - 120
			Uranium (U)	2013/08/08		102	%	80 - 120
			Vanadium (V)	2013/08/08		96	%	80 - 120
			Zinc (Zn)	2013/08/08		102	%	80 - 120
7057489	TDB	Method Blank	Aluminum (Al)	2013/08/08	<0.0030		mg/L	
			Antimony (Sb)	2013/08/08	<0.00060		mg/L	
			Arsenic (As)	2013/08/08	<0.00020		mg/L	
			Beryllium (Be)	2013/08/08	< 0.0010		mg/L	
			Chromium (Cr) Cobalt (Co)	2013/08/08 2013/08/08	<0.0010 <0.00030		mg/L	
			Copper (Cu)	2013/08/08	<0.00030		mg/L mg/L	
			Lead (Pb)	2013/08/08	<0.00020		mg/L	
			Molybdenum (Mo)	2013/08/08	<0.00020		mg/L	
			Nickel (Ni)	2013/08/08	< 0.00050		mg/L	
			Selenium (Se)	2013/08/08	<0.00020		mg/L	
			Silver (Ag)	2013/08/08	<0.00010		mg/L	
			Thallium (Tl)	2013/08/08	<0.00020		mg/L	
			Tin (Sn)	2013/08/08	< 0.0010		mg/L	
			Titanium (Ti)	2013/08/08 2013/08/08	<0.0010 <0.00010		mg/L	
			Uranium (U) Vanadium (V)	2013/08/08	<0.00010 <0.0010		mg/L	
			Zinc (Zn)	2013/08/08	< 0.0010		mg/L mg/L	
7057489	TDB	RPD [HC0071]	Aluminum (Al)	2013/08/08	<0.0050 NC		%	20
1001100			Antimony (Sb)	2013/08/08	NC		%	20
			Arsenic (As)	2013/08/08	NC		%	20
			Beryllium (Be)	2013/08/08	NC		%	20
			Chromium (Cr)	2013/08/08	NC		%	20
			Cobalt (Co)	2013/08/08	NC		%	20
			Copper (Cu) Lead (Pb)	2013/08/08 2013/08/08	6.5 NC		% %	20 20
			Molybdenum (Mo)	2013/08/08	1.5		%	20
			Nickel (Ni)	2013/08/08	2.7		%	20
			Selenium (Se)	2013/08/08	NC		%	20
			Silver (Ag)	2013/08/08	NC		%	20
			Thallium (Tl)	2013/08/08	NC		%	20
			Tin (Sn)	2013/08/08	NC		%	20
			Titanium (Ti)	2013/08/08	NC		%	20
			Uranium (U)	2013/08/08	2.8		%	20
			Vanadium (V) Zinc (Zn)	2013/08/08 2013/08/08	NC NC		% %	20 20
7057490	YK1	Matrix Spike	Barium (Ba)	2013/08/08	NC NC	108	%	20 80 - 120
			Boron (B)	2013/08/08		100	%	80 - 120
			Calcium (Ca)	2013/08/08		112	%	80 - 120
			Iron (Fe)	2013/08/08		115	%	80 - 120
			Lithium (Li)	2013/08/08		109	%	80 - 120
			Magnesium (Mg)	2013/08/08		107	%	80 - 120
			Manganese (Mn)	2013/08/08		110	%	80 - 120
			Phosphorus (P)	2013/08/08		110	%	80 - 120 80 - 120
			Potassium (K) Silicon (Si)	2013/08/08 2013/08/08		112 112	% %	80 - 120 80 - 120
			Sodium (Na)	2013/08/08		106	%	80 - 120 80 - 120
			Strontium (Sr)	2013/08/08		108	%	80 - 120
7057490	YK1	Spiked Blank	Barium (Ba)	2013/08/08		101	%	80 - 120
			Boron (B)	2013/08/08		101	%	80 - 120
			Calcium (Ca)	2013/08/08		105	%	80 - 120
			Iron (Fe)	2013/08/08		108	%	80 - 120
			Lithium (Li)	2013/08/08		103	%	80 - 120
			Magnesium (Mg)	2013/08/08		100	%	80 - 120
			Manganese (Mn)	2013/08/08		103	%	80 - 120

Success Through Science®

Maxxam Job #: B367060 Report Date: 2013/12/12 TIAMAT ENVIRONMENTAL CONSULTANTS Client Project #: 12-435 Site Location: RIVERSIDE LIGHT

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
			Phosphorus (P)	2013/08/08		104	%	80 - 120
			Potassium (K)	2013/08/08		104	%	80 - 120
			Silicon (Si)	2013/08/08		105	%	80 - 120
			Sodium (Na)	2013/08/08		98	%	80 - 120
			Strontium (Sr)	2013/08/08		101	%	80 - 120
7057490	YK1	Method Blank	Barium (Ba)	2013/08/07	< 0.010		mg/L	
			Boron (B)	2013/08/07	<0.020		mg/L	
			Calcium (Ca)	2013/08/07	<0.30		mg/L	
			Iron (Fe)	2013/08/07	< 0.060		mg/L	
			Lithium (Li)	2013/08/07	<0.020		mg/L	
			Magnesium (Mg)	2013/08/07	<0.20		mg/L	
			Manganese (Mn)	2013/08/07	<0.0040		mg/L	
			Phosphorus (P)	2013/08/07	<0.10		mg/L	
			Potassium (K)	2013/08/07	<0.30		mg/L	
			Silicon (Si)	2013/08/07	<0.10		mg/L	
			Sodium (Na)	2013/08/07	<0.50		mg/L	
			Strontium (Sr)	2013/08/07	<0.020		mg/L	
			Sulphur (S)	2013/08/07	<0.20		mg/L	
7057490	YK1	RPD	Barium (Ba)	2013/08/07	NC		%	20
			Boron (B)	2013/08/07	NC		%	20
			Calcium (Ca)	2013/08/07	0.3		%	20
			Iron (Fe)	2013/08/07	NC		%	20
			Lithium (Li)	2013/08/07	NC		%	20
			Magnesium (Mg)	2013/08/07	0.7		%	20
			Manganese (Mn)	2013/08/07	NC		%	20
			Phosphorus (P)	2013/08/07	NC		%	20
			Potassium (K)	2013/08/07	NC		%	20
			Silicon (Si)	2013/08/07	0.1		%	20
			Sodium (Na)	2013/08/07	NC		%	20
			Strontium (Sr)	2013/08/07	NC		%	20
			Sulphur (S)	2013/08/07	1.1		%	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

(1) Dissolved greater than total. Reanalysis yields similar results.

(2) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

TIAMAT ENVIRONMENTAL CONSULTANTS Client Project #: 12-435 Site Location: RIVERSIDE LIGHT

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Luba Shymushovska, Senior Analyst, Organic Department

Peng Liang, Analyst II

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

_		port Address	P	Report To:	-		Same	as In	voice	12	Ø	Rep	ort Di	stribu	tion (E	-Mail)	:				-	RE	GULA	TOR	Y GUI	DELINE	S:
CO	npany: TRAMAT GANIRO	ONMENT	AL	0.24.68.4						5.001		3	essi	ca E	D to	Pamo	rer	brep	1.09								
:0	ntact: IESSICA LEE											k	ell	00) tra	mast	Abro	up.	09								
d	Iress: 107,2719 7 AVE		1911		lm l					and the	-								191		191.18				ed Drin	king Wa	ater
_	Prov: AB	PC: TZA		Prov:				1	°C:											*	DAC		Oth	er:			
0	ntact #s: Ph: 403 -640-9009	Cell: 403-0	103-69	Ph:			1594	(Cell:	1.1		- 10	us f	_	_					_		-	1				_
	imples are held for 60 calendar days after sample receipt, un	less specified oth	erwise.	E hypolic the second			ĐĐ.	S	OIL			1		W/	TER		_		i e jul	81	Other	Analy	sis		0.20	1	
	#:		_				(3	3		-	alls.	vec	'Y'			erd		1	NS)	85	
	ject #/Name: 12-1935 Location: RIVERSIDE UGM	T	mault				AT-				100	82	1	节	A	Met	0SS	a		2	0	14		2			
	ote #: B36417	1	1.1111	Chante			VE /		s		×	Cs	X	f	Bo	ME //	II Dissolve	, NHP		1 a	forthe	ntesim		B			tted
a	npled By: JAC/KJS			Dr ba			CON		Metals	IIII		Evocs 8260	DBTEX EAST	H	200E	regulated metals (ccmE/ATI)	1	à	14	t les		1100	4		N	li ne	Submitted
	SERVICE RUSH (Conta	act lab to re	serve)	area f		(u	Regulated Metals (CCME / AT1)		ICP M	Class II Landfill		X	1-			ř	I Total	Sor	entra	V 1014 102 45	velotil		5	9	Aliphotics	Ano	
1	Date Required:			- Longer		licro	Meta		ent IC	1 I S			F2	Wat	293	6			2 2	22	So		502	1	23	ton	ners
_	REGULAR (5 t	o 7 Days)		J.	F1-F4	(75 micron)	ted	4	mer	las		CIBTEXEN	DETEX F1-F2	line		Dissolved 1)		de	KI FILDAN	A C	-	A.	N S	8	A A	ć	Containers
-		Depth	Matrix	Date/Time Sample		ve (7	Julat	Salinity	ess	lic C	-	E	TEX	HO	Fotal)	NIOS	นกอ	ron	E +	19-67	ter	0	201			6	Co
	Sample ID	(unit)	GW / SW Soil	YY/MM/DD 24:00	BTEX	Sieve (Reç	Sali	Asse	Basic	inen ma	B	B	Ģ	Total	8	Mer	30	2 4	1	F	Ó	AS	02	RC	C n	# of
1	MW-01		610	13/08/01 Pr								1	1	Ø	21	1		1			1	1	11	1	1		
2	MW-02		1	1			1255					1	1		~ 1			1	-	- /	/	1	- /	1	/		
3	MW-03		1	ł									/		/ /	- /		1	1	1	1	1			1	1	
ł	Vw-02		VAP	13/0-8/01 AN		- 61																					
5	9(215)																								2	70-	
õ	NAME AND ADDRESS OF ADDRESS OF			-0																1 10				1			
2			-																								
8			1													1 223		1			2	-Au	g-13	07	7:30		
9			1									44															
10			- 14	AL.					100										1						214		
11			7.4	I FP		1000															6706	0					
12	an (1997)		= 201 20	i où iv						i lai						-				AC			INS	5-0(082		
Ī	Please indicate Fi	iltered, Pr	eserve	d or Both (F, I	P, F/I)					-					*****			1	1	İ I		1				F/F
e	nquished By (Signature/Print):	in the		Date (YY/MM/DD):	-	2.20	2	Time	(24:0	0):					_			L	AB US	E ONL	.y		_				<u> </u>
	TESSICA LEE			13/08/01			100	19.			Rec	eived	By:	10		Date	e:	Т	lme:			axxam	I Job #	1:			
łe	nquished By (Signature/Print):			Date (YY/MM/DD):			Ĩ.	Time		0):	0	202	.H	K	int	USP	226	· /		31		Custody Seal	,	Ter	mpera	ture	Ice

12-435 Phase II ESA – Riverside Light Industrial Park Historic Waste Disposal Site, The City of Red Deer

SOIL VAPOUR REPORTS

Your Project #: 12-435 Site Location: RIVERSIDE LIGHT Your C.O.C. #: na

Attention: Jessica Lee

Tiamat Environmental 107, 2719-7 Ave. NE Calgary, AB CANADA T2A 2L9

Report Date: 2013/08/25

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B3C9298 Received: 2013/08/07, 10:40

Sample Matrix: AIR # Samples Received: 1

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
BTEX Fractionation in Air (TO-15mod)	1	N/A	2013/08/14	BRL SOP-00304	EPA TO-15mod
Canister Pressure (TO-15)	1	N/A	2013/08/14	BRL SOP-00304	EPA TO-15
Light Hydrocarbons	1	N/A	2013/08/21	CAM SOP-00227	GC/FID
Matrix Gases	1	N/A	2013/08/22	CAM SOP-00225, CAM SOP-00209	ASTM D1946-90
Volatile Organics in Air (TO-15) (1)	1	N/A	2013/08/14	BRL SOP-00304	EPA TO-15

(1) Air sampling canisters have been cleaned in accordance with U.S. EPA Method TO14A. At the end of the cleaning, evacuation, and pressurization cycles, one canister was selected and was pressurized with Zero Air. This canister was then analyzed via TO14A on a GC/MS. The canister must have been found to contain <0.2 ppbv concentration of all target analytes in order for the batch to have been considered clean. Each canister also underwent a leak check prior to shipment.

Please Note: SUMMA® canister samples will be retained by Maxxam for a period of 5 calendar days or as contractually agreed from the date of this report, after which time they will be cleaned for reuse. If you require a longer sample storage period, please contact your service representative.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Theresa Stephenson, Project Manager Email: TStephenson@maxxam.ca Phone# (905) 817-5763

5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam Analytics Inc. is a NELAC accredited laboratory. Certificate # CANA001. Use of the NELAC logo however does not insure that

Page 1 of 15

Your Project #: 12-435 Site Location: RIVERSIDE LIGHT Your C.O.C. #: na

Attention: Jessica Lee

Tiamat Environmental 107, 2719-7 Ave. NE Calgary, AB CANADA T2A 2L9

Report Date: 2013/08/25

CERTIFICATE OF ANALYSIS -2-

Maxxam is accredited for all of the methods indicated. This certificate shall not be reproduced except in full, without the written approval of Maxxam Analytics Inc. Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section.

Total cover pages: 2

Page 2 of 15 This document is in electronic format, hard copy is available on request.

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Tiamat Environmental Client Project #: 12-435 Site Location: RIVERSIDE LIGHT

Maxxam ID		SO1706		
Sampling Date		2013/07/31		
COC Number		na		
	Units	HC6544-01\VW-01	RDL	QC Batch
		1		
Gas				
Acetylene	ppm	ND	0.26	3322553
Ethane	ppm	1.7	0.26	3322553
Ethylene	ppm	ND	0.26	3322553
n-Butane	ppm	ND	0.51	3322553
n-Pentane	ppm	ND	0.26	3322553
Propane	ppm	1.1	0.26	3322553
Propene	ppm	ND	0.26	3322553
Propyne	ppm	ND	0.51	3322553
Volatile Organics				
Pressure on Receipt	psig	(-3.6)	N/A	3317031
ND = Not detected RDL = Reportable De QC Batch = Quality C				

RESULTS OF ANALYSES OF AIR

Tiamat Environmental Client Project #: 12-435 Site Location: RIVERSIDE LIGHT

COMPRESSED GAS PARAMETERS (AIR)

Maxxam ID		SO1706		
Sampling Date		2013/07/31		
COC Number		na		
	Units	HC6544-01\VW-01	RDL	QC Batch

Fixed Gases				
Oxygen	% v/v	2.0	0.3	3324319
Nitrogen	% v/v	50.9	0.3	3324319
Carbon Monoxide	% v/v	ND	0.3	3324319
Methane	% v/v	27.4	0.3	3324319
Carbon Dioxide	% v/v	19.8	0.3	3324319

ND = Not detected RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Tiamat Environmental Client Project #: 12-435 Site Location: RIVERSIDE LIGHT

VOLATILE ORGANIC HYDROCARBONS BY GC/MS (AIR)

Maxxam ID		SO1706	1	1
Sampling Date		2013/07/31		
COC Number		na		
	Units	HC6544-01\VW-01	RDL	QC Batch
F				
Volatile Organics				
Aliphatic >C5-C6	ug/m3	205	5.0	3319686
Aliphatic >C6-C8	ug/m3	483	5.0	3319686
Aliphatic >C8-C10	ug/m3	176	5.0	3319686
Aliphatic >C10-C12	ug/m3	412	5.0	3319686
Aliphatic >C12-C16	ug/m3	125	5.0	3319686
Aromatic >C7-C8 (TEX Excluded)	ug/m3	ND	5.0	3319686
Aromatic >C8-C10	ug/m3	86.0	5.0	3319686
Aromatic >C10-C12	ug/m3	71.1	5.0	3319686
Aromatic >C12-C16	ug/m3	ND	5.0	3319686
ND = Not detected RDL = Reportable Detection Limit QC Batch = Quality Control Batch				

Tiamat Environmental Client Project #: 12-435 Site Location: RIVERSIDE LIGHT

VOLATILE ORGANICS BY GC/MS (AIR)

Sampling Date		2013/07/31				
COC Number	Unito	na HC6544-01\VW-01	RDL		DL (ug/m3)	QC Batch
	Units		RDL	ug/m3	DL (ug/m3)	
Volatile Organics						
Dichlorodifluoromethane (FREON 12)	ppbv	3.34	0.20	16.5	0.989	3317067
1,2-Dichlorotetrafluoroethane	ppbv	<0.17	0.17	<1.19	1.19	3317067
Chloromethane	ppbv	0.87	0.30	1.81	0.620	3317067
Vinyl Chloride	ppbv	0.60	0.18	1.54	0.460	3317067
Chloroethane	ppbv	<0.30	0.30	<0.792	0.792	3317067
1,3-Butadiene	ppbv	<0.50	0.50	<1.11	1.11	3317067
Trichlorofluoromethane (FREON 11)	ppbv	<0.20	0.20	<1.12	1.12	3317067
Ethanol (ethyl alcohol)	ppbv	34.4	2.3	64.8	4.33	3317067
Trichlorotrifluoroethane	ppbv	<0.15	0.15	<1.15	1.15	3317067
2-propanol	ppbv	11.5	3.0	28.4	7.37	3317067
2-Propanone	ppbv	32.0	0.80	75.9	1.90	3317067
Methyl Ethyl Ketone (2-Butanone)	ppbv	16.8	3.0	49.6	8.85	3317067
Methyl Isobutyl Ketone	ppbv	<3.2	3.2	<13.1	13.1	3317067
Methyl Butyl Ketone (2-Hexanone)	ppbv	<2.0	2.0	<8.19	8.19	3317067
Methyl t-butyl ether (MTBE)	ppbv	<0.20	0.20	<0.721	0.721	3317067
Ethyl Acetate	ppbv	2.6	2.2	9.47	7.93	3317067
1,1-Dichloroethylene	ppbv	<0.25	0.25	<0.991	0.991	3317067
cis-1,2-Dichloroethylene	ppbv	<0.19	0.19	<0.753	0.753	3317067
trans-1,2-Dichloroethylene	ppbv	<0.20	0.20	<0.793	0.793	3317067
Methylene Chloride(Dichloromethane)	ppbv	<0.80	0.80	<2.78	2.78	3317067
Chloroform	ppbv	<0.15	0.15	<0.732	0.732	3317067
Carbon Tetrachloride	ppbv	<0.30	0.30	<1.89	1.89	3317067
1,1-Dichloroethane	ppbv	<0.20	0.20	<0.809	0.809	3317067
1,2-Dichloroethane	ppbv	<0.20	0.20	<0.809	0.809	3317067
Ethylene Dibromide	ppbv	<0.17	0.17	<1.31	1.31	3317067
1,1,1-Trichloroethane	ppbv	<0.30	0.30	<1.64	1.64	3317067
1,1,2-Trichloroethane	ppbv	<0.15	0.15	<0.818	0.818	3317067
1,1,2,2-Tetrachloroethane	ppbv	<0.20	0.20	<1.37	1.37	3317067
cis-1,3-Dichloropropene	ppbv	<0.18	0.18	<0.817	0.817	3317067
trans-1,3-Dichloropropene	ppbv	<0.17	0.17	<0.772	0.772	3317067
1,2-Dichloropropane	ppbv	<0.40	0.40	<1.85	1.85	3317067
Bromomethane	ppbv	<0.18	0.18	<0.699	0.699	3317067
Bromoform	ppbv	<0.20	0.20	<2.07	2.07	3317067

QC Batch = Quality Control Batch

Tiamat Environmental Client Project #: 12-435 Site Location: RIVERSIDE LIGHT

VOLATILE ORGANICS BY GC/MS (AIR)

Maxxam ID		SO1706				
Sampling Date COC Number		2013/07/31 na				
	Units	HC6544-01\VW-01	RDL	ug/m3	DL (ug/m3)	QC Batch
Bromodichloromethane	ppbv	<0.20	0.20	<1.34	1.34	3317067
Dibromochloromethane	ppbv	<0.20	0.20	<1.70	1.70	3317067
Trichloroethylene	ppbv	2.23	0.30	12.0	1.61	3317067
Tetrachloroethylene	ppbv	0.64	0.20	4.34	1.36	3317067
Benzene	ppbv	2.93	0.18	9.36	0.575	3317067
Toluene	ppbv	14.1	0.20	53.1	0.753	3317067
Ethylbenzene	ppbv	4.01	0.20	17.4	0.868	3317067
p+m-Xylene	ppbv	11.6	0.37	50.3	1.61	3317067
o-Xylene	ppbv	5.01	0.20	21.7	0.868	3317067
Styrene	ppbv	1.40	0.20	5.97	0.852	3317067
4-ethyltoluene	ppbv	<2.2	2.2	<10.8	10.8	3317067
1,3,5-Trimethylbenzene	ppbv	<8.3	8.3	<40.8	40.8	3317067
1,2,4-Trimethylbenzene	ppbv	3.76	0.50	18.5	2.46	3317067
Chlorobenzene	ppbv	<0.20	0.20	<0.921	0.921	3317067
Benzyl chloride	ppbv	<1.0	1.0	<5.18	5.18	3317067
1,3-Dichlorobenzene	ppbv	<0.40	0.40	<2.40	2.40	3317067
1,4-Dichlorobenzene	ppbv	<0.40	0.40	<2.40	2.40	3317067
1,2-Dichlorobenzene	ppbv	<0.40	0.40	<2.40	2.40	3317067
1,2,4-Trichlorobenzene	ppbv	<2.0	2.0	<14.8	14.8	3317067
Hexachlorobutadiene	ppbv	<3.0	3.0	<32.0	32.0	3317067
Hexane	ppbv	11.4	0.30	40.1	1.06	3317067
Heptane	ppbv	3.79	0.30	15.5	1.23	3317067
Cyclohexane	ppbv	34.9	0.20	120	0.688	3317067
Tetrahydrofuran	ppbv	8.14	0.40	24.0	1.18	3317067
1,4-Dioxane	ppbv	<2.0	2.0	<7.21	7.21	3317067
Xylene (Total)	ppbv	16.6	0.60	72.0	2.61	3317067
Vinyl Bromide	ppbv	<0.20	0.20	<0.875	0.875	3317067
Propene	ppbv	<220	220	<372	372	3317067
2,2,4-Trimethylpentane	ppbv	4.62	0.20	21.6	0.934	3317067
Carbon Disulfide	ppbv	5.31	0.50	16.6	1.56	3317067
Vinyl Acetate	ppbv	<0.20	0.20	<0.704	0.704	3317067
Surrogate Recovery (%)						
Bromochloromethane	%	102		N/A	N/A	3317067
D5-Chlorobenzene	%	90		N/A	N/A	3317067

Tiamat Environmental Client Project #: 12-435 Site Location: RIVERSIDE LIGHT

VOLATILE ORGANICS BY GC/MS (AIR)

Maxxam ID		SO1706				
Sampling Date		2013/07/31				
COC Number		na				
	Units	HC6544-01\VW-01	RDL	ug/m3	DL (ug/m3)	QC Batch
Difluorobenzene	%	103		N/A	N/A	3317067
N/A = Not Applicable QC Batch = Quality Control Batch						

Tiamat Environmental Client Project #: 12-435 Site Location: RIVERSIDE LIGHT

Test Summary

Maxxam ID	SO1706
Sample ID	HC6544-01\VW-01
Matrix	AIR

Collected	2013/07/31
Shipped	
Received	2013/08/07

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
BTEX Fractionation in Air (TO-15mod)	GC/MS	3319686	N/A	2013/08/14	Jie Wu
Canister Pressure (TO-15)	PRES	3317031	N/A	2013/08/14	Jie Wu
Light Hydrocarbons	GC/FID	3322553	N/A	2013/08/21	Vijay Lad
Matrix Gases	GC/TCD	3324319	N/A	2013/08/22	Tonghui (Jenny) Chen
Volatile Organics in Air (TO-15)	GC/MS	3317067	N/A	2013/08/14	Jie Wu

Success Through Science®

Tiamat Environmental Client Project #: 12-435 Site Location: RIVERSIDE LIGHT

GENERAL COMMENTS

ws:3317067

Ethanol exceeds 130% recovery criteria in Reference Standard. It meets %RSD criteria in the Continuing Calibration Standard. Data was accepted and flagged.

Light Hydrocarbon/Matrix Gas Analysis: Canister was pressurized with Helium to enable sampling. Results and DLs adjusted accordingly.

Matrix Gas Analysis: Results normalized to 100% dry volume.

Sample SO1706-01: Increased DL further for propene and 1,3,5-trimethylbenzene due to possible interference.

Results relate only to the items tested.

Quality Assurance Report

QA/QC			Date				
Batch			Analyzed		0/ D		
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	%Recovery	Units	QC Limits
3317067 JIW	Spiked Blank	Bromochloromethane	2013/08/14		101	%	60 - 140
		D5-Chlorobenzene	2013/08/14		111	%	60 - 140
		Difluorobenzene	2013/08/14		107	%	60 - 140
		Dichlorodifluoromethane (FREON 12)	2013/08/14		108	%	70 - 130
		1,2-Dichlorotetrafluoroethane	2013/08/14		115	%	70 - 130
		Chloromethane	2013/08/14		113	%	70 - 130
		Vinyl Chloride	2013/08/14		107	%	70 - 130
		Chloroethane	2013/08/14		100	%	70 - 130
		1,3-Butadiene	2013/08/14		109	%	70 - 130
		Trichlorofluoromethane (FREON 11)	2013/08/14		103	%	70 - 130
		Ethanol (ethyl alcohol)	2013/08/14		141 (1)	%	70 - 130
		Trichlorotrifluoroethane	2013/08/14		97	%	70 - 130
		2-propanol	2013/08/14		118	%	70 - 130
		2-Propanone	2013/08/14		107	%	70 - 130
		Methyl Ethyl Ketone (2-Butanone)	2013/08/14		109	%	70 - 130
		Methyl Isobutyl Ketone	2013/08/14		110	%	70 - 130
		Methyl Butyl Ketone (2-Hexanone)	2013/08/14		115	%	70 - 130
		Methyl t-butyl ether (MTBE)	2013/08/14		106	%	70 - 130
		Ethyl Acetate	2013/08/14		114	%	70 - 130
		1,1-Dichloroethylene	2013/08/14		103	%	70 - 130
		cis-1,2-Dichloroethylene	2013/08/14		106	%	70 - 130
		trans-1,2-Dichloroethylene	2013/08/14		104	%	70 - 130
		Methylene Chloride(Dichloromethane)	2013/08/14		99	%	70 - 130
		Chloroform	2013/08/14		102	%	70 - 130
		Carbon Tetrachloride	2013/08/14		99	%	70 - 130
		1,1-Dichloroethane	2013/08/14		105	%	70 - 130
		1,2-Dichloroethane	2013/08/14		106	%	70 - 130
		Ethylene Dibromide	2013/08/14		100	%	70 - 130
		1,1,1-Trichloroethane	2013/08/14		100	%	70 - 130
		1,1,2-Trichloroethane	2013/08/14		97	%	70 - 130
		1,1,2,2-Tetrachloroethane	2013/08/14		98	%	70 - 130
		cis-1,3-Dichloropropene	2013/08/14		104	%	70 - 130
		trans-1,3-Dichloropropene	2013/08/14		111	%	70 - 130
		1,2-Dichloropropane	2013/08/14		100	%	70 - 130
		Bromomethane	2013/08/14		96	%	70 - 130
		Bromoform	2013/08/14		95	%	70 - 130
		Bromodichloromethane	2013/08/14		102	%	70 - 130
		Dibromochloromethane	2013/08/14		99	%	70 - 130
		Trichloroethylene	2013/08/14		92	%	70 - 130
		Tetrachloroethylene	2013/08/14		94	%	70 - 130
		Benzene	2013/08/14		97	%	70 - 130
		Toluene	2013/08/14		99	%	70 - 130
		Ethylbenzene	2013/08/14		97	%	70 - 130
		p+m-Xylene	2013/08/14		97	%	70 - 130
		o-Xylene	2013/08/14		100	%	70 - 130
		Styrene	2013/08/14		102	%	70 - 130
		4-ethyltoluene	2013/08/14		99	%	70 - 130
		1,3,5-Trimethylbenzene	2013/08/14		99	%	70 - 130
		1,2,4-Trimethylbenzene	2013/08/14		102	%	70 - 130
		Chlorobenzene	2013/08/14		95	%	70 - 130
		Benzyl chloride	2013/08/14		101	%	70 - 130
		1,3-Dichlorobenzene	2013/08/14		103	%	70 - 130
		1,4-Dichlorobenzene	2013/08/14		100	%	70 - 130
		1,2-Dichlorobenzene	2013/08/14		97	%	70 - 130
		1,2,4-Trichlorobenzene	2013/08/14		117	%	70 - 130

Quality Assurance Report (Continued)

QA/QC			Date			
Batch		Devenueter	Analyzed	Value 0/Decou	1.1.4.2.5	
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery	Units	QC Limit
3317067 JIW	Spiked Blank	Hexachlorobutadiene	2013/08/14	110	%	70 - 13
		Hexane	2013/08/14	111	%	70 - 13
		Heptane	2013/08/14	109	%	70 - 13
		Cyclohexane	2013/08/14	105	%	70 - 13
		Tetrahydrofuran	2013/08/14	118	%	70 - 13
		1,4-Dioxane	2013/08/14	106	%	70 - 13
		Xylene (Total)	2013/08/14	98	%	70 - 13
		Vinyl Bromide	2013/08/14	94	%	70 - 13
		Propene	2013/08/14	106	%	70 - 13
		2,2,4-Trimethylpentane	2013/08/14	102	%	70 - 13
		Carbon Disulfide	2013/08/14	104	%	70 - 13
	Mathad Diaula	Vinyl Acetate	2013/08/14	115	%	70 - 13
	Method Blank	Bromochloromethane	2013/08/14	92	%	60 - 14
		D5-Chlorobenzene	2013/08/14	84	%	60 - 14
		Difluorobenzene	2013/08/14	96	%	60 - 14
		Dichlorodifluoromethane (FREON 12)	2013/08/14	ND, RDL=0.20	ppbv	
		1,2-Dichlorotetrafluoroethane	2013/08/14	ND, RDL=0.17	ppbv	
		Chloromethane	2013/08/14	ND, RDL=0.30	ppbv	
		Vinyl Chloride	2013/08/14	ND, RDL=0.18	ppbv	
		Chloroethane	2013/08/14	ND, RDL=0.30	ppbv	
		1,3-Butadiene	2013/08/14	ND, RDL=0.50	ppbv	
		Trichlorofluoromethane (FREON 11)	2013/08/14	ND, RDL=0.20	ppbv	
		Ethanol (ethyl alcohol)	2013/08/14	ND, RDL=2.3	ppbv	
		Trichlorotrifluoroethane	2013/08/14	ND, RDL=0.15	ppbv	
		2-propanol	2013/08/14	ND, RDL=3.0	ppbv	
		2-Propanone	2013/08/14	ND, RDL=0.80	ppbv	
		Methyl Ethyl Ketone (2-Butanone)	2013/08/14	ND, RDL=3.0	ppbv	
		Methyl Isobutyl Ketone	2013/08/14	ND, RDL=3.2	ppbv	
		Methyl Butyl Ketone (2-Hexanone)	2013/08/14	ND, RDL=2.0	ppbv	
		Methyl t-butyl ether (MTBE)	2013/08/14	ND, RDL=0.20	ppbv	
		Ethyl Acetate	2013/08/14	ND, RDL=2.2	ppbv	
		1,1-Dichloroethylene	2013/08/14	ND, RDL=0.25	ppbv	
		cis-1,2-Dichloroethylene	2013/08/14	ND, RDL=0.19	ppbv	
		trans-1,2-Dichloroethylene	2013/08/14	ND, RDL=0.20	ppbv	
		Methylene Chloride(Dichloromethane)	2013/08/14	ND, RDL=0.80	ppbv	
		Chloroform	2013/08/14	ND, RDL=0.15	ppbv	
		Carbon Tetrachloride	2013/08/14	ND, RDL=0.30	ppbv	
		1,1-Dichloroethane	2013/08/14	ND, RDL=0.20	ppbv	
		1,2-Dichloroethane	2013/08/14	ND, RDL=0.20	ppbv	
		Ethylene Dibromide	2013/08/14	ND, RDL=0.17	ppbv	
		1,1,1-Trichloroethane	2013/08/14	ND, RDL=0.30	ppbv	
		1,1,2-Trichloroethane	2013/08/14	ND, RDL=0.15	ppbv	
		1,1,2,2-Tetrachloroethane	2013/08/14	ND, RDL=0.20	ppbv	
		cis-1,3-Dichloropropene	2013/08/14	ND, RDL=0.18	ppbv	
		trans-1,3-Dichloropropene	2013/08/14	ND, RDL=0.17	ppbv	
		1,2-Dichloropropane	2013/08/14	ND, RDL=0.40	ppbv	
		Bromomethane	2013/08/14	ND, RDL=0.18	ppbv	
		Bromoform	2013/08/14	ND, RDL=0.20	ppbv	
		Bromodichloromethane	2013/08/14	ND, RDL=0.20	ppbv	
		Dibromochloromethane	2013/08/14	ND, RDL=0.20	ppbv	
		Trichloroethylene	2013/08/14	ND, RDL=0.30	ppbv	
		Tetrachloroethylene	2013/08/14	ND, RDL=0.20	ppbv	
		Benzene	2013/08/14	ND, RDL=0.18	ppbv	
		Toluene	2013/08/14	ND, RDL=0.20	ppbv	
		Ethylbenzene	2013/08/14	ND, RDL=0.20	ppbv	

Quality Assurance Report (Continued)

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery	Units	QC Limits
3317067 JIW	Method Blank	p+m-Xylene	2013/08/14	ND, RDL=0.37	ppbv	
		o-Xylene	2013/08/14	ND, RDL=0.20	ppbv	
		Styrene	2013/08/14	ND, RDL=0.20	ppbv	
		4-ethyltoluene	2013/08/14	ND, RDL=2.2	ppbv	
		1,3,5-Trimethylbenzene	2013/08/14	ND, RDL=0.50	ppbv	
		1,2,4-Trimethylbenzene	2013/08/14	ND, RDL=0.50	ppbv	
		Chlorobenzene	2013/08/14	ND, RDL=0.20	ppbv	
		Benzyl chloride	2013/08/14	ND, RDL=1.0	ppbv	
		1,3-Dichlorobenzene	2013/08/14	ND, RDL=0.40	ppbv	
		1,4-Dichlorobenzene	2013/08/14	ND, RDL=0.40	ppbv	
		1,2-Dichlorobenzene	2013/08/14	ND, RDL=0.40	ppbv	
		1,2,4-Trichlorobenzene	2013/08/14	ND, RDL=2.0	ppbv	
		Hexachlorobutadiene	2013/08/14	ND, RDL=3.0	ppbv	
		Hexane	2013/08/14	ND, RDL=0.30	ppbv	
		Heptane	2013/08/14	ND, RDL=0.30	ppbv	
		Cyclohexane	2013/08/14	ND, RDL=0.20	ppbv	
		Tetrahydrofuran	2013/08/14	ND, RDL=0.40	ppbv	
		1,4-Dioxane	2013/08/14	ND, RDL=2.0	ppbv	
		Xylene (Total)	2013/08/14	ND, RDL=0.60	ppbv	
		Vinyl Bromide	2013/08/14	ND, RDL=0.20	ppbv	
		Propene	2013/08/14	ND, RDL=0.30	ppbv	
		2,2,4-Trimethylpentane	2013/08/14	ND, RDL=0.20	ppbv	
		Carbon Disulfide	2013/08/14	ND, RDL=0.50	ppbv	
		Vinyl Acetate	2013/08/14	ND, RDL=0.20	ppbv	
	RPD -					
	Sample/Sample					
	Dup	Dichlorodifluoromethane (FREON 12)	2013/08/14	NC	%	25
		1,2-Dichlorotetrafluoroethane	2013/08/14	NC	%	25
		Chloromethane	2013/08/14	NC	%	25
		Chloroethane	2013/08/14	NC	%	25
		1,3-Butadiene	2013/08/14	NC	%	25
		Trichlorofluoromethane (FREON 11)	2013/08/14	NC	%	25
		Ethanol (ethyl alcohol)	2013/08/14	NC	%	25
		Trichlorotrifluoroethane	2013/08/14	NC	%	25
		2-propanol	2013/08/14	NC	%	25
		2-Propanone	2013/08/14	4.5	%	25
		Methyl Ethyl Ketone (2-Butanone)	2013/08/14	NC	%	25
		Methyl Isobutyl Ketone	2013/08/14	NC	%	25
		Methyl Butyl Ketone (2-Hexanone)	2013/08/14	NC	%	25
		Methyl t-butyl ether (MTBE)	2013/08/14	NC	%	25
		Ethyl Acetate	2013/08/14	NC	%	25
		1,1-Dichloroethylene	2013/08/14	NC	%	25
		cis-1,2-Dichloroethylene	2013/08/14	NC	%	25
		trans-1,2-Dichloroethylene	2013/08/14	NC	%	25
		Methylene Chloride(Dichloromethane)	2013/08/14	NC	%	25
		Chloroform	2013/08/14	NC	%	25
		Carbon Tetrachloride	2013/08/14	NC	%	25
		1,1-Dichloroethane	2013/08/14	NC	%	25
		1,2-Dichloroethane	2013/08/14	NC	%	25
		Ethylene Dibromide	2013/08/14	NC	%	25
		1,1,1-Trichloroethane	2013/08/14	NC	%	25
		1,1,2-Trichloroethane	2013/08/14	NC	%	25
		1,1,2,2-Tetrachloroethane	2013/08/14	NC	%	25
1		cis-1,3-Dichloropropene	2013/08/14	NC	%	25
1		trans-1,3-Dichloropropene	2013/08/14	NC	%	25
			2010,00,11		,5	

Quality Assurance Report (Continued)

Maxxam Job Number: GB3C9298

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery	Units	QC Limits
3317067 JIW	RPD -					
	Sample/Sample	1.2 Dichlaronronon	2013/08/14	NC	0/	25
	Dup	1,2-Dichloropropane Bromomethane	2013/08/14 2013/08/14	NC NC	% %	25 25
		Bromoform	2013/08/14	NC	%	25
		Bromodichloromethane	2013/08/14	NC	%	25
		Dibromochloromethane	2013/08/14	NC	%	25
		Trichloroethylene	2013/08/14	NC	%	25
		Tetrachloroethylene	2013/08/14	NC	%	25
		Benzene	2013/08/14	NC	%	25
		Toluene	2013/08/14	NC	%	25
		Ethylbenzene	2013/08/14	NC	%	25
		p+m-Xylene	2013/08/14	NC	%	25
		o-Xylene	2013/08/14	NC	%	25
		Styrene	2013/08/14	NC	%	25
		4-ethyltoluene	2013/08/14	NC	%	25
		1,3,5-Trimethylbenzene	2013/08/14	NC	%	25
		1,2,4-Trimethylbenzene	2013/08/14	NC	%	25
		Chlorobenzene	2013/08/14	NC	%	25
		Benzyl chloride	2013/08/14	NC	%	25
		1,3-Dichlorobenzene	2013/08/14	NC	%	25
		1,4-Dichlorobenzene	2013/08/14	NC	%	25
		1,2-Dichlorobenzene	2013/08/14	NC	%	25
		1,2,4-Trichlorobenzene	2013/08/14	NC	%	25
		Hexachlorobutadiene	2013/08/14	NC	%	25
		Hexane	2013/08/14	NC	%	25
		Heptane	2013/08/14	NC	%	25
		Cyclohexane	2013/08/14	NC	%	25
		Tetrahydrofuran	2013/08/14	NC	%	25
		1,4-Dioxane	2013/08/14	NC	%	25
		Xylene (Total)	2013/08/14	NC	%	25
		Vinyl Bromide	2013/08/14	NC	%	25
		Propene	2013/08/14	NC	%	25
		2,2,4-Trimethylpentane	2013/08/14	NC	%	25
		Carbon Disulfide	2013/08/14	NC	%	25
		Vinyl Acetate	2013/08/14	NC	%	25
3319686 JIW	Method Blank	Aliphatic >C5-C6	2013/08/14	ND, RDL=5.0	ug/m3	
		Aliphatic >C6-C8	2013/08/14	ND, RDL=5.0	ug/m3	
		Aliphatic >C8-C10	2013/08/14	ND, RDL=5.0	ug/m3	
		Aliphatic >C10-C12	2013/08/14	ND, RDL=5.0	ug/m3	
		Aliphatic >C12-C16	2013/08/14	ND, RDL=5.0	ug/m3	
		Aromatic >C7-C8 (TEX Excluded)	2013/08/14	ND, RDL=5.0	ug/m3	
		Aromatic >C8-C10	2013/08/14	ND, RDL=5.0	ug/m3	
		Aromatic >C10-C12	2013/08/14	ND, RDL=5.0	ug/m3	
0000550 \// 4	Mathe d Dia d	Aromatic >C12-C16	2013/08/14	ND, RDL=5.0	ug/m3	
3322553 VLA	Method Blank	Acetylene	2013/08/21	ND, RDL=0.1	ppm	
		Ethane	2013/08/21	ND, RDL=0.1	ppm	
		Ethylene n-Butane	2013/08/21 2013/08/21	ND, RDL=0.1 ND, RDL=0.2	ppm	
		n-Butane n-Pentane	2013/08/21	ND, RDL=0.2 ND, RDL=0.1	ppm	
		Propane	2013/08/21	ND, RDL=0.1 ND, RDL=0.1	ppm	
		Propene	2013/08/21	ND, RDL=0.1 ND, RDL=0.1	ppm	
		Propene Propyne	2013/08/21	ND, RDL=0.1 ND, RDL=0.2	ppm	
	RPD -		2013/00/21	ND, NDL=0.2	ppm	
	Sample/Sample					
	Dup	Acetylene	2013/08/21	NC	%	20
	Dup	Autorition	2010/00/21		70	20

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Quality Assurance Report (Continued)

Maxxam Job Number: GB3C9298

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery	Units	QC Limits
3322553 VLA	RPD -					
	Sample/Sample					
	Dup	Ethane	2013/08/21	NC	%	20
		Ethylene	2013/08/21	NC	%	20
		n-Butane	2013/08/21	NC	%	20
		n-Pentane	2013/08/21	NC	%	20
		Propane	2013/08/21	NC	%	20
		Propene	2013/08/21	NC	%	20
		Propyne	2013/08/21	NC	%	20
3324319 TJC	Method Blank	Oxygen	2013/08/22	ND, RDL=0.1	% v/v	
		Nitrogen	2013/08/22	ND, RDL=0.1	% v/v	
		Carbon Monoxide	2013/08/22	ND, RDL=0.1	% v/v	
		Methane	2013/08/22	ND, RDL=0.1	% v/v	
		Carbon Dioxide	2013/08/22	ND, RDL=0.1	% v/v	
	RPD -					
	Sample/Sample					
	Dup	Oxygen	2013/08/22	0.1	%	20
		Nitrogen	2013/08/22	0.1	%	20
		Methane	2013/08/22	NC	%	20
		Carbon Dioxide	2013/08/22	0	%	20

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination. Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Your Project #: 12-435 Site Location: RIVERSIDE LIGHT Your C.O.C. #: na

Attention: Jessica Lee

Tiamat Environmental 107, 2719-7 Ave. NE Calgary, AB CANADA T2A 2L9

Report Date: 2013/08/25

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B3C9302 Received: 2013/08/07, 09:50

Sample Matrix: AIR # Samples Received: 1

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
BTEX Fractionation in Air (TO-15mod)	1	N/A	2013/08/14	BRL SOP-00304	EPA TO-15mod
Canister Pressure (TO-15)	1	N/A	2013/08/14	BRL SOP-00304	EPA TO-15
Light Hydrocarbons	1	N/A	2013/08/21	CAM SOP-00227	GC/FID
Matrix Gases	1	N/A	2013/08/22	CAM SOP-00225, CAM SOP-00209	ASTM D1946-90
Volatile Organics in Air (TO-15) (1)	1	N/A	2013/08/14	BRL SOP-00304	EPA TO-15

(1) Air sampling canisters have been cleaned in accordance with U.S. EPA Method TO14A. At the end of the cleaning, evacuation, and pressurization cycles, one canister was selected and was pressurized with Zero Air. This canister was then analyzed via TO14A on a GC/MS. The canister must have been found to contain <0.2 ppbv concentration of all target analytes in order for the batch to have been considered clean. Each canister also underwent a leak check prior to shipment.

Please Note: SUMMA® canister samples will be retained by Maxxam for a period of 5 calendar days or as contractually agreed from the date of this report, after which time they will be cleaned for reuse. If you require a longer sample storage period, please contact your service representative.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Theresa Stephenson, Project Manager Email: TStephenson@maxxam.ca Phone# (905) 817-5763

5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam Analytics Inc. is a NELAC accredited laboratory. Certificate # CANA001. Use of the NELAC logo however does not insure that

Page 1 of 15

Your Project #: 12-435 Site Location: RIVERSIDE LIGHT Your C.O.C. #: na

Attention: Jessica Lee

Tiamat Environmental 107, 2719-7 Ave. NE Calgary, AB CANADA T2A 2L9

Report Date: 2013/08/25

CERTIFICATE OF ANALYSIS -2-

Maxxam is accredited for all of the methods indicated. This certificate shall not be reproduced except in full, without the written approval of Maxxam Analytics Inc. Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section.

Total cover pages: 2

Page 2 of 15 This document is in electronic format, hard copy is available on request.

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Tiamat Environmental Client Project #: 12-435 Site Location: RIVERSIDE LIGHT

Maxxam ID		SO1714		
Sampling Date		2013/08/01		
COC Number		na		
	Units	HC0074-01\VW-02	RDL	QC Batch
Gas				
Acetylene	ppm	ND	0.21	3322553
Ethane	ppm	1.3	0.21	3322553
Ethylene	ppm	ND	0.21	3322553
n-Butane	ppm	0.47	0.41	3322553
n-Pentane	ppm	ND	0.21	3322553
Propane	ppm	0.69	0.21	3322553
Propene	ppm	ND	0.21	3322553
Propyne	ppm	ND	0.41	3322553
Volatile Organics				
Pressure on Receipt	psig	(-3.6)	N/A	3317031
ND = Not detected RDL = Reportable De QC Batch = Quality C				

RESULTS OF ANALYSES OF AIR

Tiamat Environmental Client Project #: 12-435 Site Location: RIVERSIDE LIGHT

COMPRESSED GAS PARAMETERS (AIR)

Maxxam ID		SO1714		
Sampling Date		2013/08/01		
COC Number		na		
	Units	HC0074-01\VW-02	RDL	QC Batch

Fixed Gases				
Oxygen	% v/v	5.0	0.2	3324319
Nitrogen	% v/v	67.0	0.2	3324319
Carbon Monoxide	% v/v	ND	0.2	3324319
Methane	% v/v	17.6	0.2	3324319
Carbon Dioxide	% v/v	10.4	0.2	3324319

ND = Not detected RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Tiamat Environmental Client Project #: 12-435 Site Location: RIVERSIDE LIGHT

VOLATILE ORGANIC HYDROCARBONS BY GC/MS (AIR)

	SO1714		
	2013/08/01		
	na		
Units	HC0074-01\VW-02	RDL	QC Batch
ua/m3	37	12	3319686
			3319686
	11.0	1.6	3319686
ug/m3	42.8	2.2	3319686
ug/m3	2530 (1)	13	3319686
ug/m3	651	5.0	3319686
ug/m3	106	5.0	3319686
ug/m3	185	5.0	3319686
ug/m3	91.1	5.0	3319686
ug/m3	ND	5.0	3319686
ug/m3	47.5	5.0	3319686
ug/m3	41.7	5.0	3319686
ug/m3	ND	5.0	3319686
%	113		3319686
%	110		3319686
%	102		3319686
	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	2013/08/01 na Units HC0074-01\VW-02 ug/m3 3.7 ug/m3 41.6 ug/m3 41.6 ug/m3 41.6 ug/m3 42.8 ug/m3 651 ug/m3 106 ug/m3 91.1 ug/m3 47.5 ug/m3 41.7 ug/m3 11.7 ug/m3 11.7 ug/m3 11.7 ug/m3 11.7 ug/m3 11.7 ug/m3 11.7	2013/08/01 na Units HC0074-01\VW-02 RDL ug/m3 3.7 1.2 ug/m3 41.6 1.6 ug/m3 41.6 1.6 ug/m3 42.8 2.2 ug/m3 2530 (1) 13 ug/m3 651 5.0 ug/m3 185 5.0 ug/m3 91.1 5.0 ug/m3 A7.5 5.0 ug/m3 ND 5.0 ug/m3<

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) A 2.5x dilution was analyzed. The DL was adjusted accordingly.

Tiamat Environmental Client Project #: 12-435 Site Location: RIVERSIDE LIGHT

VOLATILE ORGANICS BY GC/MS (AIR)

Maxxam ID Sampling Date		SO1714 2013/08/01				
COC Number		na				
	Units	HC0074-01\VW-02	RDL	ug/m3	DL (ug/m3)	QC Batch
Volatile Organics						
Dichlorodifluoromethane (FREON 12)	ppbv	341	0.80	1690	3.96	3317067
1,2-Dichlorotetrafluoroethane	ppbv	<0.17	0.17	<1.19	1.19	3317067
Chloromethane	ppbv	<0.30	0.30	<0.620	0.620	3317067
Vinyl Chloride	ppbv	<0.18	0.18	<0.460	0.460	3317067
Chloroethane	ppbv	<0.30	0.30	<0.792	0.792	3317067
1,3-Butadiene	ppbv	<0.50	0.50	<1.11	1.11	3317067
Trichlorofluoromethane (FREON 11)	ppbv	<0.20	0.20	<1.12	1.12	3317067
Ethanol (ethyl alcohol)	ppbv	23.5	2.3	44.3	4.33	3317067
Trichlorotrifluoroethane	ppbv	<0.15	0.15	<1.15	1.15	3317067
2-propanol	ppbv	6.1	3.0	15.0	7.37	3317067
2-Propanone	ppbv	19.8	0.80	47.1	1.90	3317067
Methyl Ethyl Ketone (2-Butanone)	ppbv	12.2	3.0	36.0	8.85	3317067
Methyl Isobutyl Ketone	ppbv	<3.2	3.2	<13.1	13.1	3317067
Methyl Butyl Ketone (2-Hexanone)	ppbv	<2.0	2.0	<8.19	8.19	3317067
Methyl t-butyl ether (MTBE)	ppbv	<0.20	0.20	<0.721	0.721	3317067
Ethyl Acetate	ppbv	<2.2	2.2	<7.93	7.93	3317067
1,1-Dichloroethylene	ppbv	<0.25	0.25	<0.991	0.991	3317067
cis-1,2-Dichloroethylene	ppbv	<0.19	0.19	<0.753	0.753	3317067
trans-1,2-Dichloroethylene	ppbv	<0.20	0.20	<0.793	0.793	3317067
Methylene Chloride(Dichloromethane)	ppbv	<0.80	0.80	<2.78	2.78	3317067
Chloroform	ppbv	<0.15	0.15	<0.732	0.732	3317067
Carbon Tetrachloride	ppbv	<0.30	0.30	<1.89	1.89	3317067
1,1-Dichloroethane	ppbv	<0.20	0.20	<0.809	0.809	3317067
1,2-Dichloroethane	ppbv	0.29	0.20	1.19	0.809	3317067
Ethylene Dibromide	ppbv	<0.17	0.17	<1.31	1.31	3317067
1,1,1-Trichloroethane	ppbv	<0.30	0.30	<1.64	1.64	3317067
1,1,2-Trichloroethane	ppbv	<0.15	0.15	<0.818	0.818	3317067
1,1,2,2-Tetrachloroethane	ppbv	<0.20	0.20	<1.37	1.37	3317067
cis-1,3-Dichloropropene	ppbv	<0.18	0.18	<0.817	0.817	3317067
trans-1,3-Dichloropropene	ppbv	<0.17	0.17	<0.772	0.772	3317067
1,2-Dichloropropane	ppbv	<0.40	0.40	<1.85	1.85	3317067
Bromomethane	ppbv	<0.18	0.18	<0.699	0.699	3317067
Bromoform	ppbv	<0.20	0.20	<2.07	2.07	3317067

QC Batch = Quality Control Batch

Tiamat Environmental Client Project #: 12-435 Site Location: RIVERSIDE LIGHT

VOLATILE ORGANICS BY GC/MS (AIR)

Maxxam ID Sampling Date		SO1714 2013/08/01				
COC Number		na				
	Units	HC0074-01\VW-02	RDL	ug/m3	DL (ug/m3)	QC Batch
Bromodichloromethane	ppbv	<0.20	0.20	<1.34	1.34	3317067
Dibromochloromethane	ppbv	<0.20	0.20	<1.70	1.70	3317067
Trichloroethylene	ppbv	1.82	0.30	9.76	1.61	3317067
Tetrachloroethylene	ppbv	<0.20	0.20	<1.36	1.36	3317067
Benzene	ppbv	1.15	0.18	3.68	0.575	3317067
Toluene	ppbv	11.1	0.20	41.6	0.753	3317067
Ethylbenzene	ppbv	2.53	0.20	11.0	0.868	3317067
p+m-Xylene	ppbv	7.03	0.37	30.5	1.61	3317067
o-Xylene	ppbv	2.85	0.20	12.4	0.868	3317067
Styrene	ppbv	0.81	0.20	3.45	0.852	3317067
4-ethyltoluene	ppbv	<2.2	2.2	<10.8	10.8	3317067
1,3,5-Trimethylbenzene	ppbv	<3.6	3.6	<17.6	17.6	3317067
1,2,4-Trimethylbenzene	ppbv	2.27	0.50	11.2	2.46	3317067
Chlorobenzene	ppbv	<0.20	0.20	<0.921	0.921	3317067
Benzyl chloride	ppbv	<1.0	1.0	<5.18	5.18	3317067
1,3-Dichlorobenzene	ppbv	<0.40	0.40	<2.40	2.40	3317067
1,4-Dichlorobenzene	ppbv	<0.40	0.40	<2.40	2.40	3317067
1,2-Dichlorobenzene	ppbv	<0.40	0.40	<2.40	2.40	3317067
1,2,4-Trichlorobenzene	ppbv	<2.0	2.0	<14.8	14.8	3317067
Hexachlorobutadiene	ppbv	<3.0	3.0	<32.0	32.0	3317067
Hexane	ppbv	7.70	0.30	27.1	1.06	3317067
Heptane	ppbv	1.87	0.30	7.68	1.23	3317067
Cyclohexane	ppbv	8.60	0.20	29.6	0.688	3317067
Tetrahydrofuran	ppbv	7.87	0.40	23.2	1.18	3317067
1,4-Dioxane	ppbv	<2.0	2.0	<7.21	7.21	3317067
Xylene (Total)	ppbv	9.88	0.60	42.9	2.61	3317067
Vinyl Bromide	ppbv	<0.20	0.20	<0.875	0.875	3317067
Propene	ppbv	<240	240	<406	406	3317067
2,2,4-Trimethylpentane	ppbv	3.52	0.20	16.5	0.934	3317067
Carbon Disulfide	ppbv	3.24	0.50	10.1	1.56	3317067
Vinyl Acetate	ppbv	<0.20	0.20	<0.704	0.704	3317067
Surrogate Recovery (%)						
Bromochloromethane	%	110		N/A	N/A	3317067
D5-Chlorobenzene	%	102		N/A	N/A	3317067

Tiamat Environmental Client Project #: 12-435 Site Location: RIVERSIDE LIGHT

VOLATILE ORGANICS BY GC/MS (AIR)

Maxxam ID		SO1714				
Sampling Date		2013/08/01				
COC Number		na				
	Units	HC0074-01\VW-02	RDL	ug/m3	DL (ug/m3)	QC Batch
Difluorobenzene	%	113		N/A	N/A	3317067
N/A = Not Applicable QC Batch = Quality Control Batch						

Tiamat Environmental Client Project #: 12-435 Site Location: RIVERSIDE LIGHT

Test Summary

Maxxam ID	SO1714
Sample ID	HC0074-01\VW-02
Matrix	AIR

Collected	2013/08/01
Shipped	
Received	2013/08/07

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
BTEX Fractionation in Air (TO-15mod)	GC/MS	3319686	N/A	2013/08/14	Jie Wu
Canister Pressure (TO-15)	PRES	3317031	N/A	2013/08/14	Jie Wu
Light Hydrocarbons	GC/FID	3322553	N/A	2013/08/21	Vijay Lad
Matrix Gases	GC/TCD	3324319	N/A	2013/08/22	Tonghui (Jenny) Chen
Volatile Organics in Air (TO-15)	GC/MS	3317067	N/A	2013/08/14	Jie Wu

Success Through Science®

Tiamat Environmental Client Project #: 12-435 Site Location: RIVERSIDE LIGHT

GENERAL COMMENTS

ws:3317067

Ethanol exceeds 130% recovery criteria in Reference Standard. It meets %RSD criteria in the Continuing Calibration Standard. Data was accepted and flagged.

Light Hydrocarbon/Matrix Gas Analysis: Canister was pressurized with Helium to enable sampling. Results and DLs adjusted accordingly.

Matrix Gas Analysis: Results normalized to 100% dry volume.

Sample SO1714-01: Increased DL further for propene and 1,3,5-trimethylbenzene due to possible interference.

A 4x dilution was analyzed for dichlordifluoromethane. The DL was adjusted accordingly.

Results relate only to the items tested.

Quality Assurance Report

QA/QC			Date				
Batch		_	Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	%Recovery	Units	QC Limits
3317067 JIW	Spiked Blank	Bromochloromethane	2013/08/14		101	%	60 - 140
		D5-Chlorobenzene	2013/08/14		111	%	60 - 140
		Difluorobenzene	2013/08/14		107	%	60 - 140
		Dichlorodifluoromethane (FREON 12)	2013/08/14		108	%	70 - 130
		1,2-Dichlorotetrafluoroethane	2013/08/14		115	%	70 - 130
		Chloromethane	2013/08/14		113	%	70 - 130
		Vinyl Chloride	2013/08/14		107	%	70 - 130
		Chloroethane	2013/08/14		100	%	70 - 130
		1,3-Butadiene	2013/08/14		109	%	70 - 130
		Trichlorofluoromethane (FREON 11)	2013/08/14		103	%	70 - 130
		Ethanol (ethyl alcohol)	2013/08/14		141 (1)	%	70 - 130
		Trichlorotrifluoroethane	2013/08/14		97	%	70 - 130
		2-propanol	2013/08/14		118	%	70 - 130
		2-Propanone	2013/08/14		107	%	70 - 130
		Methyl Ethyl Ketone (2-Butanone)	2013/08/14		109	%	70 - 130
		Methyl Isobutyl Ketone	2013/08/14		110	%	70 - 130
		Methyl Butyl Ketone (2-Hexanone)	2013/08/14		115	%	70 - 130
		Methyl t-butyl ether (MTBE)	2013/08/14		106	%	70 - 130
		Ethyl Acetate	2013/08/14		114	%	70 - 130
		1,1-Dichloroethylene	2013/08/14		103	%	70 - 130
		cis-1,2-Dichloroethylene	2013/08/14		106	%	70 - 130
		trans-1,2-Dichloroethylene	2013/08/14		104	%	70 - 130
		Methylene Chloride(Dichloromethane)	2013/08/14		99	%	70 - 130
		Chloroform	2013/08/14		102	%	70 - 130
		Carbon Tetrachloride	2013/08/14		99	%	70 - 130
		1,1-Dichloroethane	2013/08/14		105	%	70 - 130
		1,2-Dichloroethane	2013/08/14		106	%	70 - 130
		Ethylene Dibromide	2013/08/14		100	%	70 - 130
		1,1,1-Trichloroethane	2013/08/14		100	%	70 - 130
		1,1,2-Trichloroethane	2013/08/14		97	%	70 - 130
		1,1,2,2-Tetrachloroethane	2013/08/14		98	%	70 - 130
		cis-1,3-Dichloropropene	2013/08/14		104	%	70 - 130
		trans-1,3-Dichloropropene	2013/08/14		104	%	70 - 130
		1,2-Dichloropropane	2013/08/14		100	%	70 - 130
		Bromomethane	2013/08/14		96	%	70 - 130
		Bromoform	2013/08/14		90 95	%	70 - 130 70 - 130
		Bromodichloromethane	2013/08/14 2013/08/14		102	% %	70 - 130
		Dibromochloromethane			99		70 - 130
		Trichloroethylene	2013/08/14		92	%	70 - 130
		Tetrachloroethylene	2013/08/14		94	%	70 - 130
		Benzene	2013/08/14		97	%	70 - 130
		Toluene	2013/08/14		99	%	70 - 130
		Ethylbenzene	2013/08/14		97	%	70 - 130
		p+m-Xylene	2013/08/14		97	%	70 - 130
		o-Xylene	2013/08/14		100	%	70 - 130
		Styrene	2013/08/14		102	%	70 - 130
		4-ethyltoluene	2013/08/14		99	%	70 - 130
		1,3,5-Trimethylbenzene	2013/08/14		99	%	70 - 130
		1,2,4-Trimethylbenzene	2013/08/14		102	%	70 - 130
		Chlorobenzene	2013/08/14		95	%	70 - 130
		Benzyl chloride	2013/08/14		101	%	70 - 130
		1,3-Dichlorobenzene	2013/08/14		103	%	70 - 130
		1,4-Dichlorobenzene	2013/08/14		100	%	70 - 130
		1,2-Dichlorobenzene	2013/08/14		97	%	70 - 130
		1,2,4-Trichlorobenzene	2013/08/14		117	%	70 - 130

Quality Assurance Report (Continued)

QA/QC			Date			
Batch		Devenueter	Analyzed	Value 0/Decou	1.1.4.2.5	
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery	Units	QC Limit
3317067 JIW	Spiked Blank	Hexachlorobutadiene	2013/08/14	110	%	70 - 13
		Hexane	2013/08/14	111	%	70 - 13
		Heptane	2013/08/14	109	%	70 - 13
		Cyclohexane	2013/08/14	105	%	70 - 13
		Tetrahydrofuran	2013/08/14	118	%	70 - 13
		1,4-Dioxane	2013/08/14	106	%	70 - 13
		Xylene (Total)	2013/08/14	98	%	70 - 13
		Vinyl Bromide	2013/08/14	94	%	70 - 13
		Propene	2013/08/14	106	%	70 - 13
		2,2,4-Trimethylpentane	2013/08/14	102	%	70 - 13
		Carbon Disulfide	2013/08/14	104	%	70 - 13
	Mathad Diaula	Vinyl Acetate	2013/08/14	115	%	70 - 13
	Method Blank	Bromochloromethane	2013/08/14	92	%	60 - 14
		D5-Chlorobenzene	2013/08/14	84	%	60 - 14
		Difluorobenzene	2013/08/14	96	%	60 - 14
		Dichlorodifluoromethane (FREON 12)	2013/08/14	ND, RDL=0.20	ppbv	
		1,2-Dichlorotetrafluoroethane	2013/08/14	ND, RDL=0.17	ppbv	
		Chloromethane	2013/08/14	ND, RDL=0.30	ppbv	
		Vinyl Chloride	2013/08/14	ND, RDL=0.18	ppbv	
		Chloroethane	2013/08/14	ND, RDL=0.30	ppbv	
		1,3-Butadiene	2013/08/14	ND, RDL=0.50	ppbv	
		Trichlorofluoromethane (FREON 11)	2013/08/14	ND, RDL=0.20	ppbv	
		Ethanol (ethyl alcohol)	2013/08/14	ND, RDL=2.3	ppbv	
		Trichlorotrifluoroethane	2013/08/14	ND, RDL=0.15	ppbv	
		2-propanol	2013/08/14	ND, RDL=3.0	ppbv	
		2-Propanone	2013/08/14	ND, RDL=0.80	ppbv	
		Methyl Ethyl Ketone (2-Butanone)	2013/08/14	ND, RDL=3.0	ppbv	
		Methyl Isobutyl Ketone	2013/08/14	ND, RDL=3.2	ppbv	
		Methyl Butyl Ketone (2-Hexanone)	2013/08/14	ND, RDL=2.0	ppbv	
		Methyl t-butyl ether (MTBE)	2013/08/14	ND, RDL=0.20	ppbv	
		Ethyl Acetate	2013/08/14	ND, RDL=2.2	ppbv	
		1,1-Dichloroethylene	2013/08/14	ND, RDL=0.25	ppbv	
		cis-1,2-Dichloroethylene	2013/08/14	ND, RDL=0.19	ppbv	
		trans-1,2-Dichloroethylene	2013/08/14	ND, RDL=0.20	ppbv	
		Methylene Chloride(Dichloromethane)	2013/08/14	ND, RDL=0.80	ppbv	
		Chloroform	2013/08/14	ND, RDL=0.15	ppbv	
		Carbon Tetrachloride	2013/08/14	ND, RDL=0.30	ppbv	
		1,1-Dichloroethane	2013/08/14	ND, RDL=0.20	ppbv	
		1,2-Dichloroethane	2013/08/14	ND, RDL=0.20	ppbv	
		Ethylene Dibromide	2013/08/14	ND, RDL=0.17	ppbv	
		1,1,1-Trichloroethane	2013/08/14	ND, RDL=0.30	ppbv	
		1,1,2-Trichloroethane	2013/08/14	ND, RDL=0.15	ppbv	
		1,1,2,2-Tetrachloroethane	2013/08/14	ND, RDL=0.20	ppbv	
		cis-1,3-Dichloropropene	2013/08/14	ND, RDL=0.18	ppbv	
		trans-1,3-Dichloropropene	2013/08/14	ND, RDL=0.17	ppbv	
		1,2-Dichloropropane	2013/08/14	ND, RDL=0.40	ppbv	
		Bromomethane	2013/08/14	ND, RDL=0.18	ppbv	
		Bromoform	2013/08/14	ND, RDL=0.20	ppbv	
		Bromodichloromethane	2013/08/14	ND, RDL=0.20	ppbv	
		Dibromochloromethane	2013/08/14	ND, RDL=0.20	ppbv	
		Trichloroethylene	2013/08/14	ND, RDL=0.30	ppbv	
		Tetrachloroethylene	2013/08/14	ND, RDL=0.20	ppbv	
		Benzene	2013/08/14	ND, RDL=0.18	ppbv	
		Toluene	2013/08/14	ND, RDL=0.20	ppbv	
		Ethylbenzene	2013/08/14	ND, RDL=0.20	ppbv	

Quality Assurance Report (Continued)

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery	Units	QC Limits
3317067 JIW	Method Blank	p+m-Xylene	2013/08/14	ND, RDL=0.37	ppbv	
		o-Xylene	2013/08/14	ND, RDL=0.20	ppbv	
		Styrene	2013/08/14	ND, RDL=0.20	ppbv	
		4-ethyltoluene	2013/08/14	ND, RDL=2.2	ppbv	
		1,3,5-Trimethylbenzene	2013/08/14	ND, RDL=0.50	ppbv	
		1,2,4-Trimethylbenzene	2013/08/14	ND, RDL=0.50	ppbv	
		Chlorobenzene	2013/08/14	ND, RDL=0.20	ppbv	
		Benzyl chloride	2013/08/14	ND, RDL=1.0	ppbv	
		1,3-Dichlorobenzene	2013/08/14	ND, RDL=0.40	ppbv	
		1,4-Dichlorobenzene	2013/08/14	ND, RDL=0.40	ppbv	
		1,2-Dichlorobenzene	2013/08/14	ND, RDL=0.40	ppbv	
		1,2,4-Trichlorobenzene	2013/08/14	ND, RDL=2.0	ppbv	
		Hexachlorobutadiene	2013/08/14	ND, RDL=3.0	ppbv	
		Hexane	2013/08/14	ND, RDL=0.30	ppbv	
		Heptane	2013/08/14	ND, RDL=0.30	ppbv	
		Cyclohexane	2013/08/14	ND, RDL=0.20	ppbv	
		Tetrahydrofuran	2013/08/14	ND, RDL=0.40	ppbv	
		1,4-Dioxane	2013/08/14	ND, RDL=2.0	ppbv	
		Xylene (Total)	2013/08/14	ND, RDL=0.60	ppbv	
		Vinyl Bromide	2013/08/14	ND, RDL=0.20	ppbv	
		Propene	2013/08/14	ND, RDL=0.30	ppbv	
		2,2,4-Trimethylpentane	2013/08/14	ND, RDL=0.20	ppbv	
		Carbon Disulfide	2013/08/14	ND, RDL=0.50	ppbv	
		Vinyl Acetate	2013/08/14	ND, RDL=0.20	ppbv	
	RPD -					
	Sample/Sample					
	Dup	Dichlorodifluoromethane (FREON 12)	2013/08/14	NC	%	25
		1,2-Dichlorotetrafluoroethane	2013/08/14	NC	%	25
		Chloromethane	2013/08/14	NC	%	25
		Chloroethane	2013/08/14	NC	%	25
		1,3-Butadiene	2013/08/14	NC	%	25
		Trichlorofluoromethane (FREON 11)	2013/08/14	NC	%	25
		Ethanol (ethyl alcohol)	2013/08/14	NC	%	25
		Trichlorotrifluoroethane	2013/08/14	NC	%	25
		2-propanol	2013/08/14	NC	%	25
		2-Propanone	2013/08/14	4.5	%	25
		Methyl Ethyl Ketone (2-Butanone)	2013/08/14	NC	%	25
		Methyl Isobutyl Ketone	2013/08/14	NC	%	25
		Methyl Butyl Ketone (2-Hexanone)	2013/08/14	NC	%	25
		Methyl t-butyl ether (MTBE)	2013/08/14	NC	%	25
		Ethyl Acetate	2013/08/14	NC	%	25
		1,1-Dichloroethylene	2013/08/14	NC	%	25
		cis-1,2-Dichloroethylene	2013/08/14	NC	%	25
		trans-1,2-Dichloroethylene	2013/08/14	NC	%	25
		Methylene Chloride(Dichloromethane)	2013/08/14	NC	%	25
		Chloroform	2013/08/14	NC	%	25
		Carbon Tetrachloride	2013/08/14	NC	%	25
		1,1-Dichloroethane	2013/08/14	NC	%	25
		1,2-Dichloroethane	2013/08/14	NC	%	25
		Ethylene Dibromide	2013/08/14	NC	%	25
		1,1,1-Trichloroethane	2013/08/14	NC	%	25
		1,1,2-Trichloroethane	2013/08/14	NC	%	25
		1,1,2,2-Tetrachloroethane	2013/08/14	NC	%	25
1		cis-1,3-Dichloropropene	2013/08/14	NC	%	25
1		trans-1,3-Dichloropropene	2013/08/14	NC	%	25
			2010,00,11		,5	

Quality Assurance Report (Continued)

Maxxam Job Number: GB3C9302

QA/QC Batch			Date Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	%Recovery	Units	QC Limits
3317067 JIW	RPD -		,,,,,		y		
	Sample/Sample						
	Dup	1,2-Dichloropropane	2013/08/14	NC		%	25
		Bromomethane	2013/08/14	NC		%	25
		Bromoform	2013/08/14	NC		%	25
		Bromodichloromethane	2013/08/14	NC		%	25
		Dibromochloromethane	2013/08/14 2013/08/14	NC NC		% %	25 25
		Trichloroethylene Tetrachloroethylene	2013/08/14	NC		%	25
		Benzene	2013/08/14	NC		%	25
		Toluene	2013/08/14	NC		%	25
		Ethylbenzene	2013/08/14	NC		%	25
		p+m-Xylene	2013/08/14	NC		%	25
		o-Xylene	2013/08/14	NC		%	25
		Styrene	2013/08/14	NC		%	25
		4-ethyltoluene	2013/08/14	NC		%	25
		1,3,5-Trimethylbenzene	2013/08/14	NC		%	25
		1,2,4-Trimethylbenzene	2013/08/14	NC		%	25
		Chlorobenzene	2013/08/14	NC		%	25
		Benzyl chloride	2013/08/14	NC		%	25
		1,3-Dichlorobenzene	2013/08/14	NC		%	25
		1,4-Dichlorobenzene	2013/08/14	NC		%	25
		1,2-Dichlorobenzene	2013/08/14	NC		%	25
		1,2,4-Trichlorobenzene	2013/08/14	NC		%	25
		Hexachlorobutadiene	2013/08/14	NC		%	25
		Hexane	2013/08/14	NC		%	25
		Heptane	2013/08/14	NC		%	25
		Cyclohexane	2013/08/14	NC		%	25
		Tetrahydrofuran	2013/08/14	NC		%	25
		1,4-Dioxane	2013/08/14	NC		%	25
		Xylene (Total)	2013/08/14	NC		%	25
		Vinyl Bromide	2013/08/14	NC		%	25
		Propene	2013/08/14	NC		%	25
		2,2,4-Trimethylpentane	2013/08/14	NC		%	25
		Carbon Disulfide	2013/08/14	NC		%	25
0040000 1004	On the of Dirach	Vinyl Acetate	2013/08/14	NC	407	%	25
3319686 JIW	Spiked Blank	1,4-Difluorobenzene	2013/08/14 2013/08/14		107	% %	60 - 140
		Bromochloromethane D5-Chlorobenzene	2013/08/14		101 111	%	60 - 140 60 - 140
		Benzene	2013/08/14		97	%	70 - 130
		Toluene	2013/08/14		99	%	70 - 130
		Ethylbenzene	2013/08/14		97	%	70 - 130
		Total Xylenes	2013/08/14		98	%	70 - 130
	Method Blank	1,4-Difluorobenzene	2013/08/14		96	%	60 - 140
		Bromochloromethane	2013/08/14		92	%	60 - 140
		D5-Chlorobenzene	2013/08/14		84	%	60 - 140
		Benzene	2013/08/14	ND.	RDL=1.2	ug/m3	
		Toluene	2013/08/14		RDL=1.6	ug/m3	
		Ethylbenzene	2013/08/14		RDL=1.6	ug/m3	
		Total Xylenes	2013/08/14		RDL=2.2	ug/m3	
		Aliphatic >C5-C6	2013/08/14		RDL=5.0	ug/m3	
		Aliphatic >C6-C8	2013/08/14		RDL=5.0	ug/m3	
		Aliphatic >C8-C10	2013/08/14		RDL=5.0	ug/m3	
		Aliphatic >C10-C12	2013/08/14		RDL=5.0	ug/m3	
						«g,e	

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Quality Assurance Report (Continued)

Maxxam Job Number: GB3C9302

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery	Units	QC Limits
3319686 JIW	Method Blank	Aromatic >C7-C8 (TEX Excluded)	2013/08/14	ND, RDL=5.0	ug/m3	
		Aromatic >C8-C10	2013/08/14	ND, RDL=5.0	ug/m3	
		Aromatic >C10-C12	2013/08/14	ND, RDL=5.0	ug/m3	
		Aromatic >C12-C16	2013/08/14	ND, RDL=5.0	ug/m3	
3322553 VLA	Method Blank	Acetylene	2013/08/21	ND, RDL=0.1	ppm	
		Ethane	2013/08/21	ND, RDL=0.1	ppm	
		Ethylene	2013/08/21	ND, RDL=0.1	ppm	
		n-Butane	2013/08/21	ND, RDL=0.2	ppm	
		n-Pentane	2013/08/21	ND, RDL=0.1	ppm	
		Propane	2013/08/21	ND, RDL=0.1	ppm	
		Propene	2013/08/21	ND, RDL=0.1	ppm	
		Propyne	2013/08/21	ND, RDL=0.2	ppm	
	RPD -					
	Sample/Sample					
	Dup	Acetylene	2013/08/21	NC	%	20
		Ethane	2013/08/21	NC	%	20
		Ethylene	2013/08/21	NC	%	20
		n-Butane	2013/08/21	NC	%	20
		n-Pentane	2013/08/21	NC	%	20
		Propane	2013/08/21	NC	%	20
		Propene	2013/08/21	NC	%	20
		Propyne	2013/08/21	NC	%	20
3324319 TJC	Method Blank	Oxygen	2013/08/22	ND, RDL=0.1	% v/v	
		Nitrogen	2013/08/22	ND, RDL=0.1	% v/v	
		Carbon Monoxide	2013/08/22	ND, RDL=0.1	% v/v	
		Methane	2013/08/22	ND, RDL=0.1	% v/v	
		Carbon Dioxide	2013/08/22	ND, RDL=0.1	% v/v	
	RPD -					
	Sample/Sample					
	Dup	Oxygen	2013/08/22	0.1	%	20
		Nitrogen	2013/08/22	0.1	%	20
		Methane	2013/08/22	NC	%	20
		Carbon Dioxide	2013/08/22	0	%	20

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination. Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency. NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

REPORT: 13033/13034/13035/13036si (Method -SCANATD-GC-MSD Cryogenic Oven Control)

	DESCRIPTION	13081205	13081205	13081205	13081205	13081206	13081206	13081206	13081206
CAS #	COMPOUND	SN8287-01 HC6544 VM- 01 V=200mL	SN8287-01 HC6544 VM-01 V=200mL	Silicon Equivalent	Silicon Equivalent	SN8334-01 HC0074 VW-02 V=200mL	SN8334-01 HC0074 VW-02 V=200mL	Silicon Equivalent	Silicon Equivalent
		mg/m³	ppm	mg/m³	ppm	mg/m³	ppm	mg/m³	ppm
420-56-4	Trimethylsilyl Fluoride	ND	ND	ND	ND	ND	ND	ND	ND
75-76-3	Tetramethylsilane	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
1825-61-2	Methoxytrimethylsilane	<0.0032	<0.0007	<0.0009	<0.0007	<0.0032	<0.0007	<0.0009	<0.0007
1825-62-3	Ethoxytrimethylsilane	<0.0031	<0.0006	<0.0007	<0.0006	<0.0030	<0.0006	<0.0007	<0.0006
1066-40-6	Trimethylsilanol	0.0243	0.0066	0.0076	0.0066	0.0172	0.0047	0.0054	0.0047
1825-64-5	Isopropoxytrimethylsilane	<0.0013	<0.0002	<0.0003	<0.0002	<0.0013	<0.0002	<0.0003	<0.0002
1185-55-3	Trimethoxymethyl Silane #	ND	ND	ND	ND	ND	ND	ND	ND
107-46-0	Hexamethyl Disiloxane - L2	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
1825-63-4	Propoxytrimethylsilane	<0.0035	<0.0006	<0.0007	<0.0006	<0.0035	<0.0006	<0.0007	<0.0006
1825-67-8	1-Methylbutoxytrimethylsilane *	ND	ND	ND	ND	ND	ND	ND	ND
1825-65-6	Butoxytrimethylsilane *	ND	ND	ND	ND	ND	ND	ND	ND
2768-02-7	Trimethoxyvinyl Silane #	ND	ND	ND	ND	ND	ND	ND	ND
541-05-9	Hexamethyl Cyclotrisiloxane - D3	0.0212	0.0023	0.0080	0.0070	0.0141	0.0016	0.0054	0.0047
107-51-7	Octamethyl Trisiloxane - L3	<0.0002	<0.0001	<0.0001	<0.0001	<0.0002	<0.0001	<0.0001	<0.0001
78-08-0	Triethoxyvinyl Silane #	ND	ND	ND	ND	ND	ND	ND	ND
78-07-9	Triethoxyethyl Silane #	ND	ND	ND	ND	ND	ND	ND	ND
556-67-2	Octamethyl Cyclotetrasiloxane - D4	0.0580	0.0048	0.0220	0.0191	0.0250	0.0021	0.0095	0.0082
141-62-8	Decamethyl Tetrasiloxane - L4	0.0022	0.0002	0.0008	0.0007	0.0009	0.0001	0.0003	0.0003
78-10-4	Tetraethylsilicate #	ND	ND	ND	ND	ND	ND	ND	ND
541-02-6	Decamethyl Cyclopentasiloxane - D	0.8254	0.0545	0.3127	0.2724	0.5350	0.0353	0.2027	0.1765
141-63-9	Dodecamethyl Pentasiloxane - L5	<0.0030	<0.0002	<0.0011	<0.0009	<0.0030	<0.0002	<0.0011	<0.0009
540-97-6	Dodecamethyl Cyclohexasiloxane -	0.6919	0.0381	0.2621	0.2283	0.3017	0.0166	0.1143	0.0996
	Sum	1.6375	0.1089	0.6170	0.5375	0.9083	0.0628	0.3413	0.2973

< (ND) = Characteristic ions are not present therefore Not Detected

< (TRACE) = Characteristic ions present but too low to be quantified

V = Volume of air/gas sampled

*

= Semiquantitative (Response Factor set at 5)

= Unstable, poor detectability, commercial standards tested

12-435 Phase II ESA – Riverside Light Industrial Park Historic Waste Disposal Site, The City of Red Deer

APPENDIX B

TESTHOLE LOGS

4	/	
	Terminology Co	ommon Soil Genesis
	Rootmat	vegetation roots and moss with organic matter and topsoil typically forming a mattress at the ground surface.
	Topsoil	mixture of soil and humus capable of supporting good vegetative growth
	Peat	fibrous aggregate of visible and invisible fragments of decayed organic matter
	Loam	silty sand or sand mixed with silt and organics
	Till	unstratified glacial deposit which may range from clay to boulders
	Fill	any materials below the surface identified as placed by excavation activities (excluding buried services)
	Common Soil St	tructure
	Slickensided	Having inclined planes of weakness that are slick and glossy in appearance.
	Fissured	Containing shrinkage cracks, frequently filled with fine sand or silt; usually more or less vertical.
	Laminated	Composed of thin layers of varying color and texture.
	Interbedded	Composed of alternate layers of different soil types.
	Calcareous	Containing appreciable quantities of calcium carbonate.
	Well Graded	Having wide range in grain sizes and substantial amounts of intermediate particle sizes.
	Poorly graded	Predominantly of one grain size, or having a range of sizes with some intermediate sizes missing.
	Homogeneous	same color and appearance throughout
	Stratified	composed of alternating successions of different soil types, eg. silt and sand
	Lensed	inclusion of small pockets of different soils
	Laminated	alternating layers of varying material or color with the layers less than 6 mm thick
	Layer	thickness > 75mm
	Seam	thickness between 2 mm and 75 mm
	Parting	thickness <2 mm

Grain Size and Plasticity

Description of soils on the basis of grain size and plasticity is based on the Unified Soil Classification System (USCS) (ASTM D-2487). The classification excludes particles larger than 76 mm (3 inches). This system provides a ground symbol (eg., SM) and group name (eg., silty SAND) for identification. Note: terminology describing materials in the absence of laboratory analysis is based on a visual method (ASTM D-2488).

Descriptors for soil materials outside the USCS (eg., particles larger that 76 mm, visible organic matter, construction debris) is based on the (visually estimated) proportion of these materials present:

Trace, or occasional	Less than approximately 10%
Some	Approximately 10 – 20%
Frequent	Greater than approximately 20%

Solid lines between soil strata indicate the interpreted boundary between different soil types. Dashed line between soil strata indicates the contact between different soil units has been inferred.

Consistency of Cohesive Soils (Fine-Grained Soils)

Fine-grained soils (major portion passing 0.075mm sieve): includes (1) inorganic and organic silts and clays. (2) gravelly, sandy, or silty clays, and (3) clayey silts. Consistency is rated according to shearing strength, as estimated from laboratory or in-situ tests.

The standard nomenclature to describe cohesive soils includes the consistency, which is based on undrained shear strength as measured by in situ tests, penetrometer tests, unconfined compression tests, or occasionally by standard penetration tests.

Standard Penetration Test 'N-Value'

The Standard Penetration Test provides an "N-value; the number of blows of a 64 kg (140 pound) hammer falling 760 mm (30 inches) required to drive a 51 mm (2 inch) O.D. split spoon sampler 305 mm (one foot) into the soil. For split spoon samples where insufficient penetration is achieved and 'N' values cannot be determined, the number of blows is reported over sampler penetration in millimeters; e.g. blows/penetration = 50/75.

Consistency	Unconfined Compressive Strength (kPa)	N-Value
Very Soft	<25	<2
Soft	25-50	2-4
Firm	50-100	4-8
Stiff	100-200	8-15
Very Stiff	200-400	15-30
Hard	>400	>30

NOTE: Slackened and fissured clays may have lower unconfined compressive strengths than shown above, because of naturally occurring planes of weakness or cracks in the soil.

Density of Cohesionless Soils (Coarse-grained Soils)

Coarse-grained soils (major portion retained on 0.075 mm sieve): includes (1) clean gravels and sands, and (2) silty or clayey gravels and sands. Condition is rated according to relative density, as inferred from laboratory or in-situ tests.

The standard terminology to describe cohesionless soils includes the compactness (former "relative density"), as determined by laboratory test or by the Standard Penetration Test 'N-Value'.

Density	N Value (Blows per 0.3m)	Relative Density - % Compactness
Very Loose	0-4	0-20
Loose	4-10	20-40
Compact	10-30	40-75
Dense	30-50	75-90
Very Dense	>50	90-100

PROJECT No. 12-435 DRUL TYPE: SADage:ODEX COMPLETION DATE: 06/17/2013 SADage:ODEX Sample Type: Statistic and statistic and park GROUND LEVATION: SAdage:ODEX REXUIT Type: Statistic and statis and statis and statistic and statistic and statis and statisti	PRO	JECT: Phase II ESA Historic Waste Disposal Sites	BO	REH	OL	E No.:			TH-01
LOCATION: Riverside Light Industrial Park GROUND ELEVATION: 854.665 m COMPLETION DATE: 06017/2013 Sample Type: BackTill Type: BackTill Type: Instantial Signal South South Comp Carl Park Tech Comp Level And South So	PRO	JECT No.: 12-435	DR	ILL	TYP	E:		SS Au	ger/ODEX
CLIENT: The City of Red Deer 06(172013 Sample Type: 1 should rate 2 spin spon 1 Core 2 bitwhere N Retrieve 1 Retrieve 2			GR	OUN	VD E	LEVA	TION:		
Sample Type: Isoluty Tok 20 Split Spon 10 Corr 20 Disturbed No Revery: In Particular Split Spon 10 Corr 20 Disturbed In Particular Split Sp									
Backfull Type: Itenuotic State state			[_					
Notes: Teshhole is located in the grassed area at southwest corner of 46A Avenue and 61 Street. 00 Soil Description 0			Ī				Bento	nite : Sand	
Soil Description Soil Description<						-			
0.00 Scalar Homrily, carly, risk, div due 1-(5 cm hist). 100 Including of the second se								s	
Cuy (IB) - tims, thy, trace study, trace yoldsis, trace journed, olive. Image: high study of the study trace in the study in the st			Sample Typ	Sample No.	SPT (N)	Combustible S Vapours (ppr		Well Detai	
10 becomes drive gray at 11 m. Sale 1-look to compart, they into a side, they gravel notif, drive. 20 indeer fragments and they glass fragments at 2.4 m. 30 becomes folder y fragments and they glass fragments at 2.4 m. 30 becomes folder y fragments and they glass fragments at 2.4 m. 30 becomes folder y fragments and they glass fragments at 2.4 m. 40	0.0		1						
200 Tshal - foods to compart, race skill, tace graved, music, dave. Image: skill - foods to skill, tace oxides, take graved, music, dave. 200 index fragments and tace glass fragments at 2.4 m. Image: skill - foods to skill, tace graved, incer masony brick fragments, music, dave often on tack. Image: skill - foods to skill - foodskill - foods to skill - foods to skill - food									
200 Tshal - foods to compart, race skill, tace graved, music, dave. Image: skill - foods to skill, tace oxides, take graved, music, dave. 200 index fragments and tace glass fragments at 2.4 m. Image: skill - foods to skill, tace graved, incer masony brick fragments, music, dave often on tack. Image: skill - foods to skill - foodskill - foods to skill - foods to skill - food									
2.0 inner fragments and inner glass fragments at 2.4 m. 3.0 becomes loany - fram, trace gravel, trace mixed y doir, moist, datk duler 4.0 becomes sandy - compact, gravel, gray at 9 m. 5.0 becomes sandy - compact, gravel, gray at 9 m. 5.0 becomes sandy - compact, gravel, gray at 9 m. 5.0 becomes sandy - compact, gravel, gray at 9 m. 5.0 becomes sandy - compact, gravel, gray at 9 m. 5.0 becomes sandy - compact, gravel, gray at 9 m. 5.0 becomes sandy - compact, gravel, gray at 9 m. 5.0 becomes sandy - compact, gravel, gray at 9 m. 5.0 becomes sandy - compact, gravel, gray at 9 m. 5.0 Backfilled with - 50.50 benome fram, trace wood fragments, wet, gray. wish to ODEX at 6.7 m. Image frame index at 6.1 m. 5.0 Caped with boary ool. 10.0 Image frame index at 5 m. Backfilled with - 50.50 benome and slice sand to 0.3 m depth. 11.0 Image frame index at 0.0 m. 11.0 Image frame index at 0.0 m. 11.0 Image fra	1.0	becomes olive grey at 1.1 m.							
uber fugurents and trace glass fragments at 2.4 m. in becomes learny - firm, trace gravel, program, maidy odor, maid, dark olive in black		Sand - loose to compact, trace silt, trace oxides, trace gravel, moist, olive.							
uber fugurents and trace glass fragments at 2.4 m. in becomes learny - firm, trace gravel, program, maidy odor, maid, dark olive in black									
30 becomes loany - tim, trace gravel, trace masony brick frightents, masky odor, moist, dark offer Image: Comparing trace in the process and y - comparing travel, gray at 49 m. 40 becomes sandy - comparing travel, gray at 49 m. Image: Comparing travel, gray at 49 m. 50 becomes sandy - comparing travel, gray at 49 m. Image: Comparing travel, gray at 49 m. 60 race (index - comparing travel, gray at 49 m. Image: Comparing travel, gray at 49 m. 70 becomes sandy - comparing travel, gray at 49 m. Image: Comparing travel, gray at 49 m. 70 for the claimber of 61 m. Image: Comparing travel, gray at 49 m. 70 Gravel (native) - comparing travel, gray at 49 m. Image: Comparing travel, gray at 49 m. 70 For the comparing travel, gray at 49 m. Image: Comparing travel, gray at 49 m. 70 For the comparing travel, gray at 49 m. Image: Comparing travel, gray at 49 m. 70 For the comparing travel, gray at 49 m. Image: Comparing travel, gray at 49 m. 70 For the comparing travel, gray at 49 m. Image: Comparing travel, gray at 49 m. 70 For the comparing travel, gray at 49 m. Image: Comparing travel, gray at 49 m. 70 For the comparing travel, gray at 49 m. Image: Comparing travel, gray at 49 m.	2.0								
40 black. black. black. black. 50 protects, sady - compet, govel, gry rt 4.9 m. becomes seady - compet, govel, gry rt 4.9 m. becomes vet at 5.0 m. 60 mee timber at 6.1 m. for avel (harve) - comput, sandy, site, some loam, trace wood fragments, wet, grey. becomes vet at 5.7 m. becomes vet at 6.7 m. 700 for avel (hebrock) - sont, weak, highly weathered, damp, grey. becklick (webbook) - sont, weak, highly weathered, damp, grey. becklick (webbook) - sont, weak, highly weathered, damp, grey. 600 For all robe at 8.5 m. becklick (webbook) - sont, weak, highly weathered, damp, grey. becklick (webbook) - sont, weak, highly weathered, damp, grey. 701 Bocklick (webbook) - sont, weak, highly weathered, damp, grey. becklick (webbook) - sont, weak, highly weathered, damp, grey. 702 Bocklick (webbook) - sont, weak, highly weathered, damp, grey. compet mode at siles and to 0.3 m depth. 703 Bocklick (webbook) - sont, weak, highly weathered, damp, grey. compet mode at siles and to 0.3 m depth. 704 Bocklick (webbook) - sont, weak, highly weathered, damp, grey. compet mode at siles and to 0.3 m depth. 705 Bocklick (webbook) - sont, weak, highly weathered, damp, grey. compet mode at siles and to 0.3 m depth. 7100 Low of the sile sont siles at siles at sile		timber fragments and trace glass fragments at 2.4 m.							
40 black. black. black. black. 50 protects, sady - compet, govel, gry rt 4.9 m. becomes seady - compet, govel, gry rt 4.9 m. becomes vet at 5.0 m. 60 mee timber at 6.1 m. for avel (harve) - comput, sandy, site, some loam, trace wood fragments, wet, grey. becomes vet at 5.7 m. becomes vet at 6.7 m. 700 for avel (hebrock) - sont, weak, highly weathered, damp, grey. becklick (webbook) - sont, weak, highly weathered, damp, grey. becklick (webbook) - sont, weak, highly weathered, damp, grey. 600 For all robe at 8.5 m. becklick (webbook) - sont, weak, highly weathered, damp, grey. becklick (webbook) - sont, weak, highly weathered, damp, grey. 701 Bocklick (webbook) - sont, weak, highly weathered, damp, grey. becklick (webbook) - sont, weak, highly weathered, damp, grey. 702 Bocklick (webbook) - sont, weak, highly weathered, damp, grey. compet mode at siles and to 0.3 m depth. 703 Bocklick (webbook) - sont, weak, highly weathered, damp, grey. compet mode at siles and to 0.3 m depth. 704 Bocklick (webbook) - sont, weak, highly weathered, damp, grey. compet mode at siles and to 0.3 m depth. 705 Bocklick (webbook) - sont, weak, highly weathered, damp, grey. compet mode at siles and to 0.3 m depth. 7100 Low of the sile sont siles at siles at sile									
-40	3.0								
100 becomes sandy - compact, graved, gray at 4.9 m. 301 becomes wet at 5.1 m. 602 frace timber at 6.1 m. 603 Gravel (native) - compact, sandy, silty, some loam, trace wood fragments, wet, grey. switch to ODEX at 6.7 m. Silab (bedrock) - soft, weak, highly weathered, damp, grey. 100 Ead of look at 8.5 m. 100 Data (bedrock) - soft, weak, highly weathered, damp, grey. 100 Ead of look at 8.5 m. 100 Data (bedrock) - soft, weak, highly weathered, damp, grey. 101 Ead of look at 8.5 m. 102 Ead of look at 8.5 m. 103 Ead of look at 8.5 m. 104 Ead of look at 8.5 m. 105 Ead of look at 8.5 m. 106 Ead of look at 8.5 m. 107 Ead of look at 8.5 m. 108 Ead of look at 8.5 m. 109 Ead of look at 8.5 m. 100 Ead of look at 8.5 m. 1010 Ead of look at 8.5 m. 102 Ead of look at 8.5 m.		to black.							
100 becomes sandy - compact, graved, gray at 4.9 m. 301 becomes wet at 5.1 m. 602 frace timber at 6.1 m. 603 Gravel (native) - compact, sandy, silty, some loam, trace wood fragments, wet, grey. switch to ODEX at 6.7 m. Silab (bedrock) - soft, weak, highly weathered, damp, grey. 100 Ead of look at 8.5 m. 100 Data (bedrock) - soft, weak, highly weathered, damp, grey. 100 Ead of look at 8.5 m. 100 Data (bedrock) - soft, weak, highly weathered, damp, grey. 101 Ead of look at 8.5 m. 102 Ead of look at 8.5 m. 103 Ead of look at 8.5 m. 104 Ead of look at 8.5 m. 105 Ead of look at 8.5 m. 106 Ead of look at 8.5 m. 107 Ead of look at 8.5 m. 108 Ead of look at 8.5 m. 109 Ead of look at 8.5 m. 100 Ead of look at 8.5 m. 1010 Ead of look at 8.5 m. 102 Ead of look at 8.5 m.									
3.0 privel(r); sind); finde vood frigments, nuisiy odor, vet. becomes wet at 5.2 m. image: number at 6.1 m. 6.0 frace (number at 6.1 m. Gravel (number) - compact, sandy, silty, some loam, trace wood fragments, wet, grey. switch to ODEX at 6.7 m. 7.0 Shale (bedrock) - soft, weak, highly weathered, damp, grey. 8.0 Shale (bedrock) - soft, weak, highly weathered, damp, grey. 9.0 Capped with loamy soil. 11.0 Image: number at 6.1 m. 12.0 Tiamat Environmental Consultants Ltd.	4.0								
3.0 privel(r); sind); finde vood frigments, nuisiy odor, vet. becomes wet at 5.2 m. image: number at 6.1 m. 6.0 frace (number at 6.1 m. Gravel (number) - compact, sandy, silty, some loam, trace wood fragments, wet, grey. switch to ODEX at 6.7 m. 7.0 Shale (bedrock) - soft, weak, highly weathered, damp, grey. 8.0 Shale (bedrock) - soft, weak, highly weathered, damp, grey. 9.0 Capped with loamy soil. 11.0 Image: number at 6.1 m. 12.0 Tiamat Environmental Consultants Ltd.									
3.0 privel(r); sind); finde vood frigments, nuisiy odor, vet. becomes wet at 5.2 m. image: number at 6.1 m. 6.0 frace (number at 6.1 m. Gravel (number) - compact, sandy, silty, some loam, trace wood fragments, wet, grey. switch to ODEX at 6.7 m. 7.0 Shale (bedrock) - soft, weak, highly weathered, damp, grey. 8.0 Shale (bedrock) - soft, weak, highly weathered, damp, grey. 9.0 Capped with loamy soil. 11.0 Image: number at 6.1 m. 12.0 Tiamat Environmental Consultants Ltd.		becomes candy, compact, groupl group at 4.0 m							
-00	5.0	gravelly, sandy, trace wood fragments, musty odor, wet.	-						
Graved (native) - compact, sandy, sity, some loam, trace wood fragments, wet, grey. Graved (native) - compact, sandy, sity, some loam, trace wood fragments, wet, grey. 7.0 Shale (bedrock) - soft, weak, highly weathered, damp, grey. Find of hole at 8.5 m. Bad (bedrock) - soft, weak, highly weathered, damp, grey. End of hole at 8.5 m. Bad (bedrock) - soft, weak, highly weathered, damp, grey. Bad (bedrock) - soft, weak, highly weathered, damp, grey. End of hole at 8.5 m. Bad (bedrock) - soft, weak, highly meathered, damp, grey. Bad (bedrock) - soft, weak, highly meathered, damp, grey. End of hole at 8.5 m. Bad (bedrock) - soft, weak, highly meathered, damp, grey. Bad (bedrock) - soft, weak, highly meathered, damp, grey. End of hole at 8.5 m. Bad (bedrock) - soft, weak, highly meathered, damp, grey. Bad (bedrock) - soft, weak, highly meathered, damp, grey. End of hole at 8.5 m. Bad (bedrock) - soft, weak, highly meathered, damp, grey. Bad (bedrock) - soft, weak, highly meathered, damp, grey. End of hole at 8.5 m. Bad (bedrock) - soft, weak, highly meathered, damp, grey. 10.0 Bad (bedrock) - soft,		becomes wet at 5.2 m.							
Graved (native) - compact, sandy, sity, some loam, trace wood fragments, wet, grey. Graved (native) - compact, sandy, sity, some loam, trace wood fragments, wet, grey. 7.0 Shale (bedrock) - soft, weak, highly weathered, damp, grey. Find of hole at 8.5 m. Bad (bedrock) - soft, weak, highly weathered, damp, grey. End of hole at 8.5 m. Bad (bedrock) - soft, weak, highly weathered, damp, grey. Bad (bedrock) - soft, weak, highly weathered, damp, grey. End of hole at 8.5 m. Bad (bedrock) - soft, weak, highly meathered, damp, grey. Bad (bedrock) - soft, weak, highly meathered, damp, grey. End of hole at 8.5 m. Bad (bedrock) - soft, weak, highly meathered, damp, grey. Bad (bedrock) - soft, weak, highly meathered, damp, grey. End of hole at 8.5 m. Bad (bedrock) - soft, weak, highly meathered, damp, grey. Bad (bedrock) - soft, weak, highly meathered, damp, grey. End of hole at 8.5 m. Bad (bedrock) - soft, weak, highly meathered, damp, grey. Bad (bedrock) - soft, weak, highly meathered, damp, grey. End of hole at 8.5 m. Bad (bedrock) - soft, weak, highly meathered, damp, grey. 10.0 Bad (bedrock) - soft,									
switch to ODEX at 6.7 m. 7.0 7.0 Shale (bedrock) - soft, weak, highly weathered, damp, grey. End of hole at 8.5 m. Backfilled with - 50:50 bentonite and silica sand to 0.3 m depth. 9.0 Capped with loamy soil. 10.0 Image: Capped with loamy soil. 11.0 Image: Capped with loamy soil.	6.0	trace timber at 6.1 m.							
7.0 7.0 Image: Complexity of the complexi		Gravel (native) - compact, sandy, silty, some loam, trace wood fragments, wet, grey.							
80 Shale (bedrock) - soft, weak, highly weathered, damp, grey. Ind of hole at 8.5 m. Backfilled with - S0:50 bentonite and silica sand to 0.3 m depth. 90 End of hole at 8.5 m. Backfilled with - S0:50 bentonite and silica sand to 0.3 m depth. Image: Competition of the second sec		switch to ODEX at 6.7 m.							
Shale (bedrock) - soft, weak, highly weathered, damp, grey. End of hole at 8.5 m. Backfilled with - 50:50 bentonite and silica sand to 0.3 m depth. Capped with loamy soil. 10.0 11.0 11.0 12.0 Slough := Completion Depth (m): 8.5 Completion Depth (m): 8.5 Depth to Groundwater :: Completion Depth (m): 8.5	7.0								
Shale (bedrock) - soft, weak, highly weathered, damp, grey. End of hole at 8.5 m. Backfilled with - 50:50 bentonite and silica sand to 0.3 m depth. Capped with loamy soil. 10.0 11.0 11.0 12.0 Slough := Completion Depth (m): 8.5 Completion Depth (m): 8.5 Depth to Groundwater :: Completion Depth (m): 8.5									
Shale (bedrock) - soft, weak, highly weathered, damp, grey. End of hole at 8.5 m. Backfilled with - 50:50 bentonite and silica sand to 0.3 m depth. Capped with loamy soil. 10.0 11.0 11.0 12.0 Slough := Completion Depth (m): 8.5 Completion Depth (m): 8.5 Depth to Groundwater :: Completion Depth (m): 8.5									
End of hole at 8.5 m. Backfilled with ~ 50:50 bentonite and silica sand to 0.3 m depth. 9.0 10.0 11.0 11.0 12.0 Tiamat Environmental Consultants Ltd. Slough : Completion Depth (m): 8.5 Depth to Groundwater : Checked By: LTM	8.0								
Backfilled with ~ 50:50 bentonite and silica sand to 0.3 m depth. Image: Capped with loamy soil. Im		Shale (bedrock) - soft, weak, highly weathered, damp, grey.							
9.0 Capped with loamy soil. 10.0 10.0 11.0									
11.0 11.0 Image: Completion Depth (m): 8.5 12.0 12.0 12.0 12.0 Slough := Completion Depth (m): 8.5 Completion Depth (m): 8.5 Depth to Groundwater : Checked By: LTM	9.0	•							
11.0 11.0 Image: Completion Depth (m): 8.5 12.0 12.0 12.0 12.0 Slough := Completion Depth (m): 8.5 Completion Depth (m): 8.5 Depth to Groundwater : Checked By: LTM									
11.0 11.0 Image: Completion Depth (m): 8.5 12.0 12.0 12.0 12.0 Slough := Completion Depth (m): 8.5 Completion Depth (m): 8.5 Depth to Groundwater : Checked By: LTM									
12.0 12.0 Slogh: Completion Depth (m): 8.5 Tiamat Environmental Consultants Ltd. Depth to Groundwater : Checked By: LTM	10.0								
12.0 12.0 Slogh: Completion Depth (m): 8.5 Tiamat Environmental Consultants Ltd. Depth to Groundwater : Checked By: LTM									
12.0 12.0 Slogh: Completion Depth (m): 8.5 Tiamat Environmental Consultants Ltd. Depth to Groundwater : Checked By: LTM									
Slough : Completion Depth (m): 8.5 Depth to Groundwater : Checked By: LTM	11.0								
Slough : Completion Depth (m): 8.5 Depth to Groundwater : Checked By: LTM									
Slough : Completion Depth (m): 8.5 Depth to Groundwater : Checked By: LTM			1						
Slough : Completion Depth (m): 8.5 Depth to Groundwater : Checked By: LTM	12.0								
Tiamat Environmental Consultants Ltd. Depth to Groundwater : Checked By: LTM			1						
Tiamat Environmental Consultants Ltd. Depth to Groundwater : Checked By: LTM									
		Tiamat Environmental Consultants Ltd	-						
		I famat Environmental Consultants Ltu.			undwate	er :	LTM		

PRO	JECT: Phase II ESA Historic Waste Disposal Sites	BO	REH	[OL]	E No.:			VW-01
PRO	JECT No.: 12-435	DR	ILL	TYF	PE:			SS Auger
LOC	ATION: Riverside Light Industrial Park	GR	OUN	ND E		854.444 m		
CLIF	ENT: The City of Red Deer	CO	MPI	LET	ION D	ATE:		06/17/2013
Samp	ole Type: 🔳 Shelby Tube 💹 Split Spoon 🚺 Core 🔛 Disturbed	[o Rec	overy			
Back	fill Type: 📕 Bentonite 🔟 Silica Sand 🧱 Grout 🔛 Pea Gravel]] D	rill C	uttings	Benton	nite : Sand	
Notes	Soil Vapour Well is at northwest corner of 46A Avenue and 6	l Stre	eet, o	n gra		oulevard.		
(i		ype			e Soil pm)		ails	
Depth (m)	Soil Description	Sample Type	Sample No.	SPT (N)	Combustible Soil Vapours (ppm)		Well Details	
0.0	Sod and loam - loose, silty, trace sand, moist, dark olive (~ 15 cm thick).				•			
	Clay (fill) - stiff, silty, loamy, some gravel, moist, olive.							
1.0	wood fragments with loam and sand at 2 m.							
2.0	Sand and gravel (fill) - compact, moist, olive.							
3.0								
3.0	No obvious waste material.							
	Clay (fill) - firm, silty, some loam, trace loam, trace wood fragments, trace gravel, trace sand, moist, olive grey.							
4.0								
	End of hole at 4.6 m.	1						
5.0	25 mm diameter 30 cm length 020 PVC screen. Flush mount bolt-down steel casing set in concrete.							
6.0								
7.0								
8.0								
0.0								
9.0								
		1						
		1						
10.0		1						
		1						
		1						
11.0								
		1						
12.0								
12.0		1						
	Tiamat Environmental Consultants Ltd.	Slough					Completion Depth	
	I famat Environmental Consultants Ltu.	Depth Logge	to Grou d By:	indwat	er :	LTM	Checked By: Page:	LTM 1 of 1

PRO	JECT: Phas	e II ESA Histo	ric W	Vaste	e Dispo	sal	Sites	s			BO	REH	OL	E No.:			VW-02
PRO	JECT No.: 1	2-435									DR	ILL	TYF	PE:		SS A	uger/ODEX
LOC	ATION: Riv	erside Light In	dustr	rial I	Park						GR	OUN	ND E	ELEVA	TION:		855.329 m
CLI	ENT: The C	ity of Red Dee	r								CO	MPI	LET	ION D	ATE:		06/17/2013
Samp	ple Type:	Shelby Tube		Sp	lit Spoon		Cor	e	Disturl	bed	[o Rec	covery			
Backfill Type: 📕 Bentonite 🔟 Silica Sand 🗱 Grout 🛄 Pea G							Pea Gra	avel]] D	rill C	uttings	Bent	onite : Sand			
Notes	s: Soil Vap	our Well is at 6	51 St	reet	on gras	s b	oule	vard	across	from	462	22 - 6	51 St		1	1	
Depth (m)		So	il De	escri	ption						Sample Type	Sample No.	SPT (N)	Combustible Soil Vapours (ppm)		Well Details	
0.0	Sod and loam - so Sand (fill) - loose,	ft, sand, silty, trace roc trace silts, moist, light	otlets, m olive.	noist, d	olive brown	. (~ 8	cm th	ick).									
1.0	wood fragments at	some sand, trace clay, t 1.1 m. and, clay, silt, trace gra				dark (olive.										
2.0																	
3.0	Sand - loose to con No obvious waste	mpact, trace silt, damp material.	o, olive	grey.												•	
4.0	becomes silty at 3.	8 m.															
5.0	Gravel (native) - d	lense, sandy, trace silt,	damp to	o moi:	st, dark oliv	e.											
6.0		m. 0 cm length 020 PVC down steel casing set in		ete.												-	
7.0																	
8.0																	
9.0																	
10.0																	
11.0																	
12.0																	
	T:	at Environm	04	.1 /	7	ta-	1	T 4 -1		F	Slough				0.9 m	Completion Depth	
	I laina	at EIIVITOIIII	ienta		~viisül	ıal	115	LU	•		Depth Logge	to Grou d By:	undwat	er :	LTM	Checked By: Page:	LTM 1 of 1
												у.			1.1 111	1 450.	1011

PRO	JECT: Phase II ESA Historic Wast	te Disposal S	Sites		BO	REH	[OL]	E No.:			TH-04
PROJECT: Phase II ESA Historic Waste Disposal Sites PROJECT No.: 12-435					DR	ILL '	TYP	E:			SS Auger
LOC	*						JD E	LEVA		855.279 m	
LOCATION: Riverside Light Industrial Park CLIENT: The City of Red Deer						MPI	ETI	ION D	ATE:		06/17/2013
Sample Type: Shelby Tube Split Spoon Core Disturb						N	o Rec	overy			
Back	ackfill Type: 📕 Bentonite 🏢 Silica Sand 🧱 Grout 🛄 Pea Gravel						rill Cu	uttings	Bento	nite : Sand	
Notes	s: Testhole is located on boulevard	d at Unit #1,	4622 - 61	Street.							
Depth (m)	Soil Descr	iption			Sample Type	Sample No.	SPT (N)	Combustible Soil Vapours (ppm)		Well Details	
0.0	Sod and loam - silty, sandy, trace rootlets, moist, dark Sand (fill) - firm, silty, some loam, trace rootlets, moi becomes silt, some loam, trace clay, trace gravel, moi	ist, dark olive.									
1.0	No obvious waste material. Sand (fill) - loose, some loam, trace silt, damp, dark o	olive.									
2.0	becomes silty at 2 m to 2.3 m. becomes light olive brown at 3 m.										
3.0											
4.0	No obvious waste material. Gravel (native) - dense, sandy, moist to wet, olive.										
5.0	charter (name) conse, sandy, moise to wee, on re.										
6.0	End of hole at 6.1 m. Backfilled with ~ 50:50 bentonite and silica sand to 0 Capped with loamy sand, silt to surface.).3 m depth.									
7.0											
8.0											
9.0											
10.0										5	
11.0											
12.0											
	Tiamat Environmental	Concultor	te I te		Slough					Completion Depth	
	I famat Environmental	Consultan	us Liu.			to Grou d By:	indwate	er :	ITM		LTM
					Logge	и ву:			LTM	Page:	1 of 1

	JECT: Phase II ESA Historic Waste Disposal Sites	-			E No.:			MW-01
	JECT No.: 12-435		ILL				SS Au	iger/ODEX
	ATION: Riverside Light Industrial Park					TION:		854.669 m
	ENT: The City of Red Deer	CO			ION D	ATE:		06/18/2013
	ole Type: Shelby Tube Split Spoon Core Science Disturbed				overy			
	fill Type: 📕 Bentonite 💹 Silica Sand 🗱 Grout 🔛 Pea Gravel				uttings	Bento	nite : Sand	
Notes	Groundwater Monitoring Well on 47 Avenue roadway, east of	61 S	treet		-			
Depth (m)	Soil Description	Sample Type	Sample No.	SPT (N)	Combustible Soil Vapours (ppm)		Well Details	
0.0	Asphalt pavement (~ 7 cm thick). Gravel (fill) - compact, sandy, silty, some clay, moist, olive.	1						
1.0	Clay (fill) - stiff to firm, some loam, moist, olive. No obvious waste material.							
2.0	Sand (fill) - compact, silty, some pebbles, trace organics (rootlets, wood chips), moist, olive.							
	Sand (native) - compact, trace silt, moist, olive.							
3.0								
4.0	becomes silty at 4.1 m.							
4.0								
	becomes wet at 4.4 m. Sand and gravel (native) - compact to dense, trace silt, wet, olive.	-						
5.0	Shale (bedrock) - weak, highly weathered, moist, blue-grey.							
6.0								
7.0								
8.0	End of hole at 7.6 m.							
8.0	51 mm diameter 4.6 m length 010 PVC screen. Flush mount bolt-down steel casing set in concrete.							
9.0								
10.0								
11.0							0	
12.0								
	The second second second	Sloug	• h :	•			Completion Depth	(m): 7.6
	Tiamat Environmental Consultants Ltd.	Depth Logge	to Grou	undwat	er :	JAL/LTM	Checked By: Page:	LTM 1 of 1

PRO	JECT: Phase II ESA Historic Waste Disposal Sites	BO	REH	OL	E No.:			MW-02			
PRO	JECT No.: 12-435	DR	ILL	TYF	PE:		SS Au	iger/ODEX			
LOC	ATION: Riverside Light Industrial Park					TION:		855.257 m			
	ENT: The City of Red Deer	CO	_		ION D	ATE:		06/18/2013			
	ole Type: Shelby Tube Split Spoon Core Disturbed				overy						
	fill Type: 📕 Bentonite 💹 Silica Sand 🗱 Grout 🔛 Pea Gravel				uttings						
Notes	Groundwater Monitoring Well is at Unit #6, 4669 - 62 Street	- 0.5	m fro	om c	urb fac	e in gravel	boulevard.				
Depth (m)	Soil Description	Sample Type	Sample No.	SPT (N)	Combustible Soil Vapours (ppm)		Well Details				
0.0	Gravel (fill) - compact, silty, some sand, moist, olive. Sand (fill) - compact, silty, trace loam, moist, olive to dark olive.										
1.0	No obvious waste material. Sand and gravel (native) - dense, trace silt, damp, olive.										
2.0 3.0											
4.0											
5.0											
6.0	becomes wet at 6.1 m.										
7.0	Clay - soft, trace silt, wet, olive.										
8.0	Sand - compact, trace gravel, wet, olive. End of hole at 8.4 m. 51 mm diameter 010 PVC screen.										
9.0	3.0 m solid PVC pipe. Flush mount bolt-down steel casing set in concrete.										
10.0											
11.0							•				
12.0											
	Tiamat Environmental Congreltanta I tel	Sloug					Completion Depth				
	Tiamat Environmental Consultants Ltd.	Depth Logge	to Grou d By:	undwat	er :	JAL/LTM	Checked By: Page:	LTM 1 of 1			

LOCATION: Riverside Light Industrial Park GROUND ELEVATION: 855.058 CLIENT: The City of Red Deer COMPLETION DATE: 06/18/20 Sample Type: Shelby Tube Split Spaon Crow Date: No Recovery Backfill Type: Bentonite: Silica Sand S Grout Crow Crows Disturbed No Recovery Backfill Type: Soil Description aff, afg. brill Cutting: Bentonite: Sand Notes: Testhole is located in front of 4645 - 62 Street on grassed boulevard. aff, afg. brill Cutting: Bentonite: Sand 00 Soil Description aff, afg. brill Cutting: Soil Description aff, afg. brill Cutting: Bentonite: Sand 100 Loam: gravely, silly frace clay, damp, olive. Soil (II) - compact, trace silt, moist, olive. Soil (III) - compact, trace silt, moist, olive. Soil of the art 32 a. 200 Sand and gravel (native) - dense, trace silt, damp, olive. Soil of the art 32 a. Soil damp, olive. Soil damp, olive. Soil damp, olive. 301 End of hole art 32 a. Beckfilled with - 50:50 bencher and silica sand to 0.3 m depth. Soil of the art 32 a. Soil damp, sili to surface. 302 End of hole art 32 a. Beckfilled with ann, sil to surface. Soil damp, sili to surface. Soil damp,	PRO	JECT: Phase II ESA Historic Waste Disposal Sites	_			E No.:			TH-07
CLIENT: The City of Red Deer COMPLETION DATE: 06/18/20 Sample Type: Shehy Tube Sight Spon Core Deer Torne Core Core Core Core Core Core Core Cor			DR	ILL	TYP	PE:			SS Auger
Sample Type: Shelty Tube Split Spoon Core Disturbed No Recovery Backfull Type: Bentonic Sile Sama Grout Drill Curtings Bentonic : Sand Notes: Testhole is located in front of 4645 - 62 Street on grassed boulevard. Image: Split Spoon Image: Split Spl	LOC	ATION: Riverside Light Industrial Park	GR	OUN	ND E	CLEVA	TION:		855.058 m
Backfull Type: Denomic Sites Sand Grout Protection Difficultings Demonite : Sand Note:: Testhole is located in front of 4645 - 62 Street on grassed boulevart. Image: Sold Description Image: Sold Descripion Image: Sold Description <th></th> <th></th> <th>CO</th> <th>MPI</th> <th>LET</th> <th>ION D</th> <th>ATE:</th> <th></th> <th>06/18/2013</th>			CO	MPI	LET	ION D	ATE:		06/18/2013
Notes: Testhole is located in front of 4645 - 62 Street on grassed boulevard. iiii Soil Description iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	Sam				o Rec	overy			
Soil Description y 40					rill C	uttings	Benton	nite : Sand	
0.0 Loam - gravelly, silty, trace tay, damp, olive. Sand (fill) - compact, trace silt, noist, olive. 1.0 Learny gravell (fill) - compact, some sand, trace organics, trace silt, moist, dark olive. 2.0 No obvious waste material. Sand (autive) - compact, trace silt, moist, dive. 3.0 Sand and gravel (maive) - dense, trace silt, damp, olive. 4.0 5.0 End of hole at 5.2 m. Rackfilled with - 50:50 bentonite and slike sand to 0.3 m depth. Capped with loam, silt to surface. 7.0 8.0 9.0	Notes	: Testhole is located in front of 4645 - 62 Street on grassed boul	evard	1.					
0.0 Loam - gravelly, silty, trace tay, damp, olive. Sand (fill) - compact, trace silt, noist, olive. 1.0 Learny gravell (fill) - compact, some sand, trace organics, trace silt, moist, dark olive. 2.0 No obvious waste material. Sand (autive) - compact, trace silt, moist, dive. 3.0 Sand and gravel (maive) - dense, trace silt, damp, olive. 4.0 5.0 End of hole at 5.2 m. Rackfilled with - 50:50 bentonite and slike sand to 0.3 m depth. Capped with loam, silt to surface. 7.0 8.0 9.0	th (m)	Soil Description	le Type	ple No.	I (N)	stible Soil rs (ppm)		Details	
Lam - gravely, sity, trace clay, dunp, olive. Sand (GII) - compact, trace sill, moist, olive. Loamy gravel (fill) - compact, some sand, trace organics, trace silt, moist, dark olive. 20 No obvious waste material. Sand (utive) - compact, trace silt, moist, olive. 30 Sand and gravel (native) - dense, trace silt, moist, dark olive. 40 70 70 70 70 70 70			Samp	Sam	SP	Combu: Vapou		Well	
Image: start of the start	0.0	Loam - gravelly, silty, trace clay, damp, olive.							
2.0 No obvious waste material 3.0 Sand (uative) - compact, trace silt, damp, olive. 4.0	1.0	Sand (m) - compact, trace sint, moist, onve.							
No obvious wate material. Sand (native) - compact, trace silt, moist, olive. 3.0 Sand and gravel (native) - dense, trace silt, damp, olive. 4.0 4.0 5.0 End of hole at 5.2 m. Backflow this 2.0 50 bentonic and silica sand to 0.3 m depth. Capped with loam, silt to surface. 6.0 7.0 8.0 9.0		Loamy gravel (fill) - compact, some sand, trace organics, trace silt, moist, dark olive.							- - -
Sand (native) - compact, trace silt, damp, olive. 3.0 Sand and gravel (native) - dense, trace silt, damp, olive. 4.0	2.0		1						
4.0 Image: Additional state in the st			1						
4.0 Image: Additional state in the st									•
5.0 End of hole at 5.2 m. Backfilled with ~ 50.50 bentonite and silica sand to 0.3 m depth. 6.0 7.0 8.0 9.0	3.0	Sand and gravel (native) - dense, trace silt, damp, olive.							
5.0 End of hole at 5.2 m. Backfilled with ~ 50.50 bentonite and silica sand to 0.3 m depth. Capped with loam, silt to surface. 6.0 7.0 8.0 9.0									
End of hole at 5.2 m. Backfilled with ~ 50:50 bentonite and silica sand to 0.3 m depth. Capped with loam, silt to surface. 6.0 7.0 8.0 9.0	4.0								
End of hole at 5.2 m. Backfilled with ~ 50:50 bentonite and silica sand to 0.3 m depth. Capped with loam, silt to surface. 6.0 7.0 8.0 9.0									
End of hole at 5.2 m. Backfilled with ~ 50:50 bentonite and silica sand to 0.3 m depth. Capped with loam, silt to surface. 6.0 7.0 8.0 9.0									
Backfilled with ~ 50:50 bentonite and silica sand to 0.3 m depth. Capped with loam, silt to surface. Image: Capped with loam, silt to surface. 6.0 Image: Capped with loam, silt to surface. Image: Capped with loam, silt to surface. 7.0 Image: Capped with loam, silt to surface. Image: Capped with loam, silt to surface. 7.0 Image: Capped with loam, silt to surface. Image: Capped with loam, silt to surface. 7.0 Image: Capped with loam, silt to surface. Image: Capped with loam, silt to surface. 8.0 Image: Capped with loam, silt to surface. Image: Capped with loam, silt to surface. 9.0 Image: Capped with loam, silt to surface. Image: Capped with loam, silt to surface.	5.0	End of hole at 5.2 m							
7.0 1 1 1 1 1 8.0 9.0 1 1 1 1 1		Backfilled with ~ 50:50 bentonite and silica sand to 0.3 m depth.							
8.0 9.0	6.0								
8.0 9.0									
8.0 9.0									
9.0	7.0								
9.0									
	8.0								
			1						
	9.0		1						
			1						
	10.5		1						
	10.0		1						
11.0	11.0		1						
12.0	12.0		1						
			1						
Slough : Completion Depth (m): 5.2		Tiomot Environmental Come Marta Ltd							
Tiamat Environmental Consultants Ltd. Depth to Groundwater : Checked By: LTM Logged By: LTM Page: 1 of 1		I lainat Environmental Consultants Ltd.			undwate	er :	ITM		

PRO	JECT: Phase II ESA Historic Waste Disposal Sites	BO	REH	OL	E No.:			TH-08
PRO	JECT No.: 12-435	DR	ILL	TYI	PE:			SS Auger
LOC	ATION: Riverside Light Industrial Park	GR	OUN	ND E	ELEVA		854.759 m	
CLIH	ENT: The City of Red Deer	COMPLETION DATE: 06/1						
Samp	ole Type: 📕 Shelby Tube 💹 Split Spoon 🚺 Core 🔛 Disturbed	[o Rec	overy			
Back	fill Type: 📕 Bentonite 🔟 Silica Sand 🧱 Grout 🔛 Pea Gravel	[D	rill C	uttings	Bento	nite : Sand	
Notes	: Testhole is located on grassed area, west side of 62 Street acro	ss fro	om 4	645 -	- 62 Str	eet.		
\overline{a}		pe	·		Combustible Soil Vapours (ppm)		ails	
Depth (m)	Soil Description	le Ty	ple N	SPT (N)	stible rs (p)		Well Details	
Dep	2011 - 1011 F	Sample Type	Sample No.	\mathbf{SP}	mbu		Well	
0.0	Sod loom (Som thigh)	s			č C			
0.0	Sod - loam. (~ 8 cm thick). Loamy gravel - silty, some sand, trace organics, moist, dark olive.	1						r
	Sand and gravel (fill) - compact, silty, moist, olive.							
1.0	Sand (fill) - compact, silty, trace clay, moise, dark olive.							
1.0								
2.0		1						
2.0	trace plastic fragments at 2.4 m.	1						
								·
3.0								
5.0	becomes loose and wet at 3.4 m.							
	No obvious waste material.							
4.0	trace oxides at 3.8 m.							
5.0	Sand (native) - compact, clean, wet, olive.							
5.0								
6.0								
	End of hole at 6.1 m. Backfilled with ~ 50:50 bentonite and silica sand to 0.3 m depth.	1						
	Capped with loamy soil, silt to surface.							
7.0								
8.0							0	
9.0								
		1						
10.0		1					<u></u>	
		1						
		1						
11.0		1						
		1						
		1						
12.0		1						
		1						
╞───┘		Sloug	I	1		L	Completion Depth	(m): 6.1
	Tiamat Environmental Consultants Ltd.		to Grou	undwat	er :			LTM
		Logge	d By:			LTM	Page:	1 of 1

PROJECT: Phase II ESA Historic Waste Disposal Sites			REH	OL	E No.:	MW-03						
PROJECT No.: 12-435				TYF	PE:	SS Auger/ODEX						
LOCATION: Riverside Light Industrial Park					LEVA	854.551 m						
CLII	CNT: The City of Red Deer	CO	MPI	ET	ION D		06/19/2013					
Sam	ole Type: 📕 Shelby Tube 💹 Split Spoon 🚺 Core 🔛 Disturbed			o Rec	overy							
Back	fill Type: 📕 Bentonite 🔟 Silica Sand 🗱 Grout 🛄 Pea Gravel	Drill Cuttings Eentonite : Sand										
Notes	Groundwater Monitoring Well on north side of 46 Avenue ~ 3	m w	est o	f the		ick R/W on	grassed bou	levard				
Depth (m)	Soil Description	Sample Type	Sample No.	SPT (N)	Combustible Soil Vapours (ppm)		Well Details					
0.0	Sod - loam, silty, sandy, moist, dark olive. (~ 15 cm thick) Sand and gravel (fill) - compact, trace organics, trace clay, moist, olive.	1										
1.0												
	Clay (fill) - firm, sandy, trace silts, trace organics, moist, olive. wood fragments at 1.8 m to 2.4 m.											
2.0												
	Loam - firm, silty, sandy, damp, dark olive. some oxides at 2.9 m. No obvious waste material.											
3.0	Sand (native) - loose to compact, trace silts, damp, light olive.											
	Sand and gravels - compact to dense, trace silt, olive.											
4.0												
5.0	Gravel - compact, wet at 5.2 m.	_										
		-										
	Clay at 5.5 m to 5.8 m.	-										
6.0												
7.0												
	End of hole at 7.6 m.	1										
8.0	51 mm diameter 4.6 m length 010 PVC screen. 3.0 m solid PVC pipe.											
	Flush mount bolt-down steel casing set in concrete.											
9.0							å					
10.0												
11.0							•					
12.0												
Tiamat Environmental Consultants Ltd.			h:			Completion Depth (m): 7.6						
I lamat Environmental Consultants Ltd.				undwat	er :	LTM	Checked By: LTM Page: 1 of 1					

PROJECT: Phase II ESA Historic Waste Disposal Sites			BOREHOLE No.: TH-10										
PROJECT No.: 12-435			ILL	TYP	E:	ODEX							
LOCATION: Riverside Light Industrial Park			OUN	ND E	LEVA	854.418 m							
CLIENT: The City of Red Deer			MPI	LET	ION D		06/19/2013						
Samj	ole Type: 🔳 Shelby Tube 💹 Split Spoon 📗 Core 🔛 Disturbed	[o Rec	overy								
Back	fill Type: 📕 Bentonite 💹 Silica Sand 🗱 Grout 🛄 Pea Gravel				uttings		nite : Sand						
Notes: Testhole is on west side of 62 Street in grassed boulevard across from 4645 - 62 Street.													
(r		ype	·0.		Combustible Soil Vapours (ppm)		ails						
Depth (m)	Soil Description	le T	Sample No.	SPT (N)	stibl rs (p		Well Details						
Dep	L	Sample Type	Sam	\mathbf{SP}	apou		Wel						
0.0	Sod - loam, silty, sandy, trace organics, moist, dark olive.	2			Co Co								
0.0													
	Clay (fill) - firm, silty, some gravel, trace sand, moist, light olive.												
1.0	trace wood fragments at 1.1 m.												
1.0	Sandy loam - wood chips, trace organics, damp to moist, dark olive.												
	Clay (fill) - firm, trace sand, trace gravel, trace oxides, moist, olive.												
2.0	trace organics at 2.1 m.												
2.0	trace organics at 2.1 m.												
3.0													
5.0													
4.0													
4.0													
	No obvious waste material.												
5.0	Silt (native) - firm, sand, moist, olive.												
5.0													
6.0	Sand and gravel - compact, trace silt, wet, olive.												
	End of hole at 6.1 m. Backfilled with ~ 50:50 bentonite and silica sand to 0.3 m depth.												
	Capped with loamy soil to surface.												
7.0													
8.0													
9.0													
10.0													
11.0													
12.0													
		~					a						
Tiamat Environmental Consultants Ltd.		Slough : Depth to Groundwater :					Completion Depth (m): 6.1 Checked By: LTM						
		Logged By: LTM					Page: 1 of 1						

12-435 Phase II ESA – Riverside Light Industrial Park Historic Waste Disposal Site, The City of Red Deer

APPENDIX C

SELECT PHOTOGRAPHS

Photograph No. 1: View of location of TH-01 and soil bag.

Photograph No. 2: View of MSW on the auger from a depth of 1.5 m to 3 m at TH-01.

Page C-1

Photograph No. 3: View of MSW on the auger from a depth of 3 m to 4.6 m at TH-01.

Photograph No. 4: View of drill cuttings at TH-01. Note wood fragments only mixed with cuttings from 5 m to 6.1 m.

Photograph No. 5: View of set-up for drilling at MW-01.

Photograph No. 6: Drilling TH-03, looking westward.

12-435 Phase II ESA – Riverside Light Industrial Park Historic Waste Disposal Sites, The City of Red Deer

Photograph No. 7: Drilling using ODEX tooling next to 62 Street, looking southwest.

Photograph No. 8: View of completed MW-02.

Photograph No. 9: Drill at MW-03, looking northward.

Photograph No. 10: View of location of TH-07 and soil bag after drilling.

Photograph No. 11: View of TH-08 looking southwest.

Photograph No. 12: Small amount of wood fragments in the drill cuttings from a depth of 1.5 m to 3 m at TH-10. No other waste material encountered.