

2019 Groundwater and Soil Vapour Monitoring Report Great West Adventure Park North Half of Section 17-038-27 W4M

PRESENTED TO

The City of Red Deer

July 24, 2020 ISSUED FOR USE

FILE: SWM.SWOP04071-01.001

This page intentionally left blank.

EXECUTIVE SUMMARY

The City of Red Deer (The City) retained Tetra Tech Canada Inc. (Tetra Tech) to conduct the 2019 groundwater and vapour monitoring program at the former landfill located beneath the Great West Adventure Park (GWAP), located within Lot 1 MR Plan 8322386, within the north half of Section 17-038-27 W4M, in Red Deer, Alberta hereafter referred to as "the site". The objective of the monitoring program is to identify potential environmental concerns related to former operations at the site.

Tetra Tech's scope of work for the 2019 monitoring and sampling program at the GWAP site included conducting semi-annual events of groundwater and vapour monitoring, annual groundwater sampling, updating the hazard quotients, reviewing and updating previous recommendations for the site, and preparing an annual report.

The groundwater monitoring network at the site consists of five monitoring wells (MW-01 to MW-05). Monitoring wells were in good condition during the 2019 events. All of the monitoring wells are screened through the native sand and gravel into the shale bedrock. MW-03 is also screened through the sand fill.

The vapour monitoring network consists of two vapour monitoring wells; VW-01 located near the north end of site and VW-02 in the southwest corner of the site. The vapour wells were in good condition during the 2019 monitoring events.

Based upon the work conducted at the site, Tetra Tech has developed the following conclusions:

- The groundwater elevations in 2019 indicated that the inferred groundwater flow direction was to the northeast. The average horizontal hydraulic gradients at the site were 0.002 m/m in June 2019 and 0.001 m/m in December 2019. This is consistent with observations made historically. Groundwater elevations in 2019 were overall slightly lower than groundwater elevations measured previously in 2013.
- Routine groundwater chemistry parameters and dissolved metals concentrations that exceeded the Alberta Tier 1 Guidelines at one or more monitoring wells in 2019 included total dissolved solids, chloride, aluminum, arsenic, cadmium, copper, iron, manganese, and selenium. The measured concentrations of these parameters were generally consistent with previous results and background/up-gradient concentrations and may reflect natural groundwater quality or may be elevated due to inadequate filtration. Possible exceptions are the dissolved metal concentrations at MW-02, in particular cadmium and arsenic.
- During the 2019 sampling events, chloride concentrations greater than the Alberta Tier 1 Guidelines (120 mg/L) were measured at all monitoring wells. Chloride concentrations at most wells have increased since the 2013 sampling event. Chloride concentrations were greatest at up-gradient well MW-01 and are likely due to road salt use in the area and are not interpreted to be related to landfill impacts.
- Concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX), petroleum hydrocarbons (PHC) fractions F1 to F2, adsorbable organic halides (AOX), volatile fatty/carboxylic acids, and volatile organic compounds (VOCs) in 2019 were less than the analytical detection limits at all monitoring wells.
- Concentrations of BTEX, hydrocarbons, and VOCs in all soil vapour samples were less than the soil vapour screening criteria.
- Siloxanes were detected in sample VW-02 greater than the laboratory detection limit; however, there are no screening criteria for these compounds and the concentrations are not identified as a concern.
- The estimated individual and cumulative risks and hazards associated with the soil vapour samples collected in December 2019 did not exceed the corresponding target risk and hazard levels.

The previous Phase II Environmental Site Assessment recommended evaluating if surface water samples from the Red Deer River would be valuable to assess potential impacts from site groundwater on the river water quality. Based on the concentrations measured in the groundwater samples, surface water samples are not recommended. Due to the high volume of water flowing in the Red Deer River (a year-around average of approximately 75 m³/s¹), leaching of groundwater from the site would have little to no appreciable effect on the river water quality. Similarly, the Environmental Risk Management Plan recommended determining whether the Water Treatment Plant (WTP) is susceptible to impact from the site, and if so, reviewing the results of the site work with the WTP. Due to the high flow rate in the Red Deer River, appreciable impacts to the river quality are not expected, and subsequently no impacts would be expected to the WTP, located across the river to the northeast, either via river flow or via migration through gravel deposits beneath the riverbed.

Based upon the results of the groundwater and vapour monitoring program in 2019, there are no clear indications of significant impacts related to the former landfill operations at most monitoring well locations. However, there appear to be residual impacts in the groundwater and buried landfill waste remains in place beneath the site, therefore ongoing risk management is required. Risk management is recommended to include: additional assessment; ongoing monitoring; and administrative actions. The following recommendations are made according to these risk management elements:

Additional Assessment

- Available data does not suggest there is a significant concern with regards to soil vapours in the vicinity of the Riverbend Village apartments. However for due diligence, based on the presence of buried waste and proximity of the apartments, confirmation of soil vapour concentrations in this site area is recommended with installation of one additional vapour monitoring probe between the waste footprint and the apartments.
- Determine the status of the Red Deer BMX club water well located at the site. Confirm if the water well is being used, the purpose of the well, and the water quality. If water quality information is not available, a groundwater sample is recommended to be obtained as identified below.

Ongoing Monitoring

- Conduct an additional groundwater monitoring and sampling event in 2020 to confirm dissolved metals concentrations at MW-02.
 - The event should include water levels at all wells.
 - Sampling should include routine water chemistry and dissolved metals at MW-02. If the concentrations of dissolved arsenic and cadmium at MW-02 are less than guidelines and indicate the 2019 results were anomalous, Tetra Tech recommends discontinuing the groundwater monitoring and sampling activities at the site. If the concentrations are confirmed and remain greater that the referenced guidelines, a qualitative evaluation of risks should be made to evaluate the potential concern, if any, these concentrations pose to the adjacent Red Deer River.
- If the Red Deer BMX club well exists and can be monitored/sampled, include it in the proposed monitoring event for water levels. If chemistry data is not available, include sampling of the BMX club well in the proposed event.
- Upon installation of the proposed vapour probe proximate to the Riverbend Village apartments, conduct one round of well monitoring to focus on the potential presence of landfill gas. The monitoring is proposed to include the headspaces of all gas and water wells for methane using a GEM monitor. The potential requirement for analytical testing at this new well would be determined based on the results of the monitoring, should indications of elevated methane be noted.

¹ Alberta River Basins. Rivers.alberta.ca.

Administrative Actions

- Utilize the revised generic mitigative measures when evaluating applications for development within the setback.
- Ensure that the site is clearly identified within the City's Land Use Bylaw and appropriate administrative requirements are met for the site in accordance with City policies.

Further to the above recommendations, as noted the site remains an historical landfill. It presently appears to be well maintained and capped. The City should review this status on an ongoing basis to ensure that the cover remains intact and drainage remains positive; repairs or maintenance should be undertaken as required to maintain the site.

TABLE OF CONTENTS

EXE	CUTI	VE SUN	MMARY			
4.0	INITI	200110	OTION .			
1.0			CTION			
	1.1	•	e of Work			
	1.2	Pre-19	972 Landfill Program	2		
2.0	BAC	KGRO	OUND INFORMATION	2		
	2.1	Gener	ral Information	2		
	2.2	2 Site History				
	2.3	Histori	ical Groundwater Monitoring and Investigation Summary	3		
	2.4	Monitoring Well Network				
3.0	SITE	SETT	ING	5		
	3.1		gy			
		3.1.1	Geological Setting and Stratigraphy			
		3.1.2	Local Geology	5		
	3.2	Hydro	geology	5		
		3.2.1	Regional Hydrogeology	6		
		3.2.2	Local Hydrogeology	6		
	3.3	Groun	ndwater Resource Usage	6		
4.0	CON	ICEPTI	UAL SITE MODEL	7		
	4.1		icals of Potential Concern			
	4.2					
	4.3		Size Designation			
	4.4		sure Pathways and Receptors			
		4.4.1	Human Receptors and Pathways			
		4.4.2	Ecological Receptors and Pathways			
		4.4.3	Exposure Pathway Summary			
	4.5	Soil Va	apour	9		
		4.5.1	Indoor Air Risk Calculations	10		
		4.5.2	Methane and Explosive Risks	10		
	4.6	Overa	Il Guidelines	10		
5.0	GROUNDWATER MONITORING AND SAMPLING PROGRAM1					
	5.1		Program			
	5.2		tical Program			
6.0	VAF	OUR N	MONITORING AND SAMPLING PROGRAM	12		
	6.1		Program			
	6.2		tical Program			
7.0	RES	SULTS A	AND DISCUSSION	13		
	7.1		ndwater Well Headspace Monitoring			
	7.2		ndwater Elevations			

7	7.3 Groundwater Field Parameters	14		
7	7.4 Laboratory Results			
7	7.5 Vapour Monitoring Results			
7	7.6 Vapour Analytical Results			
7	7.7 Quality Assurance/Quality Control Methods	17		
	7.7.1 Methods	17		
	7.7.2 Results	17		
8.0 F	HAZARD QUOTIENT CALCULATIONS	18		
9.0 E	EVALUATION OF SITE CONDITIONS			
9	9.1 Summary of Site Conditions	19		
9	P.2 Review of Mitigative Measures from Risk Management Plan	20		
10.0 C	CONCLUSIONS AND RECOMMENDATIONS	22		
11.0 C	11.0 CLOSURE			
REFER	RENCES	25		
APPE	ENDIX SECTIONS			
TABLE	ES			
Table 1	1 Groundwater Elevations			
Table 2	2 Groundwater Analytical Results			
Table 3	3 Soil Vapour Monitoring Results			
Table 4	4 Soil Vapour Analytical Results			
Table 5	- 1 - 7 - 7 - 7			
Table 6	· · · · · · · · · · · · · · · · · · ·			
Table 7	· · · · · · · · · · · · · · · · · · ·			
Table 8	• • • • • • • • • • • • • • • • • • • •			
Table 9	·			
Table 1	10 Soil Vapour Risk Evaluation			
FIGUR	RES			
Figure	1 Site Location Plan			
Figure				
Figure				
Figure	•			

Figure 5 Groundwater Elevation Contours – December 2019

APPENDICES

Appendix A Tetra Tech's Limitations on the Use of this Document

Appendix B Cross-sections (Tiamat 2014A)

Appendix C Water Well Data

Appendix D Laboratory Analytical Reports
Appendix E Historical Analytical Results

LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of The City of Red Deer and their agents. Tetra Tech Canada Inc. (Tetra Tech) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than The City of Red Deer, or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this document is subject to the Limitations on the Use of this Document attached in Appendix A or Contractual Terms and Conditions executed by both parties.

1.0 INTRODUCTION

The City of Red Deer (The City) retained Tetra Tech Canada Inc. (Tetra Tech) to conduct the 2019 groundwater and vapour monitoring program at the former landfill located beneath the Great West Adventure Park (GWAP), located within Lot 1 MR Plan 8322386, within the north half of Section 17-038-27 W4M, in Red Deer, Alberta hereafter referred to as "the site". The objective of the monitoring program is to identify potential environmental concerns related to former operations at the site.

1.1 Scope of Work

Tetra Tech's scope of work for the 2019 monitoring and sampling program at the GWAP site included the following activities:

- Conducting semi-annual events of groundwater and vapour monitoring, including measuring headspace vapours and groundwater levels within each monitoring well and observing monitoring well integrity.
- Conducting groundwater sampling:
 - Purging shallow groundwater monitoring wells and deep groundwater monitoring wells until practically dry
 or until a minimum of three well volumes had been removed and allowing the water levels in the wells to
 recover.
 - Measuring field parameters (pH, electrical conductivity [EC], and water temperature) at the time of sampling.
 - Collecting groundwater samples from each well and submitting the samples for laboratory chemical analyses.
- Conducting soil vapour sampling:
 - Collecting vapour samples into Summa canisters for analysis.
 - Collecting vapour samples for siloxanes analysis into thermal desorption (TD) tubes.
 - Collecting one duplicate vapour sample for quality assurance/quality control (QA/QC) purposes.
- Conducting monitoring well repairs at select wells.
- Updating the hazard quotients prepared during previous reporting using the 2019 monitoring and sampling results.
- Evaluating and updating the previous recommendations.
- Preparing an annual report summarizing the field activities undertaken for the year and interpreting the groundwater and soil vapour analytical results.

The report was completed under Tetra Tech's Limitations on the Use of this Document for conducting environmental work. A copy of these conditions is provided in Appendix A. Cross-sections that were prepared using the wells included in the monitoring program are included in Appendix B (from Tiamat Environmental Consultants Ltd, [Tiamat] 2014a).

1.2 Pre-1972 Landfill Program

The scope of work for the monitoring program was based on the proposal submitted by Tetra Tech on January 11, 2019, to The City to conduct environmental monitoring services for the pre-1972 landfill sites. The proposal was submitted in accordance with the Request for Proposal (RFP) No. 1090-2018-261 issued by The City on November 30, 2018, and Addendum 01 issued by The City on January 7, 2019. This report documents the scope and findings for the GWAP site.

The objective of the overall project for the pre-1972 Landfills was to:

- Confirm and implement the prior recommendations, as per the RFP;
- Consult with the regulator on amendments to the program, as required;
- Conduct environmental monitoring and sampling for each of the eight sites, as outlined in the RFP recommendations, while incorporating any approved recommendations;
- Update the hazard quotients for each site; and
- Prepare an environmental monitoring report for each of the eight sites.

The eight pre-1972 landfill sites include:

- GWAP;
- Lindsay Thurber Comprehensive High School;
- McKenzie Trails Recreation Area;
- Montfort;
- Red Deer College;
- Red Deer Motors;
- Riverside Heavy Dry Waste Site; and
- Riverside Light Industrial Park.

Each site is summarized in a separate report. This report is focused on the GWAP site. It includes a description of the site geology and hydrogeology, the results of the 2019 monitoring activities at the site, and an interpretation and evaluation of the collected data.

2.0 BACKGROUND INFORMATION

2.1 General Information

The site is located within the north half of Section 17-038-27 W4M, within Lot 1 MR Plan 8322386. The site is zoned P1 – Parks and Recreation and is located within the community of Riverside Meadows. The site is located on the west bank of the Red Deer River, east of Kerry Wood Drive and North of Taylor Drive. The Red Deer River is adjacent to the southeastern portion of the site and flows in a northeasterly direction. A general site location plan is shown on Figure 1. The site has been developed and includes a BMX biking track, a small building, a parking lot, a boat launch, and a pedestrian/biking trail. The surrounding land use consists of residential housing, Fairview Elementary School, as well as commercial land use. Natural areas of the site consist of grasses and trees. Figure 2 shows the site location with surrounding land use.

2.2 Site History

Municipal records indicate that the waste disposal at the site occurred between approximately 1923 and 1947 (approximately 24 years). This would indicate that the estimated age of the waste material would be approximately 73 to 97 years old. Records indicate that the municipal solid waste (MSW) was disposed of after gravel mining in the area which was associated with a former commercial timber business.

Historical MSW disposal was identified during the Phase II Environmental Site Assessment (ESA) beneath a portion of the BMX track and a portion of the public parking lot. A separate waste area was identified off site, adjacent to the Riverbend Village apartments parking lot to the northeast. Estimated waste areas are identified on Figure 2. The MSW encountered during the Phase II ESA was a mixture of plastics, paper, metal, wires, and glass amongst a mix of sand, clay, and gravels. The Phase II ESA estimated the total area of buried waste at approximately 3,970 m², to a maximum depth of 4.6 m below ground surface (mbgs) (Tiamat 2014a). The largest footprint of waste is estimated to be located underneath the BMX track facility.

Results of the 2014 Phase II ESA (Tiamat 2014a) indicated that surface materials of sod, sand, and loam were overlying clay, sand, and gravel fill material. The fill was estimated to be 0.6 m to 6.6 m deep. Waste was encountered at six testholes and was typically under a thin layer of sod. The deepest waste was encountered at TH-11 and TH-12, at 4.6 mbgs and 5.5 mbgs and overlying native clay and sand. These testholes were located in the central area of the BMX track. The cross-sections completed by Tiamat (Tiamat 2014a) indicate that where encountered, the top of the shale bedrock was found at approximately 5 mbgs.

2.3 Historical Groundwater Monitoring and Investigation Summary

In 2013, Tiamat completed a Phase II ESA, which consisted of advancing 23 testholes with depths ranging from 2.7 m below grade (mbg) to 6.6 mbg. Waste was observed in six of the testholes during the drilling program. Five monitoring wells were installed (MW-01 to MW-05) along with two soil vapour wells (VW-01 and VW-02). In August 2013, groundwater monitoring and sampling was completed at all monitoring wells.

Previous reports prepared by Tiamat for the site include the following:

- Phase I Environmental Site Assessment, Historic Waste Disposal Site, Great West Adventure Park, The City of Red Deer. September 24, 2013 (Tiamat 2013).
- Phase II Environmental Site Assessment, Historic Waste Disposal Site, Great West Adventure Park, The City of Red Deer. February 12, 2014 (Tiamat 2014a).
- Environmental Risk Management Plan, Historic Waste Disposal Site, Great West Adventure Park, The City of Red Deer. December 3, 2014 (Tiamat 2014b).

The results of the Phase II ESA conducted by Tiamat in 2014 indicated the following:

- Historical records indicate the present configuration of the site has been unchanged. The site is currently zoned
 as a municipal reserve (1MR).
- Historical information suggests the disposal of household sanitary waste materials started pre-1923 until 1947 by the Village of North Red Deer. Other available information suggested that disposal activity commenced on or about 1916 and ended by 1947. After that, the village of North Red Deer was amalgamated within The City in January 1948.
- At the time of the report preparation, records indicated there were not any outstanding environmental concerns with the site.

 The historical waste disposal areas have been redeveloped as public recreational activities, green spaces, and a multi-family apartment building. Presently, there are no obvious activities on the adjacent lands that are interpreted as an environmental concern relative to the site.

The recommendations of the program were as follows, as identified in the Phase II (Tiamat 2014a):

- Continue to monitor groundwater elevations and soil vapour data biannually for one hydrogeological cycle.
- Determine if surface water sampling should be included to predict groundwater flow patterns and the impacts
 of potential leachate could have on the Red Deer River water quality.
- Collect an additional set of soil vapour and groundwater analytical data, groundwater elevations, and volatile headspace measurement during the winter months to determine seasonal changes in soil vapour concentrations.
- Review the results of the soil vapour sampling with the Riverbend Village apartments and install an additional soil vapour and groundwater monitoring well within the proximity of the apartments to determine any risk to the apartment building tenants.
- Review all new data and update the site risk management plan (RMP) with all new information and findings.

The recommendations of the RMP (Tiamat 2014b) were as follows:

- A risk review should be completed for the site using the updated groundwater analytical data. The review should be based on river flow, geometry and characteristics to determine if The City Water Treatment Plant (WTP) is susceptible to any effects from the historic waste disposal. The WTP is located northeast of the site, across the river.
- The above findings should be reviewed with the WTP to determine if leachate constituents could impact the WTP
- Information in the preliminary quantitative risk assessment (PQRA) should be updated as new site information is obtained.
- A review of the RMP should be completed when the PQRA information is updated, if there are changes to the chemicals of potential concern (COPCs).
- The RMP should be reviewed and updated at five-year intervals.

2.4 Monitoring Well Network

The groundwater monitoring network at the site consists of five monitoring wells (MW-01 to MW-05). Monitoring wells were in good condition during the 2019 events. All of the monitoring wells are screened to the bottom of the well through the native sand and gravel into the shale bedrock. MW-03 is also screened through the sand fill. Monitoring well completion details are summarized in Table 1.

The vapour monitoring network consists of two vapour monitoring wells; VW-01 located near the north end of site and VW-02 in the southwest corner of the site. The vapour wells were in good condition during the 2019 monitoring events.

Groundwater and vapour monitoring well locations are shown on Figure 2.

3.0 SITE SETTING

The following section presents an overview of the regional and local setting for the site.

3.1 Geology

The following sections summarize the regional and local geology.

3.1.1 Geological Setting and Stratigraphy

The City and site are located within the Red Deer River drainage basin with principal drainage via the Red Deer River located east of the site. The river has incised the uplands with gentle slopes to the east and west of the river in the vicinity of the site.

The geology in the river valley is characterized by fluvial surficial sediments deposited by the Red Deer River, overlying shale and sandstone bedrock of the Paskapoo Formation.

Key elements of the geological setting are presented below from Tiamat's 2013 Phase I ESA report (Tiamat 2013):

"The fertile black soil in the region (Penhold Loam) is of alluvial lacustrine origin. The Penhold Loam is a well-drained fine sandy loam classified as Chernozemic. It is generally stone free and in natural areas, is typically 1.5 m thick, more or less.

The Quaternary deposits consist of drift deposits of clay, silt, gravel and sand. Published information indicates the banks of the Red Deer River comprise of dirty gravel with thickness ranging from 6 to 12 m, more or less.

In the valley, lies preglacial Saskatchewan gravels and sand. Terrace gravels hydraulically connected to the Red Deer River are a known resource of groundwater. Surficial soils comprise largely of poorly to moderately sorted sand, silt and gravel with a varying amount of clay. The fluvial sediments generally have obscure bedding planes. Medium to coarse sized gravel with cross-bedded sand have been documented.

The Tertiary bedrock consists of sequences of alternating shales and sandstones of the Paskapoo Formation. The Paskapoo Formation underlies the gravel sediments. This non-marine bedrock is composed of mudstone, siltstone and sandstone. The formation of the Rocky Mountains subjected the Paskapoo Formation to a regional stress-induced fracture pattern."

3.1.2 Local Geology

Based on the Phase II ESA results, GWAP consisted of 0.6 m to 6.6 m of fill material, consisting of a mixture of sod, sand and loam, overlying clay, sand, and gravel. Testholes with observed waste consisted of up to 4.6 m of waste, with often minimal soil cover on top. Waste material was situated on top of a native clay and sand layer, overlying a shale bedrock, encountered between 2.6 m to 5.8 m depths. Monitoring wells MW-01 to MW-05 at the site are screened through multiple stratigraphy's, including sand fill, native sand and gravel, and shale bedrock.

3.2 Hydrogeology

The following sections summarize the regional and local hydrogeology.

3.2.1 Regional Hydrogeology

The regional hydrogeology is most influenced by the presence of the river sediments situated within the valley along the Red Deer River and a bedrock valley trending north-northeast in the vicinity of the site.

Key elements of the hydrogeological setting are presented below from Tiamat's 2013 Phase I ESA report (Tiamat 2013):

"A significant buried valley and aquifer resource trending northeastward through the city has been partially mapped and lies in the SE 28-38-27 W4M (MacKenzie Trail and Riverside). This buried valley extends to a depth of 21 m, more or less and may extend to the south into north portions of 21-28-27 W4M." Mapping by the Alberta Geological Survey (Andriashek 2018) shows the valley approximately 1,500 m southeast of the site, trending in a north-northeast direction, however the width of the valley is not defined.

"The dominant type of near-surface groundwater in the Paskapoo Formation in the area of assessment is sodium bicarbonate. Notable concentrations of sodium sulphate type groundwater have also been reported. The quality of groundwater for potable use is generally suitable to depths of 300 m on the west side of Red Deer and decreases to 90 m, more or less in the east.

Areas of recharge (downward flow) in unsaturated heterogeneous sediments include most areas above the river and creek valleys, whereas; the river valleys will generally exhibit discharge. The distribution of groundwater in the area can also be influenced by the local geology, topographic relief, areas of artesian flow, springs and reasonable yielding water source wells.

Numerous permanent surface water features within The City of Red Deer and vicinity include Red Deer River, Waskasoo Creek, Gaetz Lakes, Hazlett Lake, Bower Ponds (result of formerly mining gravel resources), various sloughs in the fringe areas of the city and an assortment of other smaller creeks and springs."

The regional groundwater flow is expected to follow the bedrock topography and will be influenced by the varying distribution of sediments in the river valley, which will have been deposited in various historical channels since filled in under varying depositional environments. Further, the river is in hydrologic connection with the adjacent sediments, and therefore seasonal changes in river stage will affect the local groundwater flow patterns (magnitude and direction). In seasons of higher river flow, bank storage will occur whereas in seasons of lower flow (such as late summer/fall), the storage will be released.

3.2.2 Local Hydrogeology

The Red Deer River is located on the southeast side of the site and flows in a northerly direction. Shallow groundwater is assumed to flow parallel to or towards the river.

3.3 Groundwater Resource Usage

A search of the Alberta Water Well Database for groundwater users within a 1 km radius of the site, identified 18 groundwater wells; 8 of the wells are listed as for domestic use, 1 is listed as for industrial use, 1 is listed as other, and 8 are listed as for unknown use, 7 of which have been decommissioned (AEP 2019b).

The nearest water well is located on site and is drilled to 7.5 mbg. The well was drilled in 1986 and was donated to the Red Deer BMX club. The proposed well use is listed as other, however the current status and use of this well is not known. The water wells within a 1 km radius of site range from 7.5 mbg to 58 mbg. The status and use of the surrounding groundwater wells were not confirmed and they were not field verified.

Information for groundwater wells within 1 km of the GWAP is provided in Appendix C.

4.0 CONCEPTUAL SITE MODEL

The selection of remediation guidelines is based on the conceptual site model (CSM), which outlines the rationale of the selection of applicable exposure pathways and indicates which soil and groundwater exposure-specific remediation guidelines should apply. This evaluation is based on guidance presented in the Alberta Tier 1 Soil and Groundwater Remediation Guidelines (Tier 1 Guidelines; AEP 2019a).

A CSM was developed for the site and includes the following items:

- Description of any identified environmental issues including a description of processes or activities undertaken at or near the site and a listing of COPCs identified in earlier investigations.
- Description of known and reported historical releases, including locations and status of any subsequent ESAs and remediation.
- Identification of applicable exposure pathways and receptors.

4.1 Chemicals of Potential Concern

Based on the information provided in historical reporting, and on typical COPCs in an MSW setting such as this, the COPCs for the groundwater component of the site include:

- Inorganic parameters and nutrients (e.g., ammonia, chloride, and total dissolved solids [TDS]);
- Metals;
- Petroleum hydrocarbons (PHCs);
- Volatile organic compounds (VOCs); and
- Other indicator parameters, such as biological oxygen demand (BOD) and chemical oxygen demand (COD).

The COPCs for the soil vapour component of the site include:

- VOCs;
- Methane;
- BTEX and PHCs; and
- Siloxanes.

Amongst these COPCs, the soluble ones are expected to migrate into the soils towards the groundwater table (e.g., BTEX, PHC fractions F1 and F2, and chloride) while others will bind to the soil particles and are not expected to migrate deeply (i.e., metals).

4.2 Land Use

The Alberta Tier 1 Guidelines are subdivided by land use: natural area, agricultural, residential/parkland, and commercial/ industrial. The site is currently zoned as P1 – Parks and Recreation. The site is surrounded by residential and commercial land to the north, the Red Deer River to the east, Taylor Drive followed by parkland to

the southwest, and Kerry Wood Drive and Fairview Elementary school to the west. As such, the site land use was considered parkland.

4.3 Grain Size Designation

The Alberta Tier 1 Guidelines are developed for both coarse-grained and fine-grained soils. Fine-grained soils are defined as having a median-grain size of less than or equal to 75 μ m; coarse-grained soils have a median-grain size of greater than 75 μ m. Where both fine- and coarse-grained strata are present, the dominant soil particle size is determined by the stratum governing horizontal and vertical migration to a receptor.

During the Phase II ESA, the majority of materials at the site (both fill and native) were observed to be coarse-grained; thus, coarse-grained guidelines have been used.

4.4 Exposure Pathways and Receptors

4.4.1 Human Receptors and Pathways

Human receptors assumed to be present on commercial and residential/ parkland areas include adult workers, adult and child visitors, adult and child residents, and park users. The following human exposure pathways were considered when developing and implementing remediation guidelines:

- Direct soil contact.
- Groundwater ingestion (drinking water).
- Vapour inhalation.
- Off-site surface migration (wind or water erosion).

These pathways are briefly discussed individually below.

4.4.1.1 Direct Soil Contact – Human Pathway

The direct soil contact pathway is considered to be applicable to all land uses except in natural areas. Direct contact implies that humans can come in direct contact with contaminated soil via incidental ingestion, dermal contact, or inhalation of airborne soil particles. Since the land use for this site is considered parkland, this pathway is considered to be applicable.

4.4.1.2 Drinking Water (Groundwater Ingestion)

Water-bearing units with a saturated hydraulic conductivity of greater than 1.0×10^{-6} m per second (m/sec) are considered to comprise a potential domestic use aquifer (DUA) (AEP 2019a). To eliminate this pathway, the presence of greater than 5 m of unimpacted, unfractured, saturated, fine-grained material with an assumed bulk (vertical) hydraulic conductivity of less than 1.0×10^{-7} m/sec must exist below the proven depth of contaminated material. This is required to ensure that the impacted material is isolated from potential underlying DUAs.

A search was conducted of the Alberta Water Well Database. Two water wells were identified within 500 m of the site (including the well at the BMX club) and are listed as other and unknown uses. The DUA pathway has been included as investigations to eliminate the DUA pathway have not been completed.

4.4.1.3 Inhalation

The inhalation pathway considers the migration of volatile contaminants (e.g., BTEX, PHC fractions F1 and F2, and VOCs) released from the soil and/or groundwater into living or working spaces of buildings where humans may be exposed through inhalation. The inhalation pathway is applicable to all land uses except natural areas. Since the current land use is considered parkland, there is a potential for the infiltration of vapours into park buildings and subsequent inhalation by the inhabitants. Therefore, the inhalation pathway is applicable in this assessment.

4.4.1.4 Off-site Surface Migration by Wind or Water Erosion

The off-site surface migration pathway considers migration of contaminated soil from the site to an adjacent site of more sensitive land use via wind or water erosion. This pathway applies to commercial and industrial sites only and is not applicable to the site as the site is surrounded by residential land and the Red Deer River.

4.4.2 Ecological Receptors and Pathways

Ecological receptors at a typical contaminated site span a range of trophic levels, including soil-dependent organisms (e.g., plants and soil invertebrates) and higher-order consumers (e.g., terrestrial and avian wildlife and livestock). This pathway is applicable to the land use for this assessment.

4.4.2.1 Direct Soil Contact – Ecological Pathway

Plants and soil invertebrates may come into direct contact with contaminants in soil or shallow groundwater. This pathway is applicable to all land uses; therefore, it is considered for evaluation in this assessment.

4.4.2.2 Freshwater Aquatic Life

The freshwater aquatic life (FAL) pathway is applicable if a surface waterbody is present less than 300 m from the site. The nearest surface waterbody is the Red Deer River, located immediately adjacent to the east site of the site; therefore, the FAL pathway would be applicable to the site.

4.4.2.3 Nutrient and Energy Cycling

The nutrient and energy cycling pathway consider the microbial functioning of the soil including carbon nitrogen cycling and is, therefore, applicable to all land uses.

4.4.3 Exposure Pathway Summary

To establish the appropriate guidelines for the site, the most sensitive land use was used. The receptors are a combination of the degree of potential exposure, the exposure pathway, and the contaminant of concern. Human receptor exposures applicable to the site include the direct soil contact and inhalation pathways. The ecological receptor exposures applicable to the site include direct soil contact, FAL, and nutrient and energy cycling.

4.5 Soil Vapour

As recommended by Alberta Environment and Parks, the soil vapour results obtained during this investigation were compared to the Canadian Council of Minister of the Environment (CCME) document *A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures Via Inhalation of Vapours* (CCME 2014). Generic soil vapour guidelines, that could indicate whether there are potential risks to indoor air from vapours in the soil, have been prepared using the default parameters outlined in the 2014 CCME protocol. The parameters used in the calculation of the generic soil vapour guidelines can be found in Table 6 to Table 9. The equations and model

assumptions were taken directly from the CCME 2014 document. While the CCME does not publish soil vapour screening criteria, the approach used to calculate soil guidelines for the vapour inhalation pathway is used to derive the soil vapour screening criteria.

4.5.1 Indoor Air Risk Calculations

The Alberta Tier 2 Guidelines (AEP 2019c) include human toxicity reference values (TRVs) for inhalation (Table A-7). For non-carcinogens, the inhalation TRV represents the concentration of the chemical of concern considered unlikely to cause adverse human health effects after a lifetime of continuous exposure, referred to as the inhalation tolerable concentration (ITC). For carcinogens, the inhalation TRV is referred to as the inhalation unit risk (IUR) and can be used to determine a risk-specific concentration (RSC). To ensure that the incremental lifetime cancer risk of an individual does not exceed 1 in 100,000 (1 x 10⁻⁵) after a lifetime of continuous exposure, the RSC is calculated (as per Health Canada 2012, PQRA Guidance) as follows:

RSC (mg/m³) = 1 x
$$10^{-5}/IUR$$

Continuous exposure is expressed as an exposure term (ET), which is unitless. The ET for residential land use is 1 (AEP 2019c) based on 24 hours/day, 7 days/week, and 52 weeks/year. The ET is used to determine appropriate soil vapour screening levels. Soil vapour screening levels were calculated (as per Health Canada 2012, PQRA Guidance) using the equation below:

Vapour Screening Level (mg/m³) = (ITC or RSC)/ET

4.5.2 Methane and Explosive Risks

Landfill gas (LFG) can be generated from the degradation of wastes under anaerobic conditions. Methane gas can migrate through the ground and enter structures through porous concrete, joints, or fractures in foundations. When present, methane is considered a safety concern due to its explosive risk when it is in an atmosphere at concentrations between 5% and 15% by volume in air, in the presence of an ignition source. At concentrations less than 5% (the lower explosive limit [LEL]) and above 15% (the upper explosive limit), methane is not explosive. Methane on its own is not considered a health risk, although it can represent a concern if it is present at very high concentrations which could displace oxygen and present a risk of asphyxiation.

There are not guidelines for methane as part of the Alberta Tier 1 framework. However, for reference, the Standards for Landfills in Alberta identify maximum methane concentrations proximate to approved landfills, and Alberta Health Services have provided guidance for methane (in conjunction with well headspace pressures that would constitute a driving force); however, that document has not been issued in a final format.

4.6 Overall Guidelines

Groundwater concentrations at the site were compared to the Alberta Tier 1 Guidelines under residential land use for coarse-grained soils (AEP 2019a).

Soil vapour analytical results were compared to A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures Via Inhalation of Vapours under residential land use for both slab-on-grade and basement for coarse-grained soils (CCME 2014).

5.0 GROUNDWATER MONITORING AND SAMPLING PROGRAM

A discussion of the methods used for the fieldwork and laboratory testing, is presented in the following sections. In 2019, Tetra Tech conducted the groundwater monitoring event on June 26, 2019, and a groundwater monitoring and sampling event on December 4, 2019.

5.1 Field Program

Groundwater monitoring consisted of measuring combustible vapour concentrations (CVCs) and VOCs in monitoring well headspace and measuring static groundwater levels in each monitoring well using an electronic water level indicator semi-annually (June and December).

The methodology for groundwater monitoring and sampling included the following:

- Observing the integrity of each well and noting drainage and site conditions near the well that may have an
 effect on monitoring results or groundwater quality.
- Measuring the VOC and CVCs in each well using an RKI Eagle Hydrocarbon Surveyor II (RKI) calibrated to hexane and isobutylene operated in methane elimination mode.
- Measuring liquid levels in each monitoring well with an interface probe and recording total depths confirming absence of light non-aqueous phase liquids (NAPL).
- Recording field data on standardized forms as documented in Tetra Tech standard operating practices.
- Purging each monitoring well requiring sampling using dedicated polyethylene bailers or Waterra tubing with inertial pump foot valves of at least three well volumes of water, or until the well was practically dry.

Following the completion of groundwater monitoring and purging, groundwater samples were collected from the wells to be sampled using the procedures identified below:

- Groundwater samples were collected from five monitoring wells (MW-01, MW-02, MW-03, MW-04, and MW-05). Samples were collected and placed into appropriate laboratory supplied, sterile glass and plastic vials and bottles for the required analytical package. If required, samples were filtered and/or preserved in the field.
- Field measurements were taken for pH, EC, and temperature at the time of sampling.
- Samples were submitted in coolers with ice to ALS Laboratories (ALS) in Calgary, Alberta for laboratory chemical analysis under a chain of custody (COC) documentation.

More information on the analytical program is provided in Section 5.2. The groundwater monitoring well locations are shown on Figure 2.

5.2 Analytical Program

The analytical program for the groundwater monitoring wells was developed based on the recommendations of previous reports and is summarized below:

- BTEX and PHC fractions F1 and F2.
- VOCs.
- Total Kjeldahl nitrogen (TKN).

- Routine and dissolved metals.
- Dissolved organic Carbon (DOC).
- Ammonia.
- Phosphorus.
- Adsorbable organic halides (AOX).
- Volatile fatty acids.

6.0 VAPOUR MONITORING AND SAMPLING PROGRAM

A discussion of the methods used for the fieldwork and laboratory testing is presented in the following sections. In 2019, Tetra Tech conducted a vapour monitoring event on June 26, 2019, and a vapour monitoring and sampling event on December 4, 2019.

6.1 Field Program

Vapour monitoring consisted of measuring and recording soil gas pressure, composition (methane, carbon dioxide, oxygen, hydrogen sulphide, and balance) on a percent volumetric basis and groundwater elevation, biannually (June and December).

The soil vapour probes were inspected for visible signs of damage and the position of the sampling labcock was noted. Soil gas pressure was recorded using a digital manometer. Once the soil gas pressure measurement was recorded, the soil gas probe was purged of three well volumes of air, or until readings stabilized. The two soil vapour probes on site are small diameter soil gas probes (1" wells) and they were purged directly with the GEM landfill gas analyzer.

After purging, gas composition measurements for methane, carbon dioxide, oxygen, balance gas, and hydrogen sulphide were recorded using the GEM analyzer. After recording soil gas concentrations, the probe/well depths and water levels were measured and recorded to confirm the water level within the probe was beneath the screened portion of the soil gas probe (i.e., the probe was not blinded).

A leak detection test was completed to ensure the vapour probe was sealed properly. The test was completed using helium gas a tracer to inspect the testing probe and apparatus for any leaks. If there was a leak beyond the acceptable range (2% of helium concentration), the connections were tightened, and the leak test was conducted again.

Sampling of the soil vapour probes was based on the methodology of the CCME sampling guidelines, and is summarized as follows:

- Prior to collecting the soil vapour probe samples, wells were purged of three well volumes, or until headspace readings stabilized.
- 1.4 L Summa vacuum canisters were used for sample collection at the soil vapour probe monitoring locations.
- Sample data was recorded on the provided sample tag for each canister.
- Sample tubing that was used to connect the canister to the soil vapour probe was low in VOCs and only used once to prevent sample contamination.

- When beginning sample collection, the end cap was removed, and a 60-minute flow controller was attached to the canister. Start time was recorded on the sample tag.
- When sampling was complete, the valve was closed, and the flow controller was removed. The end time was recorded on the sample tag.
- The protective end cap was replaced back on the canister.
- Canisters, flow controllers, and pressure gauges were placed in the original shipping container and returned to the laboratory under COC.
- Soil vapour probe sampling ports were returned to the closed position and the wells were securely locked.

The vapour samples were submitted to ALS for chemical analysis. A duplicate sample was collected during the vapour sampling event for QA/QC purposes. More information on the analytical program is provided in Section 6.2.

The vapour monitoring well locations are shown on Figure 2.

6.2 Analytical Program

The analytical program for the vapour sampling is summarized below:

- VOCs.
- Matrix gases including oxygen, carbon dioxide, methane, and nitrogen.
- BTEX and PHCs.
- Siloxanes.

7.0 RESULTS AND DISCUSSION

This section presents the results of the fieldwork conducted in 2019 at GWAP and discussions of these results.

7.1 Groundwater Well Headspace Monitoring

Tetra Tech monitored five groundwater monitoring wells (MW-01 to MW-05) during each monitoring event for measurements of CVCs and VOC concentrations in well headspace using an RKI Eagle 2. The results of well headspace monitoring at vapour-specific monitoring wells are provided in Section 7.5.

During the June 2019 monitoring events, CVCs ranged from non-detect at MW-05 to 300 parts per million (ppm) at MW-03. VOCs were non-detect at most wells and measured 1 ppm at both MW-03 and MW-05. During the December 2019 monitoring event, CVCs ranged from 5 ppm at MW-04 and MW-05 to 35 ppm at MW-03. VOC concentrations were non-detect at all monitoring wells in December.

CVC measurements at up-gradient monitoring well MW-01 in June (45 ppm) and December (10 ppm) were less than the concentration measured in 2013 (155 ppm). The measured concentrations may be related to the screen of the well installed in fill material or due to equipment variability and are not necessarily be related to buried waste or environmental impacts.

The volatile and combustible headspace concentrations for 2019 are presented in Table 1. Methane measurements at the vapour wells are summarized in Section 7.5.

7.2 Groundwater Elevations

The measured groundwater levels and calculated groundwater elevations for 2019 are presented in Table 1.

Figure 3 presents the groundwater elevation trends (hydrographs) for the groundwater monitoring wells. Figure 3 shows that groundwater elevations decreased at all monitoring wells in 2019 from the groundwater elevations measured in 2013.

The average depth to groundwater in the monitoring wells was 2.59 mbg in June 2019 and 2.66 mbg in December 2019. The interpreted contoured elevations for the monitoring wells suggest the groundwater flow was to the northeast in June 2019 and December 2019. The groundwater elevations and contours and are shown on Figure 4 and Figure 5. The inferred groundwater flow in 2013 was also to the northeast (Tiamat 2014a).

The average horizontal gradients were 0.002 m/m in June 2019 and 0.001 m/m in December 2019.

7.3 Groundwater Field Parameters

Field measurements for pH, EC, and temperature in December 2019 are shown in Table 2. A discussion of the results of the field tests is summarized in this section.

Groundwater temperatures ranged from 2.49°C (MW-05) to 5.52°C (MW-02).

Field pH values ranged from 6.15 (MW-01) to 7.98 (MW-05). Field pH values were generally less than the laboratory pH values. The field pH at MW-01 (6.15) was less than the Tier 1 Guidelines range of 6.5 to 8.5.

In 2019, field EC measurements ranged from 753 µs/cm (MW-05) to 1,058 µs/cm (MW-02). Field EC results were generally less than the laboratory measured EC results and varied considerably, which may be due to differences in sample temperatures and limitations of field equipment.

7.4 Laboratory Results

The groundwater analytical data for 2019 is summarized in Table 2. The 2019 laboratory analytical reports are included in Appendix D.

Background Water Quality

MW-01 and MW-05 (up-gradient wells) were used to determine background groundwater quality.

In 2019, concentrations of TDS, chloride, dissolved iron, and dissolved manganese at the background wells were greater than the referenced guidelines. Concentrations of chloride, dissolved iron, and dissolved manganese at the site were greatest at up-gradient well MW-01. This may be due to the well screen being installed in sand fill material and suggest anoxic groundwater conditions. Elevated chloride concentrations are common in an urban setting due to the use of road salt. Manganese and iron concentrations greater than the Alberta Tier 1 Guidelines are also not necessarily an indication of groundwater quality impacts, unless other anthropogenic indicator parameters (e.g., petroleum hydrocarbons, solvents or other biodegradable compounds) are detected.

Concentrations of dissolved aluminum and various other dissolved metals exceeded the Alberta Tier 1 Guidelines at monitoring well MW-05 in 2019. The pH of the sample was near-neutral, and the elevated aluminum concentration suggests incomplete filtering of the sample occurred; therefore, the dissolved metal concentrations at MW-05 are likely not a proper reflection of in-situ concentrations or of environmental concern.

Routine Water Chemistry Parameters

In December 2019, TDS concentrations ranged from 765 mg/L (MW-05) to 965 mg/L (MW-02). TDS concentrations at all monitoring wells were greater than the Alberta Tier 1 Guidelines (500 mg/L). Historical analytical results are included in Appendix E.

Elevated TDS concentrations often occur in groundwater as a result of the dissolution of naturally occurring salts in the glacial tills of Alberta, and do not necessarily indicate groundwater quality impact related to the former operations at the site.

Chloride is often considered a useful parameter to assess groundwater quality impacts associated with landfills, as chloride is generally present in elevated concentrations in leachate and is a mobile and conservative (non-reactive) ion. Chloride does not enter into reactions as a non-reactive ion, does not adsorb significantly onto mineral surfaces, or form complexes with other ions. Chloride concentrations in 2019 were greater than Alberta Tier 1 Guidelines at all monitoring wells. Concentrations ranged from 141 mg/L at MW-05 to 267 mg/L at MW-01. MW-01 and MW-05 are both located up-gradient of the historical waste areas. Concentrations at these wells in 2013 were 40 mg/L (MW-01) and 210 mg/L (MW-05). In 2019, monitoring well MW-01 (up-gradient) had the greatest chloride concentration at the site. Given the age of the waste and the decades of leaching and attenuation, the chloride concentrations are not attributed to the former landfill and are more likely due to road salt use in the area.

Concentrations of ammonia at all wells were generally consistent with 2013 results and were all less than the Tier 1 Guidelines. Ammonia is used as a leachate indicator parameter and is often elevated in groundwater if there is impact from MSW landfill leachate. The measured ammonia concentrations do not indicate an obvious impact to groundwater quality. Concentrations ranged from less than the analytical detection limit at MW-04 to 0.338 mg-N/L at MW-02.

Concentrations of all other routine chemistry parameters were less than the Alberta Tier 1 Guidelines and were generally consistent with results obtained previously in 2013.

Dissolved Metals

Iron and manganese are redox-sensitive parameters that can help determine whether the groundwater quality is affected by biodegradation reactions, for instance related to landfill leachate. The biodegradation process leads to a low redox status, which will dissolve iron and manganese and iron oxides present in soil and increase concentrations in groundwater. The dissolved iron and dissolved manganese concentrations were greater than the Alberta Tier 1 Guidelines at most monitoring wells during the sampling event in 2019, except for monitoring well MW-04 (down-gradient). Dissolved iron and manganese concentrations were not analyzed at MW-01 and MW-02 in 2013, but concentrations at the other wells were consistent with historical results.

Up-gradient monitoring wells MW-01 and MW-05 contained concentrations of dissolved iron and manganese greater than the Alberta Tier 1 Guidelines. These wells are not anticipated to be affected by biodegradation associated with landfill leachate, and the dissolved manganese and iron concentrations are interpreted to be related to natural groundwater conditions.

Concentrations of dissolved boron, which is often present in landfill leachate, were at an order of magnitude less than the guideline for all monitoring wells in 2019.

Concentrations of dissolved arsenic and dissolved cadmium were greater than the Alberta Tier 1 Guidelines at MW-02 (down-gradient). Arsenic is known to be strongly adsorbed onto iron(hydr)oxides, and when manganese and iron dissolve, arsenic will also go into solution (Hem 1992). The concentrations of arsenic are likely correlated to the presence of dissolved iron. Dissolved arsenic and cadmium were not previously analyzed at MW-02;

however, the concentration of dissolved arsenic at MW-03 (adjacent to waste footprint) in 2013 was greater than the current Tier 1 Guidelines (0.005 mg/L). The concentrations of dissolved cadmium at MW-03, MW-04, and MW-05 in 2013 ranged from 0.029 mg/L (MW-05) to 0.058 mg/L (MW-04) and were greater than the 2019 Tier 1 Guidelines (0.00037 mg/L).

Dissolved selenium concentrations greater than the Tier 1 Guidelines (0.002 mg/L) were measured at MW-04 and MW-05 (down-gradient and up-gradient, respectively) in 2019. The dissolved selenium concentrations were consistent with historical results and may be naturally occurring. The measured concentrations are in the same order of magnitude at the Tier 1 Guidelines and not necessarily of concern.

Organic Parameters

Concentrations of BTEX, PHC fractions F1 and F2, AOX, volatile fatty/carboxylic acids, and VOCs were less than the analytical detection limits at all locations (and corresponding guidelines), which is consistent with historical results.

7.5 Vapour Monitoring Results

The soil vapour monitoring results are presented in Table 3.

Pressures at vapour well VW-01 and VW-02 were negligible during at both monitoring events in 2019.

Concentrations of methane and carbon monoxide were less than the instrument detection limits in 2019. Concentrations of carbon dioxide, oxygen, and the balance gas were consistent during the four monitoring events. The vapour wells were dry in 2019 indicating the wells were not blinded.

7.6 Vapour Analytical Results

Table 4 summarizes the soil vapour chemical results collected for 2019 and compares them to the soil vapour screening criteria protective of vapour intrusion into indoor air. The 2019 laboratory analytical reports are included in Appendix D.

BTEX and PHC fractions F1 and F2 (parameters with a TRV for inhalation) were compared against the screening criteria for residential land use for coarse-grained soil. BTEX, and/or PHC aliphatic and aromatic fractions that comprise F1 and F2 were detected at concentrations greater than the analytical detection limits in samples VW-01, 19DUP01 (duplicate of VW01), and VW-02. However, soil vapour concentrations were between 21 and 60,800 times less than the soil vapour screening criteria, which are protective of vapour intrusion into indoor air.

Siloxanes do not have TRVs for inhalation and were, therefore, not compared against the vapour screening criteria. Concentrations of dodecamethylcyclohexasiloxane and dodecamethylpentasiloxane in sample VW-02 were detected greater than the analytical detection limit but do not appear to be significant as the results were less than five times the detection limit. Siloxanes were not detected at concentrations greater than the analytical detection limits in VW-01.

Naphthalene was not detected at concentrations greater than the analytical detection limit.

Methane concentrations were measured at a maximum concentration of 13.5 ppm (VW-01). VOCs (parameters with a TRV for inhalation) were compared against the screening criteria for residential land use, coarse-grained soil. Several parameters were detected greater than the analytical detection limits in samples VW-01, VW-02, and 19DUP01. However, soil vapour concentrations were between 16 and 41,000 times less than the soil vapour screening criteria, which are protective of vapour intrusion into indoor air.

Further discussion and recommendations regarding the vapour monitoring network are provided in Section 9.0.

7.7 Quality Assurance/Quality Control Methods

7.7.1 Methods

Tetra Tech's QA/QC procedures include reviewing the data collected for precision and accuracy and following the appropriate field protocols.

The field procedures for QA/QC involved:

- Changing nitrile gloves between sample collections;
- Using sample containers provided by the laboratory;
- Cleaning monitoring and sampling tools between sample locations;
- Filling sample containers for PHC analysis with no headspace (air) when the containers were closed;
- Collecting a duplicate vapour sample during the sampling program; and
- Documenting field procedures and sampling activities.

7.7.2 Results

The QA/QC results are included in Table 5. The duplicate sample was submitted for analysis of the same parameters as the original sample.

The duplicate analysis is compared by relative percent difference (RPD). The RPD is calculated using the following equation:

$$RPD = -\frac{(V_1 - V_2)}{\frac{(V_1 + V_2)}{2}} * 100\%$$

Where:

V₁ = Parent Sample

V₂ = Duplicate Sample

Chemical parameters were considered as having passed the QA/QC reproducibility procedure if the RPD was less than or equal to 20%, indicating a close correlation between the sample-duplicate pair.

RPD values were not calculated if one or both of the sample-duplicate concentrations were between the reportable detection limit (RDL) and five times the RDL. In these cases, chemical parameters were still considered as having passed the QA/QC reproducibility procedure if the sample duplicate concentration difference was less than one RDL value.

Duplicate RPDs were less than 20% for all the reportable concentrations. Based on the QA/QC results, the sample methods and results are considered acceptable.

8.0 HAZARD QUOTIENT CALCULATIONS

Using the soil vapour screening levels described above and the soil vapour sampling results, estimated cancer risks (for carcinogens) and estimated hazard quotients (for non-carcinogens) were calculated for the site.

Estimated risks were calculated by dividing the soil vapour concentration by the corresponding soil vapour screening level for carcinogenic effects and multiplying the ratio by the target risk level of 1 x 10⁻⁵. Similarly, the estimated hazard quotients (HQ) represent the soil vapour concentration divided by the corresponding soil vapour screening level for non-carcinogenic effects.

Risk estimates for non-carcinogenic COPCs are defined as HQ. Hazard quotients are calculated based on a ratio of the estimated exposure and the toxicity reference values identified as the tolerable daily intake (TDI) or tolerable concentration (TC) according to the following equation:

Non-carcinogenic risk characterization in the assessment was completed for all COPCs.

When the HQ is greater than the target risk value, the scenario poses a potential concern and requires further evaluation or risk management. It is important to note that HQs greater than the target risk value do not necessarily indicate that adverse health effects will occur. This is because of the conservative assumptions used in estimating concentrations and in setting the target values. HQ that are less than the target risk value indicate that exposure is within acceptable levels and no further risk management is necessary. HQ greater than the target risk value suggest that further investigation or risk management (e.g., remediation) may be warranted.

For non-carcinogens, the cumulative target risk value used was 1.0. This target risk value accounts for additional exposure to the chemicals of concern from sources other than the site. Therefore, the cumulative target risk value of 1.0 represents an allocation of 20% of a person's daily exposure from site sources and the remaining 80% would come from other sources. Other sources of exposure include ambient air, household products, and soil and water contact from locations other than the site.

For carcinogens, the risk of cancer is assumed to be proportional to dose with the assumption that any exposure results in a nonzero probability of risk. Carcinogenic risk probabilities were calculated by multiplying the estimated exposure level by the route-specific cancer slope factor (SF) or unit risk factor (URF) for each carcinogen:

$$R = EXSF (or URF)$$

Where:

R = Estimated individual excess lifetime cancer risk;

E = Exposure level for each chemical of potential concern (mg/kg/day or mg/m³); and

SF = Route- and chemical-specific SF (mg/kg/day)⁻¹ or URF ((mg/m³)⁻¹).

Risk probabilities determined for each carcinogen were also considered to be additive over all exposure pathways so that an overall risk of cancer was estimated for each group of potentially exposed receptors.

When assessing risks posed by exposure to carcinogenic substances, Health Canada and other regulatory agencies assume that any level of exposure is associated with some hypothetical cancer risk. As a result, it is necessary for regulatory agencies to specify an acceptable risk level. Per Health Canada guidance (2010a, 2010b),

cancer risks are deemed essentially negligible where the estimated cumulative incremental lifetime cancer risk is less than or equal to 1 in $100,000 (1 \times 10^{-5})$.

For this evaluation, target risk and hazard levels were determined in accordance with Alberta Tier 2 Guidelines. For carcinogens, the cumulative target risk level is 1 x 10⁻⁵, as this value is considered by Health Canada to represent a negligible risk. For non-carcinogens a cumulative target hazard level of 1 is used as potential exposures that result in hazard indices equal to or less than 1 signify negligible potential for adverse health effects. Each sampling location was screened individually for every chemical detected.

The cumulative risk levels for carcinogens in the samples collected ranged between 4.9×10^{-7} and 6.3×10^{-7} . The cumulative hazard levels identified in the samples collected for the non-carcinogens ranged between 0.004 and 0.024. Table 6 summarizes the properties of the compounds being assessed. Table 7 summarizes the soil properties used for the calculations. Table 8 summarizes the building properties used for the calculations, and Table 9 presents the generic soil vapour criteria calculated. Table 10 presents the estimated risk and hazard for the volatile compounds that were detected in soil vapour.

As shown in Table 10, the estimated cumulative risks and hazards associated with the soil vapour samples collected in December 2019 did not exceed the corresponding target risk and hazard levels in any of the samples collected.

9.0 EVALUATION OF SITE CONDITIONS

9.1 Summary of Site Conditions

Based on the 2019 and historical data for the site, there is no evidence that there are significant concerns related to the former landfill operations at GWAP. However, the site does contain buried landfill waste and some risk management measures are required. Further, there are several elements of the site assessment data requiring further confirmation as detailed below.

MW-02, situated hydraulically down-gradient from the site, contained concentrations of dissolved arsenic and cadmium greater than the referenced guideline. It is recommended to collect an additional groundwater sample from MW-02 in 2020 to confirm the concentrations of dissolved arsenic and cadmium, as they may be related to the presence of landfill leachate. If the concentrations measured in 2019 are confirmed and remain greater than the referenced guidelines, a qualitative evaluation of risks should be made to evaluate the potential concern, if any, these concentrations pose to the adjacent Red Deer River.

Water well searches identified that there may be a water well at the site, owned by the Red Deer BMX club. The current status of this well is not known, and further recommendations are presented in Section 10.0 to confirm the well's purpose and current use, if any. Based on that information, further recommendations may be required to limit well use.

The previous Phase II ESA recommended evaluating if surface water samples from the Red Deer River would be valuable to assess potential impacts from site groundwater on the river water quality. Based on the concentrations measured in the groundwater samples, surface water samples are not recommended. Due to the high volume of water flowing in the Red Deer River (a year-around average of approximately 75 m³/s²), leaching of groundwater from the site would have little to no appreciable effect on the river water quality. Similarly, the ERMP recommended determining whether the WTP is susceptible to impact from the site, and if so, reviewing the results of the site work with the WTP. Due to the high flow rate in the Red Deer River, appreciable impacts to the river quality are not

² Alberta River Basins. Rivers.alberta.ca.

expected, and subsequently no impacts would be expected to the WTP, located across the river to the northeast, either via river flow or via migration through gravel deposits beneath the riverbed.

Based on the soil vapour results, there are no obvious concerns at the locations sampled. However, vapour well VW-02 in particular provides limited value, as it is located away from the areas of historical waste disposal and there is presently no vapour well in the vicinity of the Riverbend Village apartments. The Phase II ESA provided recommendations for additional assessment proximate to the Riverbend Village apartments. Based on the borehole logs of TH-19 and TH-20 from the Phase II ESA (located south of the Apartments), minimal waste was observed in the boreholes, consisting of mostly glass and wood fragments within soil fill. Although a PHC odour was noted, the results of the soil sample collected from the identified odorous portion contained concentrations of PHCs and VOCs considerably less than guidelines. At the groundwater monitoring well installed hydraulically down-gradient of this site area (MW-04), the inferred redox conditions were oxic; concentrations of leachate indicator parameters (including ammonia, dissolved boron, and PHC parameters) did not indicate obvious concerns, and VOCs were not detected. The available data does not suggest there is a significant concern with regards to soil vapours in this area of the site, however, for due diligence, based on the presence of buried waste and proximity of the apartments, confirmation of soil vapour concentrations in this site area is recommended with an additional vapour monitoring probe (refer to Section 10.0).

9.2 Review of Mitigative Measures from Risk Management Plan

The 2014 RMP presented a proposed site-specific environmental risk management plan as a tool to assist with the review of future subdivision applications on lands lying within the regulated setback distance from the site (300 m). The focus was on potential ingress of soil gas for COPCs with a HQ greater than 1.0. Residential land use was considered most sensitive, and exposure ratings for other land uses (e.g., school, public institutions, commercial complexes) were considered to not be greater than residential; however, unique exceptions would have to be reviewed and addressed on a site-specific basis (Tiamat, 2014). Further, underground utility workers and subsurface utility infrastructure were considered relevant to potential exposure.

The 2014 RMP applied a 10x factor of safety to the HQ to address uncertainties. Hazard quotients from the RMP ranged up to 566 (including the 10x factor of safety). Based on these, the RMP then provided recommended generic mitigative measures based on the calculated HQs, ranging from passive to active measures, recognizing that the ultimate approach would require a design professional for the proposed development.

Following the 2014 RMP, CCME released the document "A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures Via Inhalation of Vapours" (CCME 2014), designed to provide guidance for developing site-appropriate soil vapour quality guidelines. The guidelines developed using the methods outlined in the CCME document were used for this current study, and are included with the vapour sampling results in Table 4. Hazard quotients were calculated using estimated dose (based on concentrations measured at the site) and divided by tolerable daily intake. Soil vapour concentrations from the Phase II ESA conducted in 2013 were not compared to soil vapour quality guidelines, however spot checks of five target compounds with the highest HQs in the 2013 work (benzene, tetrachloroethylene, chloromethane, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene) identified that none of the 2013 concentrations would have unacceptable HQs using the updated CCME methodology.

The 2014 RMP was prepared concurrent to RMPs at several other former City landfills, and a common set of mitigative measures was applied based on the HQs. Subsequent to the 2014 RMP and to the release of the CCME Protocol document, The City undertook additional assessment at another former City Landfill (Montfort); as part of that work, their consultant XCG Consulting Limited (XCG) revised the 2014 RMP criteria ranges for each generic mitigative measure category to include a Cancer Risk range to allow comparison of the 2014 RMP ranges with the

HQ and Cancer Risks calculated by XCG³. From that work, XCG identified the following generic mitigative measures for developments within a 300 m setback of these landfills (based on Tiamat, 2014), and these have been adopted for this site:

Passive Measures

- 1. Passive Measures Level A: for Cancer Risk of > 1E⁻⁵ and < 5E⁻⁵ and/or HQ >0.2 and <1
 - Compacted clay liner with a minimum thickness of 1m and confirmed maximum hydraulic conductivity of 10⁻⁶ cm/sec.
- 2. Passive Measures Level B: for Cancer Risk of > 5E-5 and < 5E-4 and/or HQ > 1 and < 5.
 - Synthetic liner with type of material, thickness and installation details dependent on the design professional.
- 3. Passive Measures Level C: for Cancer Risk of > 5E-4 and < 1E-3 and/or HQ > 5 and < 50.

Passive sub-slab depressurization (SSD) system with a minimum depressurization of 4 to 10 Pa. In some instances (such as a pervious subgrade), the actual depressurization necessary may require an active SSD or alternative active ventilation system.

Active Measures

Field verify the presence of the identified chemicals of concern and other potential chemicals in the soil gas state at the development site. If confirmed, determine the most appropriate manner to prevent soil vapour intrusion.

- 1. Active Measures Level D: for Cancer Risk of > 1E⁻³ and < 2E⁻³ and/or HQ values >50 and <100.
 - Active SSD must be configured to compensate for depressurization of the building and have adequate negative pressure gradients across the entire footprint of the foundation.
- 2. Active Measures Level E: for Cancer Risk of >2E-3 and/or HQ values >100.

Installation of geomembrane and active soil vapour extraction with system fault notification alarm.

Based on the 2019 program, the greatest hazard quotient calculated for the site was 0.008 (vs target hazard level of 0.2) and the greatest estimated cancer risk was 6.3 x 10⁻⁷ (vs target Risk of 1.0 x 10⁻⁵). While development at the site is not currently proposed, for illustrative purposes, based on these HQ and cancer risk levels calculated from the 2019 vapour data no passive or active measures would be required for the site. It is noted that even if the 10x factor of safety is applied, mitigative measures would still not be required. It should also be notes that assumptions made in the calculations of hazard quotients and cancer risk above are inherently conservative and therefore applying a factor of safety is not needed.

Future applications for development within the setback are subject to review by The City. The developer's team would be responsible for reviewing and verifying the available data relative to their proposed development. The mitigative measures presented above are generic and can be used as a general guide for expectations by The City; ultimately, the developer's design engineer would be responsible for developing measures specific to the intended development based on the above or an appropriate equivalent. Protection of workers (e.g. construction and utility) should form part of any development plan.

³ XCG Consulting Limited, 2018. Vapour Intrusion Assessment and Environmental Monitoring Report, prepared for The City of Red Deer's Montfort Landfill.

10.0 CONCLUSIONS AND RECOMMENDATIONS

Based upon the work conducted at the site, Tetra Tech has developed the following conclusions:

- The groundwater elevations in 2019 indicated that the inferred groundwater flow direction was to the northeast. The average horizontal hydraulic gradients at the site were 0.002 m/m in June 2019 and 0.001 m/m in December 2019. This is consistent with observations made historically. Groundwater elevations in 2019 were overall slightly lower than groundwater elevations measured previously in 2013.
- Routine groundwater chemistry parameters and dissolved metals concentrations that exceeded the Alberta Tier 1 Guidelines at one or more monitoring wells in 2019 included TDS, chloride, aluminum, arsenic, cadmium, copper, iron, manganese, and selenium. The measured concentrations of these parameters were generally consistent with previous results and background/up-gradient concentrations and may reflect natural groundwater quality or may be elevated due to inadequate filtration. Possible exceptions are the dissolved metal concentrations at MW-02, in particular cadmium and arsenic.
- During the 2019 sampling events, chloride concentrations greater than the Alberta Tier 1 Guidelines (120 mg/L) were measured at all monitoring wells. Chloride concentrations at most wells have increased since the 2013 sampling event. Chloride concentrations were greatest at up-gradient well MW-01 and are likely due to road salt use in the area, and are not interpreted to be related to landfill impacts.
- Concentrations of BTEX, PHC fractions F1 to F2, AOX, volatile fatty/carboxylic acids, and VOCs in 2019 were less than the analytical detection limits at all monitoring wells.
- Concentrations of BTEX, hydrocarbons, and VOCs in all soil vapour samples were less than the soil vapour screening criteria.
- Siloxanes were detected in sample VW-02 greater than the laboratory detection limit; however, there are no screening criteria for these compounds and the concentrations are not identified as a concern.
- The estimated individual and cumulative risks and hazards associated with the soil vapour samples collected in December 2019 did not exceed the corresponding target risk and hazard levels.
- The previous Phase II ESA recommended evaluating if surface water samples from the Red Deer River would be valuable to assess potential impacts from site groundwater on the river water quality. Based on the concentrations measured in the groundwater samples, surface water samples are not recommended. Due to the high volume of water flowing in the Red Deer River (a year-around average of approximately 75 m³/s⁴), leaching of groundwater from the site would have little to no appreciable effect on the river water quality. Similarly, the ERMP recommended determining whether the WTP is susceptible to impact from the site, and if so, reviewing the results of the site work with the WTP. Due to the high flow rate in the Red Deer River, appreciable impacts to the river quality are not expected, and subsequently no impacts would be expected to the WTP, located across the river to the northeast, either via river flow or via migration through gravel deposits beneath the riverbed.

Based upon the results of the groundwater and vapour monitoring program in 2019, there are no clear indications of significant impacts related to the former landfill operations at most monitoring well locations. However, there appear to be residual impacts in the groundwater and buried landfill waste remains in place beneath the site, therefore ongoing risk management is required. Risk management is recommended to include: additional assessment; ongoing monitoring; and administrative actions. The following recommendations are made according to these risk management elements:

TETRA TECH

⁴ Alberta River Basins. Rivers.alberta.ca.

Additional Assessment

- Available data does not suggest there is a significant concern with regards to soil vapours in the vicinity of the Riverbend Village apartments. However for due diligence, based on the presence of buried waste and proximity of the apartments, confirmation of soil vapour concentrations in this site area is recommended with installation of one additional vapour monitoring probe between the waste footprint and the apartments.
- Determine the status of the Red Deer BMX club water well located at the site. Confirm if the water well is being used, the purpose of the well, and the water quality. If water quality information is not available, a groundwater sample is recommended to be obtained as identified below.

Ongoing Monitoring

- Conduct an additional groundwater monitoring and sampling event in 2020 to confirm dissolved metals concentrations at MW-02.
 - The event should include water levels at all wells.
 - Sampling should include routine water chemistry and dissolved metals at MW-02. If the concentrations of dissolved arsenic and cadmium at MW-02 are less than guidelines and indicate the 2019 results were anomalous, Tetra Tech recommends discontinuing the groundwater monitoring and sampling activities at the site. If the concentrations are confirmed and remain greater that the referenced guidelines, a qualitative evaluation of risks should be made to evaluate the potential concern, if any, these concentrations pose to the adjacent Red Deer River.
- If the Red Deer BMX club well exists and can be monitored/sampled, include it in the proposed monitoring event for water levels. If chemistry data is not available, include sampling of the BMX club well in the proposed event.
- Upon installation of the proposed vapour probe proximate to the Riverbend Village apartments, conduct one round of well monitoring to focus on the potential presence of landfill gas. The monitoring is proposed to include the headspaces of all gas and water wells for methane using a GEM monitor. The potential requirement for analytical testing at this new well would be determined based on the results of the monitoring, should indications of elevated methane be noted.

Administrative Actions

- Utilize the revised generic mitigative measures when evaluating applications for development within the setback.
- Ensure that the site is clearly identified within the City's Land Use Bylaw and appropriate administrative requirements are met for the site in accordance with City policies.

Further to the above recommendations, as noted the site remains an historical landfill. It presently appears to be well maintained and capped. The City should review this status on an ongoing basis to ensure that the cover remains intact and drainage remains positive; repairs or maintenance should be undertaken as required to maintain the site.

11.0 CLOSURE

We trust this report meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted, Tetra Tech Canada Inc.

> FILE: SWM.SWOP04071-01.001 FILE: SWM.SWOP04071-01.001

Prepared by:

Megan Rouse, B.Sc., G.I.T.

Environmental Geologist-in-Training Environment and Water Practice Direct Line: 403.723.6929 Megan.Rouse@tetratech.com

> FILE: SWM 970904071-01.001 FILE: SWM. 9WOP04071-01.001 FILE: SWM. 9WOP04071-01.001

Reviewed by:

Frans Hettinga, B.Sc. Principal Specialist

Solid Waste Management Practice

Direct Line: 403.723.6860 Frans.Hettinga@tetratech.com

FILE: SVAVI.SVI

Reviewed by:

Sean D. Buckles, M.Sc., P.Eng²9²⁰⁻⁹7⁻²⁷ Senior Project Engineer- Team Lead Solid Waste Management Practice

Direct Line: 403.723.6876 Sean.Buckles@tetratech.com

/dm/sy

FILE: SWM.SWOP04071-01.001 FILE: SWM.SWOP04071-01.001 FILE: SWM.SWOP04071-01.001

Prepared by (Soil Vapour): Kelly Jones, B.Sc. Environmental Scientist Infrastructure and Environment

Direct Line: 306.347.4039 Kelly.Jones@tetratech.com

Reviewed by (Soil Vapour): Theresa Lopez, MSPH Senior Toxicologist

WTR – USA

Direct Line: 720.235.5521 Theresa.Lopez@tetratech.com

PERMIT TO PRACTICE TETRA TECH CANADA INC.

FILE: SWM.SWOP04071-01.00

RM SIGNATURE: _

RM APEGA ID #: 62764

DATE: _____2020-07-27

PERMIT NUMBER: P013774

The Association of Professional Engineers and Geoscientists of Alberta (APEGA)

REFERENCES

- Alberta Environment and Parks. 2019a. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 198 pp.
- Alberta Environment and Parks. 2019b. Water Well Database. Information obtained included in Appendix C. http://www.telusgeomatics.com/tgpub/ag water/.
- Alberta Environment and Parks. 2019c. Alberta Tier 2 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 150 pp.
- Alberta Geological Survey. 2019. Alberta Geological Survey Map 600, Bedrock Geology of Alberta. June 2013. http://www.ags.aer.ca.
- Andriashek, L. comp. 2018. Thalwegs of Bedrock Valleys, Alberta (GIS data, line features); Alberta Energy Regulator, AER/AGS Digital Data 2018-0001.
- Canadian Council of Ministers of the Environment. 2014. A Protocol for the Derivation of Soil Vapour Quality Guidelines for Exposure Protection of Human Exposures via Inhalation of Vapours. Available online: http://ceqg-rcqe.ccme.ca/en/index.html#void.
- Canadian Council of Ministers of the Environment. 2016. Guidance Manual for Environmental Site Characterization in Support of Environmental and Human Health Risk Assessment. Volume 1 Guidance Manual.
- Health Canada. 2012. Federal Contaminated Site Risk Assessment in Canada, Part I Guidance on Human Health Preliminary Quantitative Risk Assessment (PQRA), version 2.0.
- Hem, J.D. 1992. Study and Interpretation of the Chemical Characteristics of Natural Water U.S. Geological Survey, Water Supply Paper 2254.
- Natural Resources Canada. 2019. The Atlas of Canada, Topographic Maps. http://atlas.gc.ca/toporama/en/index.html.
- Tiamat Environmental Consultants Ltd. 2013. Phase I Environmental Site Assessment, Historic Waste Disposal Site, Great West Adventure Park, The City of Red Deer. September 24, 2013.
- Tiamat Environmental Consultants Ltd. 2014a. Phase II Environmental Site Assessment, Historic Waste Disposal Site, Great West Adventure Park, The City of Red Deer. February 12, 2014.
- Tiamat Environmental Consultants Ltd. 2014b. Environmental Risk Management Plan, Historic Waste Disposal Sites, Great West Adventure Park, The City of Red Deer. December 3, 2014.
- Tetra Tech Canada. January 11, 2019. Proposal for Environmental Monitoring Services for Pre 1972 Landfill Sites. The City of Red Deer. RFP No. 1090-2018-26. January 11, 2019.
- The City of Red Deer. 2019. WebMap. http://webmap.reddeer.ca/webmap/.
- XCG Consultants Ltd. 2018. Vapour Intrusion Assessment and Environmental Monitoring Report, Montfort Landfill, Red Deer, Alberta. April 23, 2018.

TABLES

Table 1	Groundwater Elevations
Table 2	Groundwater Analytical Results
Table 3	Soil Vapour Monitoring Results
Table 4	Soil Vapour Analytical Results
Table 5	Soil Vapour Quality Assurance/Quality Control Analytical Results
Table 6	Chemical, Physical, and Toxicological Properties
Table 7	Soil Properties for Evaluation of Vapour Transport
Table 8	Building Properties for Evaluation of Vapour Transport
Table 9	Generic Soil Vapour Criteria
Table 10	Soil Vapour Risk Evaluation

Table 1: Groundwater Elevations

Monitoring Well	MW-01	MW-02	MW-03	MW-04	MW-05	
Total Drilled Depth (m)		4.3	4.3	3.7	4.4	5.5
Top of Screened Interval (mbg)		1.3	1.3	1.0	1.4	2.5
Bottom of Screened Interval (mbg)		4.3	4.3	3.7	4.4	5.5
Stick up (m)	0.86	-0.08	0.99	0.73	0.83	
Ground Elevation (m)	853.81	852.77	852.75	852.76	854.31	
TPC Elevation (m)	854.67	852.68	853.74	853.48	855.13	
Depth to Groundwater (mBTPC)	Aug-13	1.99	2.00	1.51	2.61	3.34
	Jun-19	3.51	2.28	2.98	3.25	4.23
	Dec-19	3.76	2.36	3.18	3.10	4.22
Groundwater Elevation (m)	Aug-13	852.68	850.68	852.23	850.87	851.79
	Jun-19	851.16	850.40	850.76	850.24	850.91
	Dec-19	850.91	850.33	850.56	850.38	850.92
Combustible Vapour	Jun-19	45	270	300	115	0
Concentrations* (CVCs) (ppm)	Dec-19	10	10	35	5	5
Volatile Organic Compounds*	Jun-19	0	0	1	0	1
(VOCs) (ppm)	Dec-19	0	0	0	0	0

Notes:

mbg - metres below grade.

mBTPC - Metres below top of plastic pipe casing.

^{*} Measured using an RKI Eagle II calibrated to hexane and isobutylene operated in methane-elimination mode.

Table 2: Groundwater Analytical Results

		Location Code	MW-01	MW-02	MW-03	MW-04	MW-05
		Sample Date	5-Dec-2019	5-Dec-2019	5-Dec-2019	5-Dec-2019	5-Dec-2019
		Lab Report Number	L2393423	L2393423	L2393423	L2393423	L2393423
		Laboratory ID	L2393423-1	L2393423-2	L2393423-3	L2393423-4	L2393423-5
Parameter	Unit	Tier 1 Guideline 1,2					
Field Testing							
Field Temperature	°C	_	4.25	5.52	3.82	4.03	2.44
Field Electric Conductivity	μS/cm	-	757	1,058	957	846	753
Field Hydrocarbon Vapour	ppm	-	10	10	35	5	5
Field Organic Vapour	ppm	-	0	0	0	0	0
Field pH	pH Units	6.5 to 8.5	6.15	7.68	7.37	7.32	7.98
Routine							
ρΗ	pH Units	6.5 to 8.5	7.62	7.72	7.71	7.68	7.76
Electrical Conductivity (EC)	μS/cm	-	1,590	1,590	1,560	1,290	1,220
Total Dissolved Solids (TDS)	mg/L	500	923	965	951	823	765
Hardness as CaCO ₃	mg/L	-	611	638	635	581	512
Alkalinity (total as CaCO ₃)	mg/L	-	427	560	520	441	492
Bicarbonate	mg/L	-	521	683	634	538	600
Carbonate	mg/L	-	<5.0	<5.0	<5.0	<5.0	<5.0
Hydroxide	mg/L	-	<5.0	<5.0	<5.0	<5.0	<5.0
Calcium	mg/L	-	173	177	178	166	144
Magnesium	mg/L	-	43.4	47.7	46.3	40.4	37
Potassium	mg/L		4.04	4.85	4.34	4.17	4.27
Sodium	mg/L	200	114	112	114	96.9	101
Chloride	mg/L	120	267	233	234	162	141
Fluoride	mg/L	1.5	<0.10	<0.10	<0.10	<0.10	<0.10
Phosphorus - Total	mg/L	-	1.27	12.5	4.26	1.33	6.69
Sulphate	mg/L	429 ³	65.1	54.6	62.8	87.5	42.7
onic Balance	N/A	-	99.2	94.1	97.1	105	100
Nutrients				1	1		
Ammonia as N	mg/L	1.28 to 110 ⁶	0.231	0.338	0.174	<0.050	0.082
Nitrate (as NO ₃ -N)	mg/L	3	<0.10	<0.10	<0.10	0.24	<0.10
Nitrite (as NO ₂ -N)	mg/L	0.204	<0.050	<0.050	<0.050	<0.050	<0.050
Nitrate and Nitrite (as N)	mg/L	-	<0.11	<0.11	<0.11	0.24	<0.11
Total Kjeldahl Nitrogen (TKN)	mg/L	-	3.1	40.9	5.1	2.3	11.3
Carbon			0.0	7.0	0.0	4.0	
Dissolved Organic Carbon (DOC) Dissolved Metals	mg/L	-	9.9	7.8	6.9	4.0	5.3
Aluminum	mg/L	0.026 to 0.050 ⁵	0.0112	0.0157	<0.0050	0.0024	0.248
Antimony	mg/L	0.026 to 0.050	<0.00050	<0.0050	<0.0050	0.0024	0.00021
Arsenic	mg/L	0.005	0.00208	0.00679	0.00415	0.00011	0.00021
Barium	mg/L	1	0.224	0.257	0.239	0.122	0.151
Boron	mg/L	1.5	0.057	0.067	0.157	0.091	0.052
Cadmium	mg/L	0.00037 ³	0.000049	0.00377	0.000035	0.00012	0.00219
Chromium	mg/L	0.05	<0.00050	<0.00050	<0.00050	<0.00010	0.00067
Copper	mg/L	0.007	<0.0010	<0.0010	<0.0010	0.00277	0.00823
ron	mg/L	0.3	7.59	6.80	4.52	<0.010	0.45
Lead	mg/L	0.0070 ³	<0.00025	<0.00025	<0.00025	0.000066	0.000738
Manganese	mg/L	0.05	1.96	1.56	0.822	0.00576	0.0975
Mercury Nickel	mg/L	0.000005	<0.0000050	<0.0000050	<0.0000050	<0.000050	<0.0000050
	mg/L	0.208 to 0.249 ³	0.0082	0.0064	0.0042	0.00195	0.00327
Selenium Silver	mg/L	0.002 0.0001	<0.00025 <0.000050	<0.00025 <0.000050	<0.00025 <0.000050	0.00357 <0.000010	0.00273 < 0.000010
Jranium	mg/L mg/L	0.0001	0.00449	0.00243	0.00205	0.00351	0.00436
Zinc	mg/L	0.013	<0.0050	0.00243	<0.0050	0.00331	0.00430
Organics	g. =						
AOX	mg/L	-	ND	ND	ND	ND	ND
Hydrocarbons							
Benzene	mg/L	0.005	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Foluene	mg/L	0.021	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Ethylbenzene	mg/L	0.0016	<0.00050 <0.00050	<0.00050 <0.00050	<0.00050 <0.00050	<0.00050 <0.00050	<0.00050 <0.00050
	ma/l		~0.00030		<0.00050	<0.00050	<0.00050
(ylenes (m & p)	mg/L mg/l	+	<0.00050	<0.00050	SU UUUSU		
Kylenes (m & p) Kylene (o)	mg/L	- 0.02	<0.00050 <0.00071	<0.00050 <0.00071	<0.00050	<0.00071	<0.00071
Kylenes (m & p) Kylene (o) Kylenes Total		-	<0.00050 <0.00071 <0.00050	<0.00050 <0.00071 <0.00050			
Kylenes (m & p) Kylene (o) Kylenes Total Styrene	mg/L mg/L	0.02	<0.00071	<0.00071	<0.00071	<0.00071	<0.00071
Xylenes (m & p) Xylene (o) Xylenes Total Styrene =1 (C ₆ -C ₁₀)	mg/L mg/L mg/L mg/L	0.02 0.072	<0.00071 <0.00050 <0.10	<0.00071 <0.00050 <0.10	<0.00071 <0.00050 <0.10	<0.00071 <0.00050 <0.10	<0.00071 <0.00050 <0.10
Kylenes (m & p) Kylene (o) Kylenes Total Styrene F1 (C ₆ -C ₁₀) F1 (C ₆ -C ₁₀) - BTEX	mg/L mg/L mg/L mg/L mg/L	- 0.02 0.072 - 0.81	<0.00071 <0.00050 <0.10 <0.10	<0.00071 <0.00050 <0.10 <0.10	<0.00071 <0.00050 <0.10 <0.10	<0.00071 <0.00050 <0.10 <0.10	<0.00071 <0.00050 <0.10 <0.10
Xylenes (m & p) Xylene (o) Xylenes Total Styrene F1 (C ₆ -C ₁₀) F1 (C ₆ -C ₁₀) - BTEX F2 (C ₁₀ -C ₁₆)	mg/L mg/L mg/L mg/L	0.02 0.072	<0.00071 <0.00050 <0.10	<0.00071 <0.00050 <0.10	<0.00071 <0.00050 <0.10	<0.00071 <0.00050 <0.10	<0.00071 <0.00050 <0.10
Kylenes (m & p) Kylene (o) Kylenes Total Styrene F1 (C ₆ -C ₁₀) F1 (C ₆ -C ₁₀) - BTEX F2 (C ₁₀ -C ₁₆) Volatile Fatty/Carboxylic Acids	mg/L mg/L mg/L mg/L mg/L mg/L	- 0.02 0.072 - 0.81 1.1	<0.00071 <0.00050 <0.10 <0.10	<0.00071 <0.00050 <0.10 <0.10	<0.00071 <0.00050 <0.10 <0.10 <0.10	<0.00071 <0.00050 <0.10 <0.10 <0.10	<0.00071 <0.00050 <0.10 <0.10
Kylenes (m & p) Kylene (o) Kylenes Total Styrene F1 (C ₆ -C ₁₀) F1 (C ₆ -C ₁₀) - BTEX F2 (C ₁₀ -C ₁₆) Volatile Fatty/Carboxylic Acids Acetic Acid	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	- 0.02 0.072 - 0.81	<0.00071 <0.00050 <0.10 <0.10 <0.10	<0.00071 <0.00050 <0.10 <0.10 <0.10	<0.00071 <0.00050 <0.10 <0.10	<0.00071 <0.00050 <0.10 <0.10	<0.00071 <0.00050 <0.10 <0.10 <0.10
Xylenes (m & p) Xylene (o) Xylenes Total Styrene	mg/L mg/L mg/L mg/L mg/L mg/L	- 0.02 0.072 - 0.81 1.1	<0.00071 <0.00050 <0.10 <0.10 <0.10	<0.00071 <0.00050 <0.10 <0.10 <0.10	<0.00071 <0.00050 <0.10 <0.10 <0.10	<0.00071 <0.00050 <0.10 <0.10 <0.10	<0.00071 <0.00050 <0.10 <0.10 <0.10
Xylenes (m & p) Xylene (o) Xylenes Total Styrene -1 (C ₆ -C ₁₀) -1 (C ₆ -C ₁₀) - BTEX -2 (C ₁₀ -C ₁₆) Volatile Fatty/Carboxylic Acids Acetic Acid Butyric Acid	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	- 0.02 0.072 - 0.81 1.1	<0.00071 <0.00050 <0.10 <0.10 <0.10 <10 <10	<0.00071 <0.00050 <0.10 <0.10 <0.10 <10 <10	<0.00071 <0.00050 <0.10 <0.10 <0.10 <10 <1.0 <50 <1.0	<0.00071 <0.00050 <0.10 <0.10 <0.10 <10 <10	<0.00071 <0.00050 <0.10 <0.10 <0.10 <10 <1.0
Kylenes (m & p) Kylene (o) Kylenes Total Styrene F1 (C ₆ -C ₁₀) F1 (C ₆ -C ₁₀) - BTEX F2 (C ₁₀ -C ₁₆) Volatile Fatty/Carboxylic Acids Acetic Acid Butyric Acid Formic Acid Hexanoic Acid so-Butyric Acid	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	- 0.02 0.072 - 0.81 1.1	<0.00071 <0.00050 <0.10 <0.10 <0.10 <10 <1.0 <50 <1.0 <51.0 <1.0	<0.00071 <0.00050 <0.10 <0.10 <0.10 <1.0 <1.0 <50 <1.0 <1.0	<0.00071 <0.00050 <0.10 <0.10 <0.10 <10 <1.0 <50 <1.0 <1.0	<0.00071 <0.00050 <0.10 <0.10 <0.10 <10 <1.0 <50 <1.0 <1.0	<0.00071 <0.00050 <0.10 <0.10 <0.10 <1.0 <1.0 <50 <1.0 <1.0 <1.0 <1.0
Xylenes (m & p) Xylene (o) Xylenes Total Styrene F1 (C ₆ -C ₁₀) F1 (C ₆ -C ₁₀) - BTEX F2 (C ₁₀ -C ₁₆) Volatile Fatty/Carboxylic Acids Acetic Acid Butyric Acid Formic Acid	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	- 0.02 0.072 - 0.81 1.1	<0.00071 <0.00050 <0.10 <0.10 <0.10 <10 <10 <1.0 <50 <1.0	<0.00071 <0.00050 <0.10 <0.10 <0.10 <10 <1.0 <50 <1.0	<0.00071 <0.00050 <0.10 <0.10 <0.10 <10 <1.0 <50 <1.0	<0.00071 <0.00050 <0.10 <0.10 <0.10 <10 <1.0 <50 <1.0	<0.00071 <0.00050 <0.10 <0.10 <0.10 <1.0 <1.0 <50 <1.0

"ND" Non-detected.

BOLD - Greater than Tier 1 Guideline.

N/A - Not applicable.

¹ Alberta Environment and Parks (AEP). 2019. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 198 pp. Referenced guidelines are for coarse-textured soils under Residential/Parkland land use.

² Alberta Environment and Parks (AEP). Environmental Quality Guidelines for Alberta Surface Waters. March 2018. Table 1 Surface water quality guidelines for the protection of freshwater aquatic life (PAL). Most conservative values applied (chronic or acute).

 $^{^3}$ Guideline varies with hardness. Values shown based on site hardness range of 512 mg/L to 635 mg/L.

⁴ Guideline varies with chloride. Values shown based on site chloride range of 141 mg/L to 267 mg/L.

 $^{^{\}rm 5}$ Guideline varies with pH. Values shown based on site pH range of 6.15 to 7.98.

⁶ Guideline varies with pH and temperature. Values shown based on pH range of 6.15 to 7.98 and temperature range of 2.44°C to 5.52°C.

[&]quot;-" No applicable guideline.

Table 2: Groundwater Analytical Results

		Location Code	MW-01	MW-02	MW-03	MW-04	MW-05
		Sample Date	5-Dec-2019	5-Dec-2019	5-Dec-2019	5-Dec-2019	5-Dec-2019
		Lab Report Number	L2393423	L2393423	L2393423	L2393423	L2393423
		Laboratory ID	L2393423-1	L2393423-2	L2393423-3	L2393423-4	L2393423-5
Parameter	Unit	Tier 1 Guideline ^{1,2}	L2393423-1	L2393423-2	L2393423-3	L23 3 3423-4	L2393423-3
		Tier i Guidellie					
Volatile Organic Compounds (VOCs)			.0.0040		.0.0040	.0.0040	.0.0040
Bromobenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Bromochloromethane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Bromodichloromethane Bromoform	mg/L	-	<0.00050 <0.00050	<0.00050 <0.00050	<0.00050 <0.00050	<0.00050 <0.00050	<0.00050 <0.00050
Bromomethane	mg/L mg/L	1	<0.00050	<0.00050	<0.0010	<0.00050	<0.0010
n-Butylbenzene		-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
sec-Butylbenzene	mg/L mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
tert-Butylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Carbon tetrachloride	mg/L	0.00057	<0.0010	<0.0010	<0.0010	<0.00050	<0.0010
Chlorobenzene	mg/L	0.00037	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Chloroethane	mg/L	0.0013	<0.00030	<0.00030	<0.00030	<0.00030	<0.0010
Chloroform	mg/L	0.018	<0.0010	<0.0010	<0.0010	<0.00050	<0.0010
Chloromethane	mg/L	0.010	<0.00000	<0.00030	<0.0010	<0.00030	<0.0010
2-Chlorotoluene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
4-Chlorotoluene	mg/L	_	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Dibromochloromethane	mg/L	0.19	<0.00050	<0.00050	<0.00050	<0.0000	<0.00050
1,2-Dibromo-3-chloropropane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,2-Dibromoethane	mg/L	_	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Dibromomethane	mg/L	_	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
1,2-Dichlorobenzene	mg/L	0.0007	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
1,3-Dichlorobenzene	mg/L	-	<0.00050	< 0.00050	<0.00050	<0.00050	<0.00050
1,4-Dichlorobenzene	mg/L	0.001	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
1.1-Dichloroethane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
1.2-Dichloroethane	mg/L	0.005	<0.00030	<0.0010	<0.00030	<0.00030	<0.0000
1,1-Dichloroethene	mg/L	0.005	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010
1,2-Dichloroethene (cis)			<0.00030	<0.00030	<0.0010	<0.00030	
,	mg/L	-					<0.0010
1,2-Dichloroethene (trans)	mg/L	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Dichlorodifluoromethane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
1,2-Dichloropropane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
1,3-Dichloropropane 2,2-Dichloropropane	mg/L	-	<0.0010 <0.0010	<0.0010 <0.0010	<0.0010 <0.0010	<0.0010 <0.0010	<0.0010 <0.0010
1,1-Dichloropropene	mg/L mg/L	 	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,3-Dichloropropene [cis]	mg/L		<0.0010	<0.0010	<0.0010	<0.00050	<0.0010
1,3-Dichloropropene [trans]	mg/L	 	<0.0000	<0.0010	<0.00030	<0.00030	<0.0010
Hexachlorobutadiene	mg/L	0.0013	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
p-Isopropyltoluene	mg/L	0.0013	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Methylene Chloride	mg/L	0.05	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
iso-Propylbenzene (cumene)	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
n-Propylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,1,1,2-Tetrachloroethane	mg/L	_	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,1,2,2-Tetrachloroethane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Tetrachloroethene	mg/L	0.01	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
1,2,3-Trichlorobenzene	mg/L	0.008	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,2,4-Trichlorobenzene	mg/L	0.015	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,1,1-Trichloroethane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
1,1,2-Trichloroethane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Trichloroethene	mg/L	0.005	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Trichlorofluoromethane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,2,3-Trichloropropane	mg/L	_	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
1,2,4-Trimethylbenzene	mg/L	-	<0.00030	<0.0010	<0.00030	<0.00030	<0.0010
1,3,5-Trimethylbenzene	mg/L	 	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Vinyl chloride		0.0011	<0.00050	<0.0010	<0.0010	<0.00050	<0.00050
Notes:	mg/L	0.0011	\U.UUUUU	~U.UUUJU	~0.00000	~U.UUUJU	~0.00000

"ND" Non-detected.

BOLD - Greater than Tier 1 Guideline.

N/A - Not applicable.

¹ Alberta Environment and Parks (AEP). 2019. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 198 pp. Referenced guidelines are for coarse-textured soils under Residential/Parkland land use.

² Alberta Environment and Parks (AEP). Environmental Quality Guidelines for Alberta Surface Waters. March 2018. Table 1 Surface water quality guidelines for the protection of freshwater aquatic life (PAL). Most conservative values applied (chronic or acute).

 $^{^3}$ Guideline varies with hardness. Values shown based on site hardness range of 512 mg/L to 635 mg/L.

 $^{^4}$ Guideline varies with chloride. Values shown based on site chloride range of 141 mg/L to 267 mg/L.

 $^{^{\}rm 5}$ Guideline varies with pH. Values shown based on site pH range of 6.15 to 7.98.

⁶ Guideline varies with pH and temperature. Values shown based on pH range of 6.15 to 7.98 and temperature range of 2.44°C to 5.52°C.

[&]quot;-" No applicable guideline.

Table 3: Soil Vapour Monitoring Results

	Gas Well									
Parameter		VW-01		VW-02						
	Aug-13	Jun-19	Dec-19	Aug-13	Jun-19	Dec-19				
Pressure (kPa) ¹	0.0	0.0	0.0	0.0	0.0	0.0				
CH ₄ (%)	0.0	0.0	0.0	0.0	0.0	0.0				
CO (ppm) ²		0.0	0.0		0.0	0.0				
CO ₂ (%)	2.1	2.7	0.3	1.7	0.0	0.1				
O ₂ (%)	13.4	17.5	21.0	19.9	20.1	22.2				
Balance (% v/v)	84.6	79.8	78.7	78.5	79.8	77.7				
Static Water Level (mbtoc) ³		Dry	Dry		Dry	Dry				
Depth to Bottom (m) ⁴	3.70	3.36	3.51	2.70	3.37	3.50				
Screen Interval Top (m)		2.7	L		2.4	1				
Screen Interval Bottom (m)		3.0			2.7					
Stick up (m)	0.76	0.63	0.68	1.08	0.96	1.06				

N/A - Not applicable - well can not be accessed to obtain measurement.

Kpa - Kilopascal.
 ppm - Parts per million.
 mbtoc - Meters below top of casing.

⁴ m- Meters

Table 4: Soil Vapour Analytical Results

	Location Code		VW	<i>'</i> -01	VW-02
	Field ID	Generic Soil	VW-01	19DUP01	VW-02
	Sample Date	Vapour Criteria -	4-Dec-2019	4-Dec-2019	4-Dec-2019
	Lab Report Number	Residential Coarse	L2393610	L2393610	L2393610
	Laboratory ID	Grained ¹	L2393610-1 / L2393610-4	L2393610-3	L2393610-2 / L2393610-5
Parameter	Unit	μg/m³			
Field Tests					
Air Volume	L		0.06	-	0.06
Initial Pressure	in Hg		-4.9	-4.9	-8.2
Aliphatic/Aromatic PHC Sub-Fractionation					
Aliphatics (C ₆ -C ₈)	μg/m ³	740,737	22	17	43
Aliphatics (>C ₈ -C ₁₀)	μg/m ³	40,257	33	24	253
Aliphatics (>C ₁₀ -C ₁₂)	μg/m ³	40,257	27	25	292
Aliphatics (>C ₁₂ -C ₁₆)	μg/m ³	40,257	<30	<30	<30
Aromatics ($>C_8$ - C_{10})	μg/m ³	805	<15	<15	<15
Aromatics ($>C_{10}-C_{12}$)	μg/m ³	8,051	<15	<15	<15
Aromatics (>C ₁₂ -C ₁₆)			<30	<30	
, 12 13/	μg/m ³	8,051	<30	<30	<30
Linear and Cyclic Methyl Siloxanes	, 3	l No I	-470	1	1170
Hexamethylcyclotrisiloxane, D3(CVMS)	μg/m ³	NG	<170	-	<170
Octamethylcyclotetrasiloxane, D4(CVMS)	μg/m ³	NG	<170	-	<170
Decamethylcyclopentasiloxane, D5(CVMS)	μg/m ³	NG	<170	-	<170
Dodecamethylcyclohexasiloxane, D6(CVMS)	μg/m ³	NG	<170	-	330
Hexamethyldisiloxane, MM(LVMS)	μg/m ³	NG	<170	-	<170
Octamethyltrisiloxane, MDM(LVMS)	μg/m ³	NG	<170	-	<170
Decamethyltetrasiloxane, MD2M(LVMS)	μg/m ³	NG	<170	-	<170
Dodecamethylpentasiloxane, MD3M(LVMS)	μg/m ³	NG	<170	-	370
Hydrocarbons				_	_
Benzene	μg/m³	195	<0.64	<0.64	9.47
Toluene	μg/m ³	124,220	<0.75	<0.75	2.04
Ethylbenzene	μg/m³	34,330	<0.87	<0.87	<0.87
Xylenes (m & p)	μg/m ³	NG	<1.7	<1.7	3.0
Xylene (o)	μg/m ³	NG	<0.87	<0.87	1.05
Xylenes Total	μg/m ³	6,330	<2.0	<2.0	4.0
Styrene	μg/m ³	3,220	<0.85	<0.85	<0.85
F1 (C ₆ -C ₁₀)	μg/m ³	867,383	53	33	300
F2 (C ₁₀ -C ₁₆)	μg/m ³	52,495	61	63	421
Alcohol	1 10				
Isopropanol	μg/m³	6,219	<2.5	<2.5	<2.5
High Level Fixed Gases					•
Nitrogen	%	NG	72.6	75.8	74.1
Oxygen	%	NG	19.5	20.0	20.5
Carbon Dioxide	%	NG	1.40	1.43	0.064
Carbon Monoxide	%	NG	<0.050	<0.050	<0.050
Methane Hydrocarbon Gases (C₁-C₅)	%	NG	<0.050	<0.050	<0.050
1 1 2	0/	NO I	0.00425	<0.00040	0.00040
Methane Ethane	%	NG NG	0.00135 <0.00020	<0.00010 <0.00020	0.00040 <0.00020
Ethene	%	NG	<0.00020	<0.00020	<0.00020
Propane	%	NG	<0.00020	<0.00020	<0.00020
Propene	%	NG	<0.00020	<0.00020	<0.00020
Butane	%	NG	<0.00020	<0.00020	<0.00020
Pentane	%	NG	<0.00020	<0.00020	<0.00020
Polycyclic Aromatic Hydrocarbons (PAHs)					
Naphthalene	μg/m ³	113	<2.6	<2.6	<2.6

NG - No applicable criteria.

BOLD - Greater than criteria.

¹ Canadian Council of Ministers of the Environment (CCME). 2014. A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures via Inhalation of Vapours. Refer to Table 6 to Table 9 for further information.

Table 4: Soil Vapour Analytical Results

	Location Code		VW	/-01	VW-02
	Field ID	Generic Soil	VW-01	19DUP01	VW-02
	Sample Date	Vapour Criteria -	4-Dec-2019	4-Dec-2019	4-Dec-2019
	Lab Report Number	Residential Coarse	L2393610	L2393610	L2393610
		Grained ¹	L2393610-1 /	L2393610-3	L2393610-2 /
	Laboratory ID		L2393610-4		L2393610-5
Parameter	Unit	μg/m³			
/olatile Organic Compounds (VOCs)					
,1,1-Trichloroethane	μg/m ³	1,693,510	<1.1	<1.1	<1.1
1,1,2,2-Tetrachloroethane	μg/m ³	11	<1.4	<1.4	<1.4
1,1,2-Trichloroethane	μg/m ³	7	<1.1	<1.1	<1.1
,1-Dichloroethane	μg/m ³	430	<0.81	<0.81	<0.81
,1-Dichloroethene	μg/m ³	6,470	<0.79	<0.79	<0.79
1,2,4-Trichlorobenzene	μg/m ³	365	<1.5	<1.5	<1.5
l,2,4-Trimethylbenzene	μg/m ³	2,235	<0.98	<0.98	<0.98
,2-Dibromoethane	μg/m ³	590	<1.5	<1.5	<1.5
I,2-Dichlorobenzene	μg/m ³	7,072	<1.2	<1.2	<1.2
I,2-Dichloroethane	μg/m ³	24	<0.81	<0.81	<0.81
I,2-Dichloroethene (cis)	μg/m ³	242	<0.79	<0.79	<0.79
I,2-Dichloroethene (trans)	μg/m ³	245	<0.79	<0.79	<0.79
I,2-Dichloropropane	µg/m ³	135	<0.92	<0.92	<0.92
1,2-Dichlorotetrafluoroethane	μg/m ³	566,335	<1.4	<1.4	<1.4
1,3,5-Trimethylbenzene	μg/m ³	2,235	<0.98	<0.98	<0.98
1,3-Butadiene	μg/m ³	17	<0.44	<0.44	<0.44
1,3-Dichlorobenzene	μg/m ³	64	<1.2	<1.2	<1.2
1,3-Dichloropropene [cis]	μg/m ³	163	<0.91	<0.91	<0.91
I,3-Dichloropropene [trans]	μg/m ³	149	<0.91	<0.91	<0.91
I,4-Dichlorobenzene	μg/m ³	64	<1.2	<1.2	<1.2
1,4-Dioxane	μg/m ³	105	<0.72	<0.72	<0.72
I-Methyl-4 ethyl benzene	μg/m ³	14,461	<0.98	<0.98	<0.98
2-Butanone (MEK)	μg/m ³	167,364	<0.59	<0.59	1.43
2-Hexanone (MBK)	μg/m ³	1,053	<4.1	<4.1	<4.1
1-Methyl-2-pentanone (MIBK)	μg/m ³	103	<0.82	<0.82	<0.82
Acetone	μg/m ³	918,788	2.3	2.7	18.5
Allyl chloride	μg/m ³	32	<0.63	<0.63	<0.63
Benzyl chloride	μg/m ³	34	<1.0	<1.0	<1.0
Bromodichloromethane	μg/m ³	28	<1.3	<1.3	<1.3
Bromoform	μg/m ³	1,494	<2.1	<2.1	<2.1
Bromomethane	μg/m ³	173	<0.78	<0.78	<0.78
Carbon disulfide	μg/m ³	21,713	<0.62	<1.81	<0.62
Carbon tetrachloride	μg/m ³	113	<1.3	<1.3	<1.3
Chlorobenzene	μg/m ³	347	<0.92	<0.92	<0.92
Chloroethane	μg/m ³	31,019	<0.53	<0.53	<0.53
Chloroform	μg/m ³	27	1.70	1.52	<0.98
Chloromethane	μg/m ³	2,657	<0.41	<0.41	1.78
Cyclohexane	μg/m ³	201,510	<0.69	< 0.69	< 0.69
Dibromochloromethane Dichlorodifluoromethane	μg/m ³	4,750	<1.7	<1.7	<1.7
Dichlorodifluoromethane Ethyl acetate	μg/m ³	3,584	1.86	1.88	1.86
Etnyl acetate Freon 113	μg/m ³	2,509	<0.72	<0.72	<0.72
	μg/m ³	230,627	<1.5	<1.5	<1.5
Heptane Hexachlorobutadiene	μg/m ³	14,461 51	1.41	1.25	<0.82
Hexacnioroputadiene Hexane	μg/m ³	-	<2.1	<2.1	<2.1
sooctane	μg/m ³	18,839	2.75	2.5	0.98
	µg/m ³	14,917	<0.93	<0.93	<0.93
so-Propylbenzene (cumene) Methyl t-Butyl Ether (MTBE)	μg/m³ μg/m³	14,461 1,153	<0.98 <0.72	<0.98 <0.72	<0.98 <0.72
Methylene Chloride		18,764	<0.69	<0.72	<0.72
Propene	μg/m ³	91,723	<0.69	<0.69	<0.69
Fetrachloroethene	μg/m ³	·	<0.34 <1.4	<0.34 <1.4	<0.34 <1.4
etrachioroethene Tetrahydrofuran	μg/m ³	2,679 62,828			
Frichloroethene	μg/m ³	62,828 153	<0.59 <1.1	<0.59 <1.1	1.53 <1.1
richloroethene Frichlorofluoromethane	μg/m ³		<1.1 <1.1	<1.1 <1.1	<1.1 <1.1
/inyl acetate	μg/m ³	34,325			
/inyl acetate /inyl bromide (bromoethene)	μg/m ³	6,586	<1.8	<1.8	<1.8
/inyl chloride (bromoetnene)	μg/m ³	94	<0.87	<0.87	<0.87
zniyi Gillona c	μg/m ³	140	<0.51	<0.51	<0.51

¹ Canadian Council of Ministers of the Environment (CCME). 2014. A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures via Inhalation of Vapours. Refer to Table 6 to Table 9 for further information.

NG - No applicable criteria.

BOLD - Greater than criteria.

Table 5: Soil Vapour Quality Assurance/Quality Control Analytical Results

Table 3. 3011 Vapour Quanty Assurance	ble 5: Soil Vapour Quality Assurance/Quality Control Analytical Results Field ID VW-01 19DUP01								
		Field ID Sample Date	4-Dec-2019	4-Dec-2019					
	L	ab Report Number	L2393610	L2393610	RPD (%)				
		l abandanı ID	L2393610-1 /	L2393610-3					
		Laboratory ID	L2393610-4						
Parameter	Unit	RDL							
Field Tests Air Volume	l ı	0.04	0.06	Г					
Initial Pressure	in Hg	0.01 -30	-4.9	-4.9	-				
Aliphatic/Aromatic PHC Sub-Fractionation	9	1 00 1							
Aliphatics (C ₆ -C ₈)	μg/m³	15	22	17	-				
Aliphatics (>C ₈ -C ₁₀)	μg/m ³	15	33	24	-				
Aliphatics (>C ₁₀ -C ₁₂)	μg/m ³	15	27	25	-				
Aliphatics (>C ₁₂ -C ₁₆)	μg/m ³	30	<30	<30	-				
Aromatics (>C ₈ -C ₁₀)	μg/m ³	15 15	<15 <15	<15 <15	-				
Aromatics ($>C_{10}-C_{12}$) Aromatics ($>C_{12}-C_{16}$)	μg/m ³	30	<30	<30	<u> </u>				
Linear & Cyclic Methyl Siloxanes	μg/m ³	50	-30	100					
Hexamethylcyclotrisiloxane, D3(CVMS)	μg/m³	170	<170	-	-				
Octamethylcyclotetrasiloxane, D4(CVMS)	μg/m ³	170	<170	-	-				
Decamethylcyclopentasiloxane, D5(CVMS)	μg/m ³	170	<170	-	-				
Dodecamethylcyclohexasiloxane, D6(CVMS)	μg/m ³	170	<170	-	-				
Hexamethyldisiloxane, MM(LVMS)	μg/m ³	170	<170	-	-				
Octamethyltrisiloxane, MDM(LVMS) Decamethyltetrasiloxane, MD2M(LVMS)	μg/m ³	170 170	<170 <170	-	-				
Dodecamethylpentasiloxane, MD3M(LVMS)	μg/m ³	170	<170	-	-				
Hydrocarbons	μg/m ³	.,,,,	-110	<u> </u>					
Benzene	μg/m³	0.64	<0.64	<0.64	-				
Toluene	μg/m ³	0.75	<0.75	<0.75	-				
Ethylbenzene	μg/m ³	0.87	<0.87	<0.87	-				
Kylenes (m & p)	μg/m³	1.7	<1.7	<1.7	-				
Kylene (o)	μg/m ³	0.87	<0.87	<0.87	-				
Kylenes Total Styrene	μg/m ³	0.85	<2.0 <0.85	<2.0 <0.85					
Styrene =1 (C ₆ -C ₁₀)	μg/m³ μg/m³	0.85	<0.85 53	<0.85					
F2 (C ₁₀ -C ₁₆)	μg/m³	15	61	63					
Alcohol	H9/111	· · ·							
sopropanol	μg/m³	2.5	<2.5	<2.5	-				
ligh Level Fixed Gases									
Nitrogen	%	1	72.6	75.8	4				
Oxygen Carbon Dioxide	%	0.1 0.05	19.5 1.40	20.0 1.43	<u>3</u>				
Carbon Monoxide	%	0.05	<0.050	<0.050					
Methane	%	0.05	<0.050	<0.050	-				
Hydrocarbon Gases (C₁-C₅)				1					
Methane Ethane	%	0.0001 0.0002	0.00135 <0.00020	<0.00010 <0.00020	-				
Ethene	% %	0.0002	<0.00020	<0.00020	<u> </u>				
Propane	%	0.0002	<0.00020	<0.00020	-				
Propene	%	0.0002	<0.00020	<0.00020	-				
Butane Pentane	%	0.0002 0.0002	<0.00020 <0.00020	<0.00020 <0.00020	-				
Polycyclic Aromatic Hydrocarbons (PAHs)	70	0.0002	<0.00020	<0.00020					
Naphthalene	μg/m³	2.6	<2.6	<2.6	-				
Volatile Organic Compounds (VOCs)	I . 2		.4.4						
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	μg/m ³	1.1	<1.1 <1.4	<1.1 <1.4	-				
1,1,2,7-retrachioroethane	μg/m ³	1.4	<1.4	<1.4	-				
I,1-Dichloroethane	μg/m³ μg/m³	0.81	<0.81	<0.81					
,1-Dichloroethene	μg/m³	0.79	<0.79	<0.79	_				
,2,4-Trichlorobenzene	µg/m³	1.5	<1.5	<1.5	-				
,2,4-Trimethylbenzene	μg/m ³	0.98	<0.98	<0.98	-				
,2-Dibromoethane	μg/m ³	1.5	<1.5	<1.5	-				
,2-Dichlorobenzene	µg/m³	1.2	<1.2	<1.2	-				
,2-Dichloroethane	μg/m ³	0.81	A	<0.81					
,2-Dichloroethene (cis)	, 3		<0.81		-				
	μg/m ³	0.79	<0.79	<0.79	-				
,2-Dichloroethene (trans)	μg/m³ μg/m³	0.79 0.79	<0.79 <0.79	<0.79 <0.79					
,2-Dichloroethene (trans) ,2-Dichloropropane	μg/m ³ μg/m ³ μg/m ³	0.79	<0.79	<0.79	-				
,2-Dichloroethene (trans) ,2-Dichloropropane ,2-Dichlorotetrafluoroethane	µg/m ³ µg/m ³ µg/m ³ µg/m ³	0.79 0.79 0.92	<0.79 <0.79 <0.92	<0.79 <0.79 <0.92					
,2-Dichloroethene (trans) ,2-Dichloropropane ,2-Dichlorotetrafluoroethane ,3,5-Trimethylbenzene	µg/m ³ µg/m ³ µg/m ³ µg/m ³ µg/m ³ µg/m ³	0.79 0.79 0.92 1.4 0.98 0.44	<0.79 <0.79 <0.92 <1.4 <0.98 <0.44	<0.79 <0.79 <0.92 <1.4 <0.98 <0.44	- - -				
,2-Dichloroethene (trans) ,2-Dichloropropane ,2-Dichlorotetrafluoroethane ,3,5-Trimethylbenzene ,3-Butadiene ,3-Dichlorobenzene	μg/m³ μg/m³ μg/m³ μg/m³ μg/m³ μg/m³ μg/m³ μg/m³	0.79 0.79 0.92 1.4 0.98 0.44 1.2	<0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2	<0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2	- - - -				
,2-Dichloroethene (trans) ,2-Dichloropropane ,2-Dichlorotetrafluoroethane ,3,5-Trimethylbenzene ,3-Butadiene ,3-Dichlorobenzene ,3-Dichloropropene [cis]	µg/m³ µg/m³ µg/m³ µg/m³ µg/m³ µg/m³ µg/m³ µg/m³	0.79 0.79 0.92 1.4 0.98 0.44 1.2 0.91	<0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91	<0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91					
,2-Dichloroethene (trans) ,2-Dichloropropane ,2-Dichlorotetrafluoroethane ,3,5-Trimethylbenzene ,3-Butadiene ,3-Dichlorobenzene ,3-Dichloropropene [cis] ,3-Dichloropropene [trans]	μg/m³	0.79 0.79 0.92 1.4 0.98 0.44 1.2 0.91	<0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91	<0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91	- - - - - - -				
,2-Dichloroethene (trans) ,2-Dichloropropane ,2-Dichlorotetrafluoroethane ,3,5-Trimethylbenzene ,3-Butadiene ,3-Dichlorobenzene ,3-Dichloropropene [cis] ,3-Dichloropropene [trans] ,4-Dichlorobenzene	μg/m³	0.79 0.79 0.92 1.4 0.98 0.44 1.2 0.91 0.91 1.2	<0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2	<0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2	- - - - - - - -				
,2-Dichloroethene (trans) ,2-Dichloropropane ,2-Dichlorotetrafluoroethane ,3,5-Trimethylbenzene ,3-Butadiene ,3-Dichlorobenzene ,3-Dichloropropene [cis] ,3-Dichloropropene [trans] ,4-Dichlorobenzene ,4-Dioxane	μg/m³	0.79 0.79 0.92 1.4 0.98 0.44 1.2 0.91 0.91 1.2 0.72	<0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <0.72	<0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <0.72	- - - - - - -				
,2-Dichloroethene (trans) ,2-Dichloropropane ,2-Dichlorotetrafluoroethane ,3,5-Trimethylbenzene ,3-Butadiene ,3-Dichlorobenzene ,3-Dichloropropene [cis] ,3-Dichloropropene [trans] ,4-Dichlorobenzene ,4-Dioxane -Methyl-4 ethyl benzene	µg/m³	0.79 0.79 0.92 1.4 0.98 0.44 1.2 0.91 0.91 1.2	<0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2	<0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2	- - - - - - - - -				
,2-Dichloroethene (trans) ,2-Dichloropropane ,2-Dichlorotetrafluoroethane ,3,5-Trimethylbenzene ,3-Butadiene ,3-Dichlorobenzene ,3-Dichloropropene [cis] ,3-Dichloropropene [trans] ,4-Dichlorobenzene ,4-Dioxane -Methyl-4 ethyl benzene	µg/m³	0.79 0.79 0.92 1.4 0.98 0.44 1.2 0.91 0.91 1.2 0.72 0.98	<0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.91 <1.2 <0.72 <0.98	<0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <0.91 <1.2 <0.72 <0.98	- - - - - - - - - -				
,2-Dichloroethene (trans) ,2-Dichloropropane ,2-Dichlorotetrafluoroethane ,3,5-Trimethylbenzene ,3-Butadiene ,3-Dichlorobenzene ,3-Dichloropropene [cis] ,3-Dichloropropene [trans] ,4-Dichlorobenzene ,4-Dioxane -Methyl-4 ethyl benzene -Butanone (MEK)Hexanone (MBK)	µg/m³	0.79 0.79 0.92 1.4 0.98 0.44 1.2 0.91 0.91 1.2 0.72 0.98 0.59	<0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.92 <0.72 <0.98 <0.59	<0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59	- - - - - - - - - - - - -				
,2-Dichloroethene (trans) ,2-Dichloropropane ,2-Dichloropropane ,2-Dichlorotetrafluoroethane ,3,5-Trimethylbenzene ,3-Butadiene ,3-Dichlorobenzene ,3-Dichloropropene [cis] ,3-Dichloropropene [trans] ,4-Dichlorobenzene ,4-Dioxane -Methyl-4 ethyl benzene 2-Butanone (MEK) 2-Hexanone (MBK)Methyl-2-pentanone (MIBK)	µg/m³	0.79 0.79 0.92 1.4 0.98 0.44 1.2 0.91 0.91 1.2 0.72 0.98 0.59 4.1 0.82 1.2	<0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.3	<0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.7	- - - - - - - - - - - - - - - - - - -				
,2-Dichloroethene (trans) ,2-Dichloropropane ,2-Dichloropropane ,2-Dichlorotetrafluoroethane ,3,5-Trimethylbenzene ,3-Butadiene ,3-Dichlorobenzene ,3-Dichloropropene [cis] ,3-Dichloropropene [trans] ,4-Dichlorobenzene ,4-Dioxane -Methyl-4 ethyl benzene 2-Butanone (MEK) 2-Hexanone (MBK) -Methyl-2-pentanone (MIBK) Acetone Allyl chloride	µg/m³	0.79 0.79 0.92 1.4 0.98 0.44 1.2 0.91 0.91 1.2 0.72 0.98 0.59 4.1 0.82 1.2 0.63	<0.79 <0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.3 <0.63	<0.79 <0.79 <0.79 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.72 <0.98 <0.59 <4.1 <0.82 2.7 <0.63	- - - - - - - - - - - - - - - - - - -				
,2-Dichloroethene (trans) ,2-Dichloropropane ,2-Dichloropropane ,2-Dichlorotetrafluoroethane ,3,5-Trimethylbenzene ,3-Butadiene ,3-Dichlorobenzene ,3-Dichloropropene [cis] ,3-Dichloropropene [trans] ,4-Dichlorobenzene ,4-Dioxane -Methyl-4 ethyl benzene -Butanone (MEK) -Hexanone (MBK) -Methyl-2-pentanone (MIBK) Acetone Allyl chloride Benzyl chloride	µg/m³	0.79 0.79 0.79 0.92 1.4 0.98 0.44 1.2 0.91 0.91 1.2 0.72 0.98 0.59 4.1 0.82 1.2 0.63 1	<0.79 <0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.3 <0.63 <1.0	<0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.88 <0.59 <4.1 <0.82 2.7 <0.63 <1.0	- - - - - - - - - - - - - - - - - - -				
,2-Dichloroethene (trans) ,2-Dichloropropane ,2-Dichloropropane ,2-Dichlorotetrafluoroethane ,3,5-Trimethylbenzene ,3-Butadiene ,3-Dichlorobenzene ,3-Dichloropropene [cis] ,3-Dichloropropene [trans] ,4-Dichlorobenzene ,4-Dioxane -Methyl-4 ethyl benzene -Butanone (MEK) -Hexanone (MBK) -Methyl-2-pentanone (MIBK) -Acetone Myl chloride -Benzyl chloride -Bromodichloromethane	µg/m³	0.79 0.79 0.79 0.92 1.4 0.98 0.44 1.2 0.91 0.91 1.2 0.72 0.98 0.59 4.1 0.82 1.2 0.63 1 1.3	<0.79 <0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.3 <0.63 <1.0 <1.3	<0.79 <0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.7 <0.63 <1.0 <1.3					
,2-Dichloroethene (trans) ,2-Dichloropropane ,2-Dichloropropane ,2-Dichlorotetrafluoroethane ,3,5-Trimethylbenzene ,3-Butadiene ,3-Dichlorobenzene ,3-Dichloropropene [cis] ,3-Dichloropropene [trans] ,4-Dichlorobenzene ,4-DioxaneMethyl-4 ethyl benzene 2-Butanone (MEK) 2-Hexanone (MBK)Methyl-2-pentanone (MIBK)Acetone Allyl chlorideBromodichloromethaneBromoform	µg/m³	0.79 0.79 0.79 0.92 1.4 0.98 0.44 1.2 0.91 0.91 1.2 0.72 0.98 0.59 4.1 0.82 1.2 0.63 1 1.3 2.1	<0.79 <0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.3 <0.63 <1.0 <1.3 <2.1	<0.79 <0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.7 <0.63 <1.0 <1.3 <2.1					
,2-Dichloroethene (trans) ,2-Dichloropropane ,2-Dichloropropane ,2-Dichlorotetrafluoroethane ,3,5-Trimethylbenzene ,3-Butadiene ,3-Dichlorobenzene ,3-Dichloropropene [cis] ,3-Dichloropropene [trans] ,4-Dichlorobenzene ,4-DioxaneMethyl-4 ethyl benzeneButanone (MEK)Hexanone (MBK)Methyl-2-pentanone (MIBK)Acetone	µg/m³	0.79 0.79 0.79 0.92 1.4 0.98 0.44 1.2 0.91 0.91 1.2 0.72 0.98 0.59 4.1 0.82 1.2 0.63 1 1.3 2.1 0.78	<0.79 <0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.3 <0.63 <1.0 <1.3 <2.1 <0.78	<0.79 <0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.7 <0.63 <1.0 <1.3 <2.1 <0.78					
,2-Dichloroethene (trans) ,2-Dichloropropane ,2-Dichloropropane ,2-Dichlorotetrafluoroethane ,3-S-Trimethylbenzene ,3-Butadiene ,3-Dichlorobenzene ,3-Dichloropropene [cis] ,3-Dichloropropene [trans] ,4-Dichlorobenzene ,4-Dioxane -Methyl-4 ethyl benzene -Butanone (MEK) -Hexanone (MBK) -Methyl-2-pentanone (MIBK) -Acetone Allyl chloride -Benzyl chloride -Bromodichloromethane -Bromomethane -Bromomethane -Carbon disulfide	µg/m³	0.79 0.79 0.79 0.92 1.4 0.98 0.44 1.2 0.91 0.91 1.2 0.72 0.98 0.59 4.1 0.82 1.2 0.63 1 1.3 2.1 0.78 0.62	<0.79 <0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.3 <0.63 <1.0 <1.3 <2.1 <0.78 <0.62	<0.79 <0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.7 <0.63 <1.0 <1.3 <2.1 <0.78 <1.81	- - - - - - - - - - - - - - - - - - -				
,2-Dichloroethene (trans) ,2-Dichloropropane ,2-Dichloropropane ,2-Dichlorotetrafluoroethane ,3-S-Trimethylbenzene ,3-Butadiene ,3-Dichlorobenzene ,3-Dichloropropene [cis] ,3-Dichloropropene [trans] ,4-Dichlorobenzene ,4-Dioxane -Methyl-4 ethyl benzene 2-Butanone (MEK) 2-Hexanone (MBK) 3-Methyl-2-pentanone (MIBK) 4-Cetone MIyl chloride 8-Borzyl chloride	µg/m³	0.79 0.79 0.79 0.92 1.4 0.98 0.44 1.2 0.91 0.91 1.2 0.72 0.98 0.59 4.1 0.82 1.2 0.63 1 1.3 2.1 0.78 0.62 1.3	<0.79 <0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.3 <0.63 <1.0 <1.3 <2.1 <0.78 <0.62 <1.3	<0.79 <0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.7 <0.63 <1.0 <1.3 <2.1 <0.78 <1.81 <1.3					
,2-Dichloroethene (trans) ,2-Dichloropropane ,2-Dichloropropane ,2-Dichlorotetrafluoroethane ,3,5-Trimethylbenzene ,3-Butadiene ,3-Dichlorobenzene ,3-Dichloropropene [cis] ,3-Dichloropropene [trans] ,4-Dichlorobenzene ,4-Dioxane -Methyl-4 ethyl benzene 2-Butanone (MEK) 2-Hexanone (MBK) 1-Methyl-2-pentanone (MIBK) Acetone Allyl chloride Benzyl chloride Bromodichloromethane Bromoform Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene	µg/m³	0.79 0.79 0.79 0.92 1.4 0.98 0.44 1.2 0.91 0.91 1.2 0.72 0.98 0.59 4.1 0.82 1.2 0.63 1 1.3 2.1 0.78 0.62	<0.79 <0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.3 <0.63 <1.0 <1.3 <2.1 <0.78 <0.62	<0.79 <0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.7 <0.63 <1.0 <1.3 <2.1 <0.78 <1.81					
,2-Dichloroethene (trans) ,2-Dichloropropane ,2-Dichloropropane ,2-Dichlorotetrafluoroethane ,3-Dichlorobenzene ,3-Dichloropropene [cis] ,3-Dichloropropene [trans] ,4-Dichlorobenzene ,4-Dioxane -Methyl-4 ethyl benzene 2-Butanone (MEK) 2-Hexanone (MBK) -Methyl-2-pentanone (MIBK) -Methyl-2-pentanone (MIBK) -Methyl-1-Pentanone (MIBK) -Methyl-2-pentanone (MIBK) -Methyl-2-pe	µg/m³	0.79 0.79 0.79 0.92 1.4 0.98 0.44 1.2 0.91 0.91 1.2 0.72 0.98 0.59 4.1 0.82 1.2 0.63 1 1.3 2.1 0.78 0.62 1.3 0.92	<0.79 <0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.3 <0.63 <1.0 <1.3 <2.1 <0.78 <0.62 <1.3 <0.92	<0.79 <0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.7 <0.63 <1.0 <1.3 <2.1 <0.78 <1.81 <1.3 <0.92					
,2-Dichloroethene (trans) ,2-Dichloropropane ,2-Dichloropropane ,2-Dichlorotetrafluoroethane ,3-Dichlorobenzene ,3-Dichloropropene [cis] ,3-Dichloropropene [trans] ,4-Dichlorobenzene ,4-DioxaneMethyl-4 ethyl benzene 2-Butanone (MEK) 2-Hexanone (MBK)Methyl-2-pentanone (MIBK)AcetoneMilyl chlorideBenzyl chlorideBenzyl chlorideBromodichloromethaneBromomethane	µg/m³	0.79 0.79 0.79 0.92 1.4 0.98 0.44 1.2 0.91 0.91 1.2 0.72 0.98 0.59 4.1 0.82 1.2 0.63 1 1.3 2.1 0.78 0.62 1.3 0.92 0.53	<0.79 <0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.3 <0.63 <1.0 <1.3 <2.1 <0.78 <0.62 <1.3 <0.92 <0.53	<0.79 <0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.7 <0.63 <1.0 <1.3 <2.1 <0.78 <1.81 <1.3 <0.92 <0.53					
,2-Dichloroethene (trans) ,2-Dichloropropane ,2-Dichloropropane ,2-Dichlorotetrafluoroethane ,3-S-Trimethylbenzene ,3-Butadiene ,3-Dichlorobenzene ,3-Dichloropropene [cis] ,3-Dichloropropene [trans] ,4-Dichlorobenzene ,4-DioxaneMethyl-4 ethyl benzeneButanone (MEK)Hexanone (MBK)Hexanone (MBK)Methyl-2-pentanone (MIBK)AcetoneAllyl chlorideBenzyl chlorideBenzyl chlorideBromodichloromethaneBromo	µg/m³	0.79 0.79 0.79 0.92 1.4 0.98 0.44 1.2 0.91 0.91 1.2 0.72 0.98 0.59 4.1 0.82 1.2 0.63 1 1.3 2.1 0.78 0.62 1.3 0.92 0.53 0.98 0.41 0.69	<0.79 <0.79 <0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.3 <0.63 <1.0 <1.3 <2.1 <0.78 <0.62 <1.3 <0.92 <0.53 1.70 <0.41 <0.69	<0.79 <0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.7 <0.63 <1.0 <1.3 <2.1 <0.78 <1.81 <1.3 <0.92 <0.53 1.52 <0.41 <0.69					
,2-Dichloroethene (trans) ,2-Dichloropropane ,2-Dichloropropane ,2-Dichlorotetrafluoroethane ,3-S-Trimethylbenzene ,3-Butadiene ,3-Dichlorobenzene ,3-Dichloropropene [cis] ,3-Dichloropropene [trans] ,4-Dichlorobenzene ,4-Dioxane -Methyl-4 ethyl benzene 2-Butanone (MEK) 2-Hexanone (MBK) 2-Hexanone (MBK) 3-Methyl-2-pentanone (MIBK) 3-Cetone Milyl chloride 3-Bornoyl chloride 3-Bornomorethane 3-Bor	µg/m³	0.79 0.79 0.79 0.92 1.4 0.98 0.44 1.2 0.91 0.91 1.2 0.72 0.98 0.59 4.1 0.82 1.2 0.63 1 1.3 2.1 0.78 0.62 1.3 0.92 0.53 0.98 0.41 0.69 1.7	<0.79 <0.79 <0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.3 <0.63 <1.0 <1.3 <2.1 <0.78 <0.62 <1.3 <0.92 <0.53 1.70 <0.41 <0.69 <1.7	<0.79 <0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.7 <0.63 <1.0 <1.3 <2.1 <0.78 <1.81 <1.3 <0.92 <0.53 1.52 <0.41 <0.69 <1.7					
,2-Dichloroethene (trans) ,2-Dichloropropane ,2-Dichloropropane ,2-Dichlorotetrafluoroethane ,3-S-Trimethylbenzene ,3-Butadiene ,3-Dichlorobenzene ,3-Dichloropropene [cis] ,3-Dichloropropene [trans] ,4-Dichlorobenzene ,4-Dioxane -Methyl-4 ethyl benzene 2-Butanone (MEK) 2-Hexanone (MBK) 2-Hexanone (MBK) 3-Methyl-2-pentanone (MIBK) 3-Cetone Myl chloride 3-Bornodichloromethane 3-Bornomethane 3-Bo	µg/m³	0.79 0.79 0.79 0.92 1.4 0.98 0.44 1.2 0.91 0.91 1.2 0.72 0.98 0.59 4.1 0.82 1.2 0.63 1 1.3 2.1 0.78 0.62 1.3 0.92 0.53 0.98 0.41 0.69 1.7 0.99	<0.79 <0.79 <0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.3 <0.63 <1.0 <1.3 <2.1 <0.78 <0.62 <1.3 <0.92 <0.53 1.70 <0.41 <0.69 <1.7 1.86	<0.79 <0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.7 <0.63 <1.0 <1.3 <2.1 <0.78 <1.81 <1.3 <0.92 <0.53 1.52 <0.41 <0.69 <1.7 1.88					
1,2-Dichloroethene (trans) 1,2-Dichloropropane 1,2-Dichlorotetrafluoroethane 1,3-Dichlorotetrafluoroethane 1,3-Butadiene 1,3-Butadiene 1,3-Dichlorobenzene 1,3-Dichloropropene [cis] 1,3-Dichloropropene [trans] 1,4-Dichlorobenzene 1,4-Dioxane 1-Methyl-4 ethyl benzene 2-Butanone (MEK) 2-Hexanone (MBK) 4-Methyl-2-pentanone (MIBK) Acetone Allyl chloride Benzyl chloride Bromodichloromethane Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dichloromethane Dichlorodifluoromethane Dichlorodifluoromethane Ethyl acetate Ereon 113	µg/m³	0.79 0.79 0.79 0.92 1.4 0.98 0.44 1.2 0.91 0.91 1.2 0.72 0.98 0.59 4.1 0.82 1.2 0.63 1 1.3 2.1 0.78 0.62 1.3 0.92 0.53 0.98 0.41 0.69 1.7	<0.79 <0.79 <0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.3 <0.63 <1.0 <1.3 <2.1 <0.78 <0.62 <1.3 <0.92 <0.53 1.70 <0.41 <0.69 <1.7	<0.79 <0.79 <0.79 <0.92 <1.4 <0.98 <0.44 <1.2 <0.91 <0.91 <1.2 <0.72 <0.98 <0.59 <4.1 <0.82 2.7 <0.63 <1.0 <1.3 <2.1 <0.78 <1.81 <1.3 <0.92 <0.53 1.52 <0.41 <0.69 <1.7					

Not analyzed or RPD not calculated.

Concentration is less than the laboratory detection limit indicated.

RDL Laboratory Reportable Detection Limit.

RPD is Relative Percentage Difference calculated as RPD(%)=(|V1-V2|/[(V1+V2)/2])*100 where V1,V2 = concentrations of parent and duplicate sample, respectively.

RPDs have only been calculated where a concentration is greater than 5 times the RDL. RPD

1 of 2 Table 5 - Soil Vapour QAQC.xlsx

Table 5: Soil Vapour Quality Assurance/Quality Control Analytical Results

		Field ID	VW-01	19DUP01	
		Sample Date	4-Dec-2019	4-Dec-2019	
	1	Lab Report Number	L2393610	L2393610	RPD (%)
		Laboratory ID	L2393610-1 / L2393610-4	L2393610-3	
Parameter	Unit	RDL			
Volatile Organic Compounds (VOCs)	<u> </u>	l l			
Heptane	μg/m ³	0.82	1.41	1.25	-
Hexachlorobutadiene	μg/m ³	2.1	<2.1	<2.1	-
Hexane	μg/m ³	0.7	2.75	2.5	-
Isooctane	μg/m ³	0.93	< 0.93	<0.93	-
iso-Propylbenzene (cumene)	μg/m ³	0.98	<0.98	<0.98	-
Methyl t-Butyl Ether (MTBE)	μg/m ³	0.72	<0.72	<0.72	-
Methylene Chloride	μg/m ³	0.69	<0.69	<0.69	-
Propene	μg/m ³	0.34	<0.34	<0.34	-
Tetrachloroethene	μg/m ³	1.4	<1.4	<1.4	-
Tetrahydrofuran	μg/m ³	0.59	<0.59	<0.59	-
Trichloroethene	μg/m ³	1.1	<1.1	<1.1	-
Trichlorofluoromethane	μg/m ³	1.1	<1.1	<1.1	-
Vinyl acetate	μg/m ³	1.8	<1.8	<1.8	-
Vinyl bromide (bromoethene)	μg/m ³	0.87	<0.87	<0.87	-
Vinyl chloride	μg/m ³	0.51	<0.51	<0.51	-

Not analyzed or RPD not calculated.

Concentration is less than the laboratory detection limit indicated.

RDL Laboratory Reportable Detection Limit.

RPD is Relative Percentage Difference calculated as RPD(%)=(|V1-V2|/[(V1+V2)/2])*100 where V1,V2 = concentrations of parent and duplicate sample, respectively. RPDs have only been calculated where a concentration is greater than 5 times the RDL. RPD

rabie	6: Chemical, Physic	TC	RsC	H'	D _{air}	D _{water}	BAF		MF	
	Parameter	Tolerable Concentration	Risk-specific concentration	Unitless Henry's Law Constant	Pure component molecular diffusivity in air	Pure component molecular diffusivity in water	Bioattenuation Factor	Mass Fraction in Soil (Coarse and Fine)	Mass Fraction in Soil Vapour - Coarse Soil	Mass Fraction in Soil Vapour - Fine Soil
_	Units	mg/m ³	mg/m ³	unitless	cm ² /s	cm ² /s	unitless	unitless	unitless	unitless
Benzer Toluene		3.8	0.003	0.225 0.274	0.088 0.087	1.00E-05 9.20E-06	10 10			
Ethylbe		1		0.358	0.087	8.50E-06	10			
Xylenes		0.18		0.252	0.078	9.90E-06	10			
Naphth		0.003		0.017	0.059	7.50E-06	10			
F1	Aliphatic C>6-C8	18.4		50	0.05	0.00001	10	0.55	0.854	0.842
	Aliphatic C>8-C10	1		80	0.05	0.00001	10	0.36	0.141	0.153
	Aromatic C>8-C10	0.2		0.48	0.05	0.00001	10	0.09	0.005	0.005
F2	Aliphatic C>10-C12	1		120	0.05	0.00001	10	0.36	0.767	0.766
	Aliphatic C>12-C16 Aromatic C>10-C12	0.2		520 0.14	0.05 0.05	0.00001 0.00001	10 10	0.44	0.205 0.023	0.206 0.023
	Aromatic C>10-C12	0.2		0.053	0.05	0.00001	10	0.09	0.025	0.023
1.1.1-T	richloroethane	5		0.688	0.078	0.000009	10			
	-Tetrachloroethane		0.000172	0.019	0.071	0.000008	10			
	richloroethane	0.0002	0.000625	0.038	0.078	0.000009	10			
1,1-Dic	hloroethane	-	0.006250	0.240	0.074	0.000011	10			
1,1-Dic	hloroethene	0.2		0.942	0.090	0.000010	10			
, ,	richlorobenzene	0.007		0.112	0.030	0.000008	10			
	rimethylbenzene	0.06		0.230	0.061	0.000008	10			
	romoethane	0.0093	0.016700	0.027	0.022	0.000012	10			
,	hlorobenzene hloroethane	0.2	0.000385	0.072 0.049	0.069 0.104	0.000008 0.000010	10 10			
	hloropropane	0.007	0.000385	0.049	0.104	0.000010	10			
	rimethylbenzene	0.06		0.359	0.060	0.000009	10			
	adiene	0.002	0.000333	3.009	0.249	0.000011	10			
1,3-Dic	hlorobenzene	0.095	0.000909	0.128	0.069	0.000008	10			
1,4-Dic	hlorobenzene	0.095	0.000909	0.098	0.069	0.000008	10			
1,4-Dio	xane	0.03	0.002000	0.000	0.229	0.000010	10			
2-Hexa	none	0.03		0.004	0.070	0.000008	10			
Aceton		31		0.002	0.124	0.000011	10			
Allyl ch		0.001		0.450	0.094	0.000011	10			
	chloride	0.001		0.017	0.075	0.000008	10			
Bromot	dichloromethane		0.000270	0.098 0.024	0.030	0.000011	10 10			
	nethane	0.005	0.009091	0.024	0.015 0.073	0.000010 0.000012	10			
	Disulfide	0.7		0.705	0.104	0.000012	10			
	Tetrachloride	0.1	0.001667	1.183	0.078	0.000009	10			
	penzene	0.01		0.148	0.073	0.000009	10			
Chloroe	ethane	1		0.073	0.271	0.000012	10			
Chlorof		0.098	0.000435	0.154	0.104	0.000010	10			
	methane	0.09		0.388	0.126	0.000007	10			
,	Dichloroethene	0.007		0.302	0.074	0.000011	10			
	Dichloropropene	0.02	0.002500	0.053	0.087	0.000010	10			
Cycloh	exane ochloromethane	0.07		7.618 0.040	0.080 0.020	0.000009 0.000011	10 10			
	odifluoromethane	0.07		16.475	0.020	0.000011	10			
	toluene	0.40		0.205	0.065	0.00007	10			
Ethyl a		0.07		0.006	0.067	0.000010	10			
Freon 1		5		21.500	0.038	0.000009	10			
Freon 1	114	17		115.000	0.082	0.000009	10			
Heptan	е	0.4		83.709	0.065	0.000007	10			
	lorobutadiene		0.000455	0.421	0.027	0.000007	10			
Isoocta		0.4		30.500	0.060	0.000007	10			
	oyl alcohol	0.2		0.000331	0.103	0.000011	10			
	oylbenzene	0.4		0.591	0.065	0.000007	10			
	ethyl ketone isobutyl ketone	0.003		0.001 0.006	0.081 0.075	0.000010 0.000008	10 10			
	ene chloride	0.003	1	0.006	0.075	0.000008	10			
MTBE	omondo	0.037		0.028	0.101	0.000012	10			
n-Hexa	ne	0.7		73.916	0.200	0.000008	10			
Propyle		3		8.013	0.110	0.000011	10			
Styrene		0.092		0.130	0.071	0.000008	10			
	loroethylene	0.36	0.038462	1.077	0.072	0.000008	10			
	/drofuran	2		0.003	0.099	0.000011	10			
	,2-Dichloroethene			0.277	0.071	0.000012	10			
	,3-Dichloropropene	0.02	0.002500	0.053	0.087	0.000010	10			
	roethylene	0.04	0.002439	0.477	0.079	0.000009	10			
Vinyl a	rofluoromethane	1.05 0.2		5.200 0.024	0.087 0.085	0.000010 0.000009	10 10			
Vinyl at		0.003		0.024	0.065	0.000009	10			
Vinyl ch		0.003	0.002273	3.236	0.106	0.000012	10			
	en Sulfide	0.002		0.350	0.188	0.000012	10			
Notes:	· · · · · · · · · · · · · · · · · · ·		<u> </u>		1		· · ·	1	<u> </u>	1

cm²/s Square centimetres per second.

F1 Fraction 1 (C6-C10). F2 Fraction 2 (C>10-C16).

mg/m³ Milligrams per cubic metre.

PHC Petroleum hydrocarbon.

-- Not applicable.

References: Canadian Council of Ministers of the Environment (CCME). 2014. A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures via Inhalation of Vapours.

Table 7: Soil Properties for Evaluation of Vapour Transport

	Parameter	Units	Coarse-Grained Soil	Fine-Grained Soil
θ_{a}	Vapour-filled porosity	unitless	0.31	0.303
$ ho_{b}$	Dry bulk density	g/cm ³	1.7	1.4
n	Total soil porosity	unitless	0.36	0.47
θ_{w}	Moisture-filled porosity	unitless	0.05	0.167
Q_{soil}	Soil gas flow rate	cm ³ /s	167	16.7

Values from CCME (2014).

cm Centimetre.

cm² Square centimetre.

g/cm³ Grams per cubic centimetre.

PHC Petroleum hydrocarbon.

References: Canadian Council of Ministers of the Environment (CCME). 2014. A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures via Inhalation of Vapours.

Table 8: Building Properties for Evaluation of Vapour Transport

	Parameter	Units	Residential Land Use
	raidilletei	Units	Basement
L _B	Building length	cm	1,225
W_B	Building width	cm	1,225
A _B	Building area exposed to soil, including basement wall area	cm ²	2.7E+06
H _B	Building height	cm	360
L _{crack}	Thickness of the foundation	cm	11.25
A _{crack}	Area of cracks through which contaminant vapours enter the building	cm ²	994.5
ACH	Air exchanges per hour	h ⁻¹	0.5

Values taken from CCME (2014).

cm Centimetre.

cm² Square centimetre.

h⁻¹ Per hour.

References: Canadian Council of Ministers of the Environment (CCME). 2014. A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures via Inhalation of Vapours.

Table 9: Calculated Generic Soil Vapour Criteria

Daramatar		Residential		ado
Parameter	l luite	Basement and		T
Donzono	Units	Coarse-Grained	Units	Coarse-Grained
Benzene Toluene		0.195 124		124,220
Ethylbenzene		34		34,330
Xylenes		6		6,330
PHC F1		867		867,380
PHC F2		53		52,500
		0.112		112
Naphthalene		6.22		6,219
Isopropanol 1,1,1-Trichloroethane		1,694		= <u>'</u>
1,1,2,2-Tetrachloroethane		0.01		1,693,510
1,1,2-Trichloroethane		0.01		7
1,1-Dichloroethane		0.43		430
1,1-Dichloroethene		6.47		6,470
1,2,4-Trichlorobenzene		0.36		365
1,2,4-Trimethylbenzene		2.23		2,235
1,2-Dibromoethane		0.59		590
1,2-Dichlorobenzene		7.07		7,072
1,2-Dichloroethane		0.02		24
1,2-Dichloroethene (cis)		0.02		242
1,2-Dichloroethene (trans)		NG		NG
1,2-Dichloropropane		0.14		135
1,3,5-Trimethylbenzene		2.23		2,235
1,3-Butadiene		0.02		17
1,3-Dichlorobenzene		0.02		64
1,3-Dichloropropene [cis]		0.16		163
1,3-Dichloropropene [trans]		0.15		149
1,4-Dichlorobenzene		0.06		64
1,4-Dioxane		0.11		105
1-Methyl-4 ethyl benzene		14.46		14,461
2-Butanone (MEK)		167		167,364
2-Hexanone (MBK)		1.05		1,053
4-Methyl-2-pentanone (MIBK)		0.1		103
Acetone		919		918,788
Allyl chloride	mg/m ³	0.03	μg/m³	32
Benzyl chloride		0.03		34
Bromodichloromethane		0.03		28
Bromoform		1.49		1,494
Bromomethane		0.17		173
Carbon disulfide		21.71		21,713
Carbon tetrachloride		0.11		113
Chlorobenzene		0.35		347
Chloroethane		31		31,019
Chloroform		0.03		27
Chloromethane		2.66		2,657
Cyclohexane		202		201,510
Dibromochloromethane		4.75		4,750
Dichlorodifluoromethane		3.58		3,584
Ethyl acetate		2.51		2,509
Freon 113		231		230,627
Freon 114		566.00		566,335
Heptane		14.46		14,461
Hexachlorobutadiene		0.05		51
Hexane		18.84		18,839
Isooctane		14.92		14,917
iso-Propylbenzene (cumene)		14.46		14,461
Methyl t-Butyl Ether (MTBE)		1.15		1,153
Methylene Chloride		18.76		18,764
Propylene		92		91,723
Styrene		3.22		3,220
Tetrachloroethene		2.68		2,679
Tetrahydrofuran		62.83		62,828
Trichloroethene		0.15		153
Trichlorofluoromethane		34.32		34,325
Vinyl acetate		6.59		6,586
Vinyl bromide (bromoethene)		0.09		94
Vinyl chloride		0.14		140

mg/m³ Milligrams per cubic metre. μg/m³ Micrograms per cubic metre.

1

Table 10: Soil Vapour Risk Evaluation

	Soil Vapour		Soil Vapour Results (µg/m³)			Comparisons of Soil Vapour Measurements to Soil Vapour Criteria						
Parameter	Unit	Unit Screening Criteria a			(r-3····)	Est	Estimated Cancer Risk ^b			Estimated Hazard Quotients ^c		
			VW-01	19DUP01	VW-02	VW-01	19DUP01	VW-02	VW-01	19DUP01	VW-02	
Benzene	μg/m ³	195	<0.64	<0.64	9.47	ND	ND	4.9E-07				
Toluene	μg/m ³	124,220	<0.75	<0.75	2.04	-	-	-	ND	ND	1.64E-05	
Xylenes, Total	μg/m ³	6,330	<2.0	<2.0	4.0	-	-	-	ND	ND	6.32E-04	
F1 (C ₆ -C ₁₀)	μg/m ³	867,383	53	33	300	-	-	-	6.11E-05	3.80E-05	3.46E-04	
F2 (C ₁₀ -C ₁₆)	μg/m ³	52,495	61	63	421	-	-	-	1.16E-03	1.20E-03	8.02E-03	
Aliphatics (C ₆ -C ₈)	μg/m ³	740,737	22	17	43	-	-	-	2.97E-05	2.30E-05	5.81E-05	
Aliphatics (>C ₈ -C ₁₀)	μg/m ³	40,257	33	24	253	-	-	-	8.20E-04	5.96E-04	6.28E-03	
Aliphatics (>C ₁₀ -C ₁₂)	μg/m ³	40,257	27	25	292	-	-	-	6.71E-04	6.21E-04	7.25E-03	
Acetone	μg/m ³	918,788	2.3	2.7	18.5	-	-	-	2.50E-06	2.94E-06	2.01E-05	
Chloroform	µg/m³	3,040 / 27 ^e	1.70	1.52	<0.98	6.3E-07	5.6E-07	ND	5.59E-04	5.00E-04	ND	
Chloromethane	μg/m ³	2,657	<0.41	<0.41	1.78	-	-	-	ND	ND	6.70E-04	
Dichlorodifluoromethane	μg/m ³	3,584	1.86	1.88	1.86	-	-	-	5.19E-04	5.25E-04	5.19E-04	
Heptane	μg/m ³	14,461	1.41	1.25	<0.82	-	-	=	9.75E-05	8.64E-05	ND	
Hexane	μg/m ³	18,839	2.75	2.5	0.98	-	-	-	1.46E-04	1.33E-04	5.20E-05	
Tetrahydrofuran	μg/m ³	62,828	<0.59	<0.59	1.53	-	-	-	ND	ND	2.44E-05	
		ative Risk and Ha	zard Index ^d			6.3E-07	5.6E-07	4.9E-07	0.004	0.004	0.024	
	Targ	et Risk and Haza	rd Levels				1.0 x 10 ⁻⁵			1.00		

Notes:

Bold = identifies estimated risks and hazards that exceed the target risk level of 1 x 10⁻⁵ or target hazard level of 1.

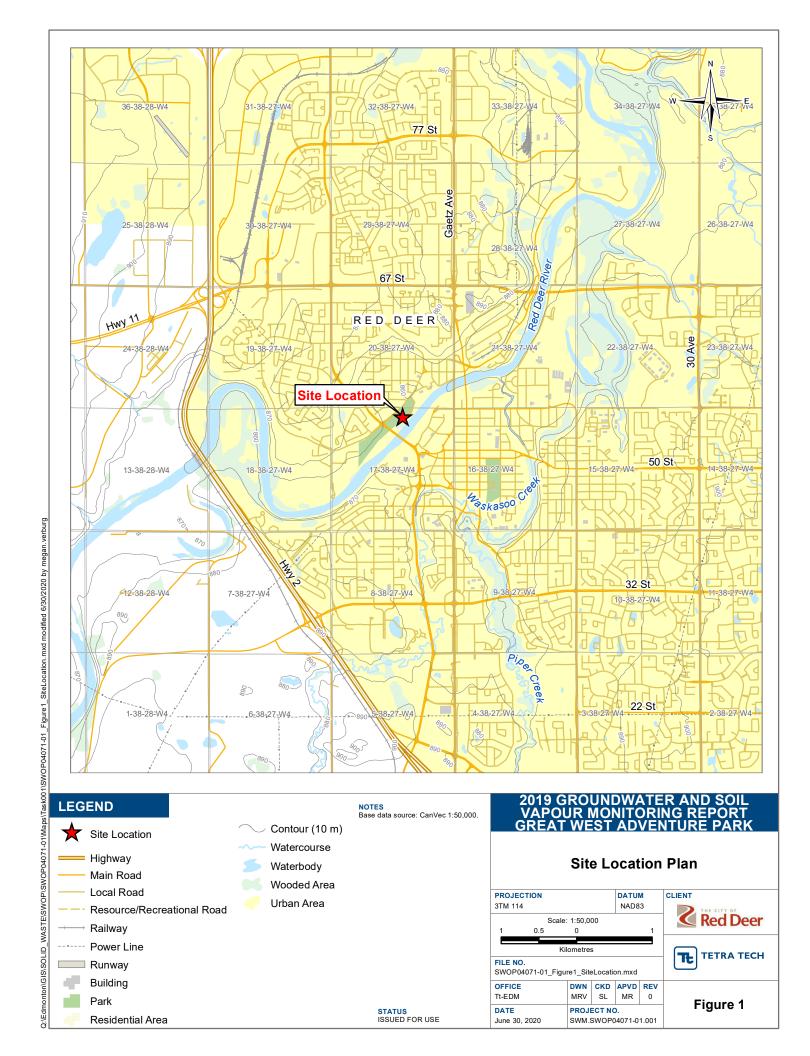
< - not detected. Listed value is the corresponding detection limit.

^{- =} screening criteria not calculated as appropriate toxicity data not available.

^a Listed soil vapour screening criteria derived in accordance with CCME, 2014.

^b Estimated cancer risk = (soil vapour concentration/cancer soil vapour screening level) x 10⁻⁵.

^c Estimated hazard quotient = (soil vapour concentration/non-cancer soil vapour screening level).


^d Cumulative risk and hazard index represent the sum of chemical-specific cancer risks and hazard quotients.

e Soil vapour screening criteria shows both the threshold criteria and non-threshold criteria. Target risk and hazard levels are calculated with the appropriate criteria.

FIGURES

igure 1	Site Location Plan
Figure 2	Site Plan and Surrounding Land Use
Figure 3	Historical Groundwater Elevations (Groundwater Monitoring Wells
Figure 4	Groundwater Elevation Contours – June 2019
igure 5	Groundwater Elevation Contours – December 2019

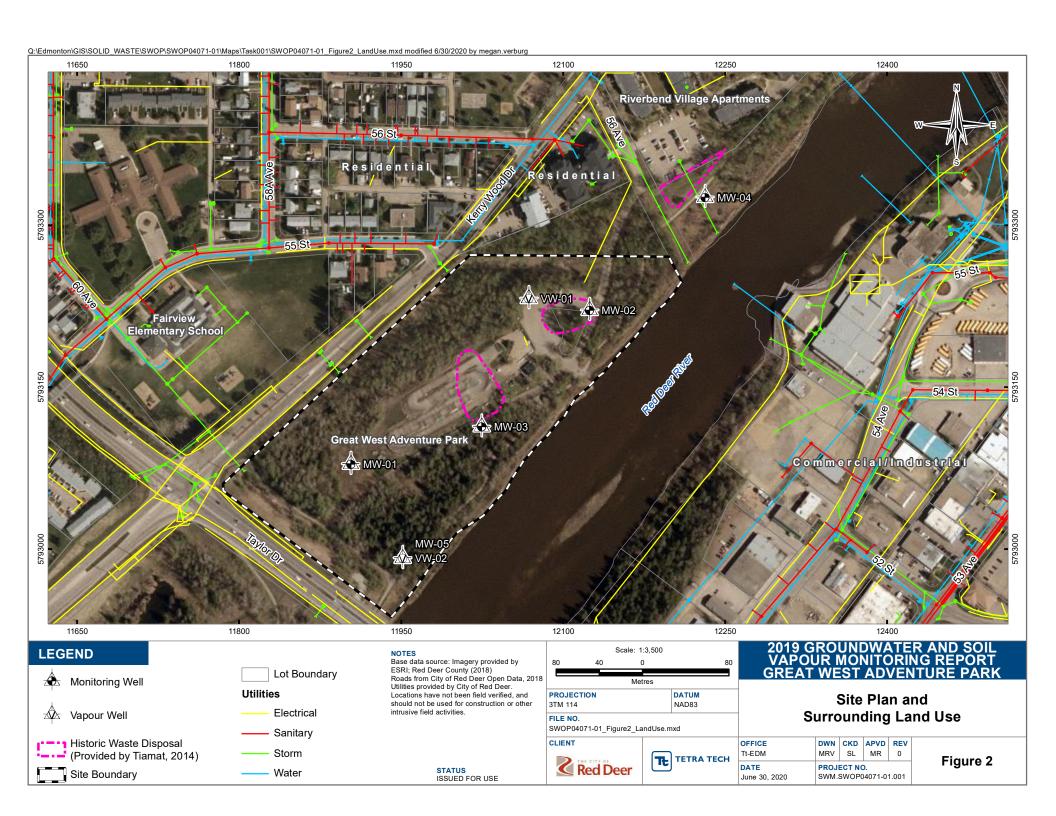
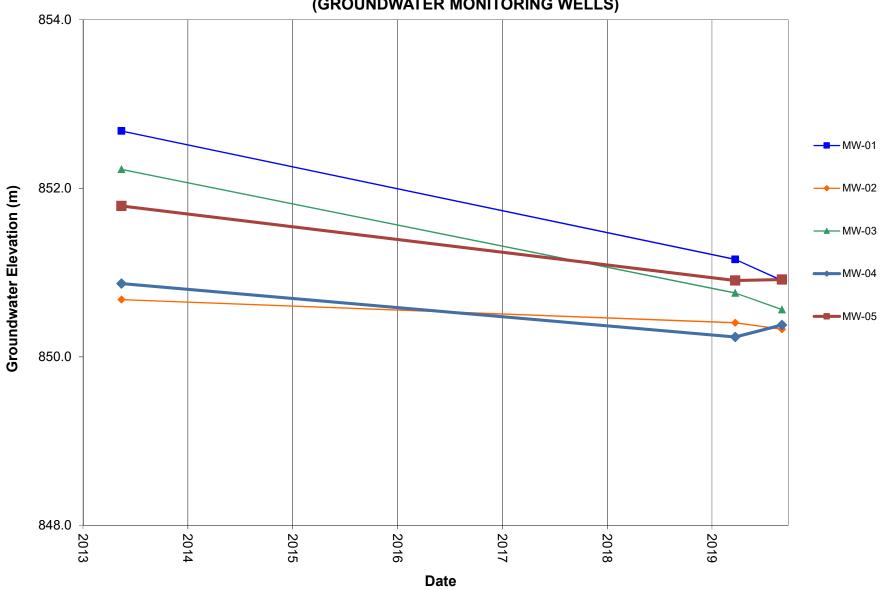



FIGURE 3
HISTORICAL GROUNDWATER ELEVATIONS
(GROUNDWATER MONITORING WELLS)

APPENDIX A

TETRA TECH'S LIMITATIONS ON THE USE OF THIS DOCUMENT

LIMITATIONS ON USE OF THIS DOCUMENT

GEOENVIRONMENTAL

1.1 USE OF DOCUMENT AND OWNERSHIP

This document pertains to a specific site, a specific development, and a specific scope of work. The document may include plans, drawings, profiles and other supporting documents that collectively constitute the document (the "Professional Document").

The Professional Document is intended for the sole use of TETRA TECH's Client (the "Client") as specifically identified in the TETRA TECH Services Agreement or other Contractual Agreement entered into with the Client (either of which is termed the "Contract" herein). TETRA TECH does not accept any responsibility for the accuracy of any of the data, analyses, recommendations or other contents of the Professional Document when it is used or relied upon by any party other than the Client, unless authorized in writing by TETRA TECH.

Any unauthorized use of the Professional Document is at the sole risk of the user. TETRA TECH accepts no responsibility whatsoever for any loss or damage where such loss or damage is alleged to be or, is in fact, caused by the unauthorized use of the Professional Document.

Where TETRA TECH has expressly authorized the use of the Professional Document by a third party (an "Authorized Party"), consideration for such authorization is the Authorized Party's acceptance of these Limitations on Use of this Document as well as any limitations on liability contained in the Contract with the Client (all of which is collectively termed the "Limitations on Liability"). The Authorized Party should carefully review both these Limitations on Use of this Document and the Contract prior to making any use of the Professional Document. Any use made of the Professional Document by an Authorized Party constitutes the Authorized Party's express acceptance of, and agreement to, the Limitations on Liability.

The Professional Document and any other form or type of data or documents generated by TETRA TECH during the performance of the work are TETRA TECH's professional work product and shall remain the copyright property of TETRA TECH.

The Professional Document is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of TETRA TECH. Additional copies of the Document, if required, may be obtained upon request.

1.2 ALTERNATIVE DOCUMENT FORMAT

Where TETRA TECH submits electronic file and/or hard copy versions of the Professional Document or any drawings or other project-related documents and deliverables (collectively termed TETRA TECH's "Instruments of Professional Service"), only the signed and/or sealed versions shall be considered final. The original signed and/or sealed electronic file and/or hard copy version archived by TETRA TECH shall be deemed to be the original. TETRA TECH will archive a protected digital copy of the original signed and/or sealed version for a period of 10 years.

Both electronic file and/or hard copy versions of TETRA TECH's Instruments of Professional Service shall not, under any circumstances, be altered by any party except TETRA TECH. TETRA TECH's Instruments of Professional Service will be used only and exactly as submitted by TETRA TECH.

Electronic files submitted by TETRA TECH have been prepared and submitted using specific software and hardware systems. TETRA TECH makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

1.3 STANDARD OF CARE

Services performed by TETRA TECH for the Professional Document have been conducted in accordance with the Contract, in a manner

consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions in the jurisdiction in which the services are provided. Professional judgment has been applied in developing the conclusions and/or recommendations provided in this Professional Document. No warranty or guarantee, express or implied, is made concerning the test results, comments, recommendations, or any other portion of the Professional Document.

If any error or omission is detected by the Client or an Authorized Party, the error or omission must be immediately brought to the attention of TETRA TECH.

1.4 DISCLOSURE OF INFORMATION BY CLIENT

The Client acknowledges that it has fully cooperated with TETRA TECH with respect to the provision of all available information on the past, present, and proposed conditions on the site, including historical information respecting the use of the site. The Client further acknowledges that in order for TETRA TECH to properly provide the services contracted for in the Contract, TETRA TECH has relied upon the Client with respect to both the full disclosure and accuracy of any such information.

1.5 INFORMATION PROVIDED TO TETRA TECH BY OTHERS

During the performance of the work and the preparation of this Professional Document, TETRA TECH may have relied on information provided by persons other than the Client.

While TETRA TECH endeavours to verify the accuracy of such information, TETRA TECH accepts no responsibility for the accuracy or the reliability of such information even where inaccurate or unreliable information impacts any recommendations, design or other deliverables and causes the Client or an Authorized Party loss or damage.

1.6 GENERAL LIMITATIONS OF DOCUMENT

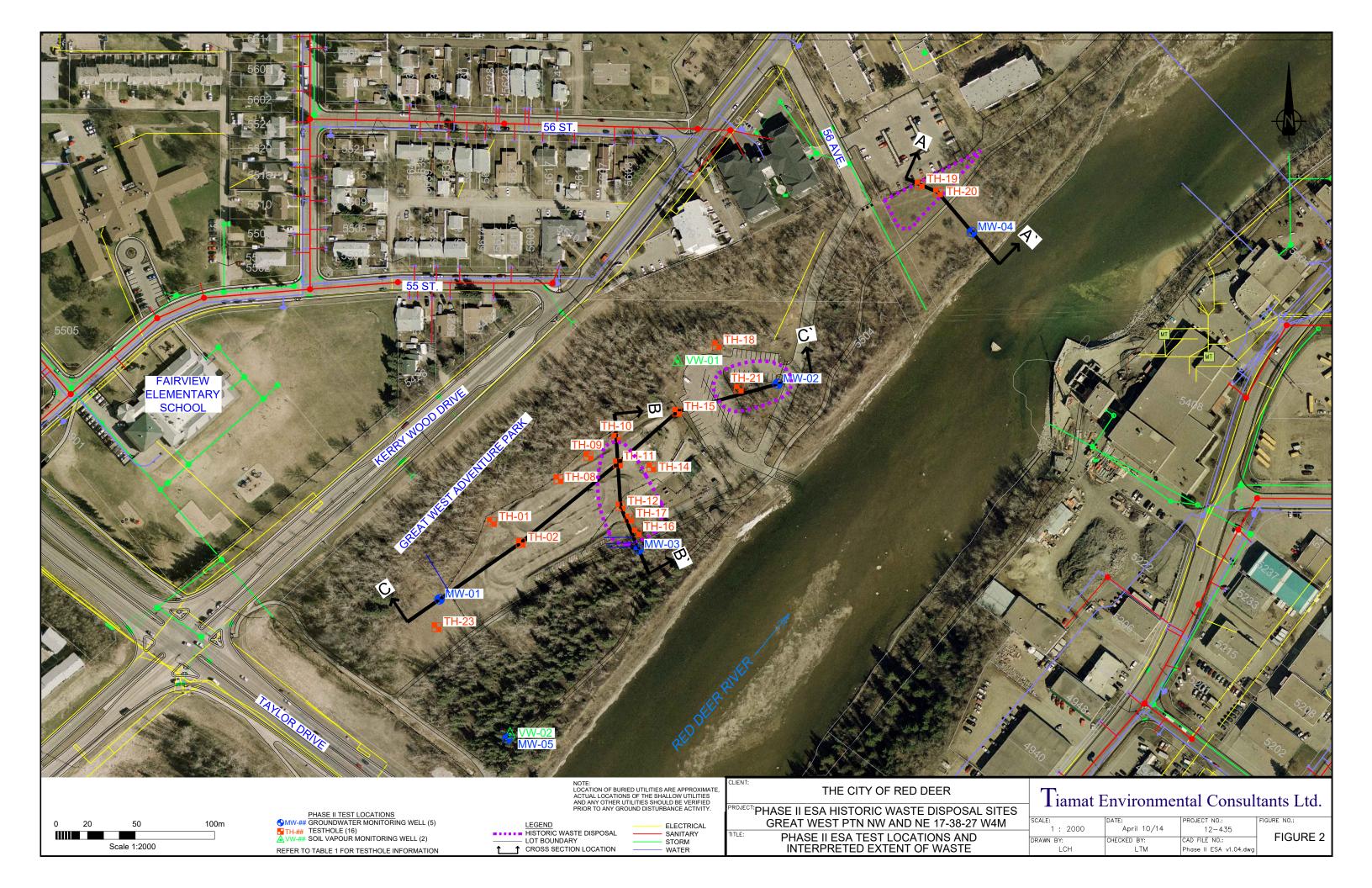
This Professional Document is based solely on the conditions presented and the data available to TETRA TECH at the time the data were collected in the field or gathered from available databases.

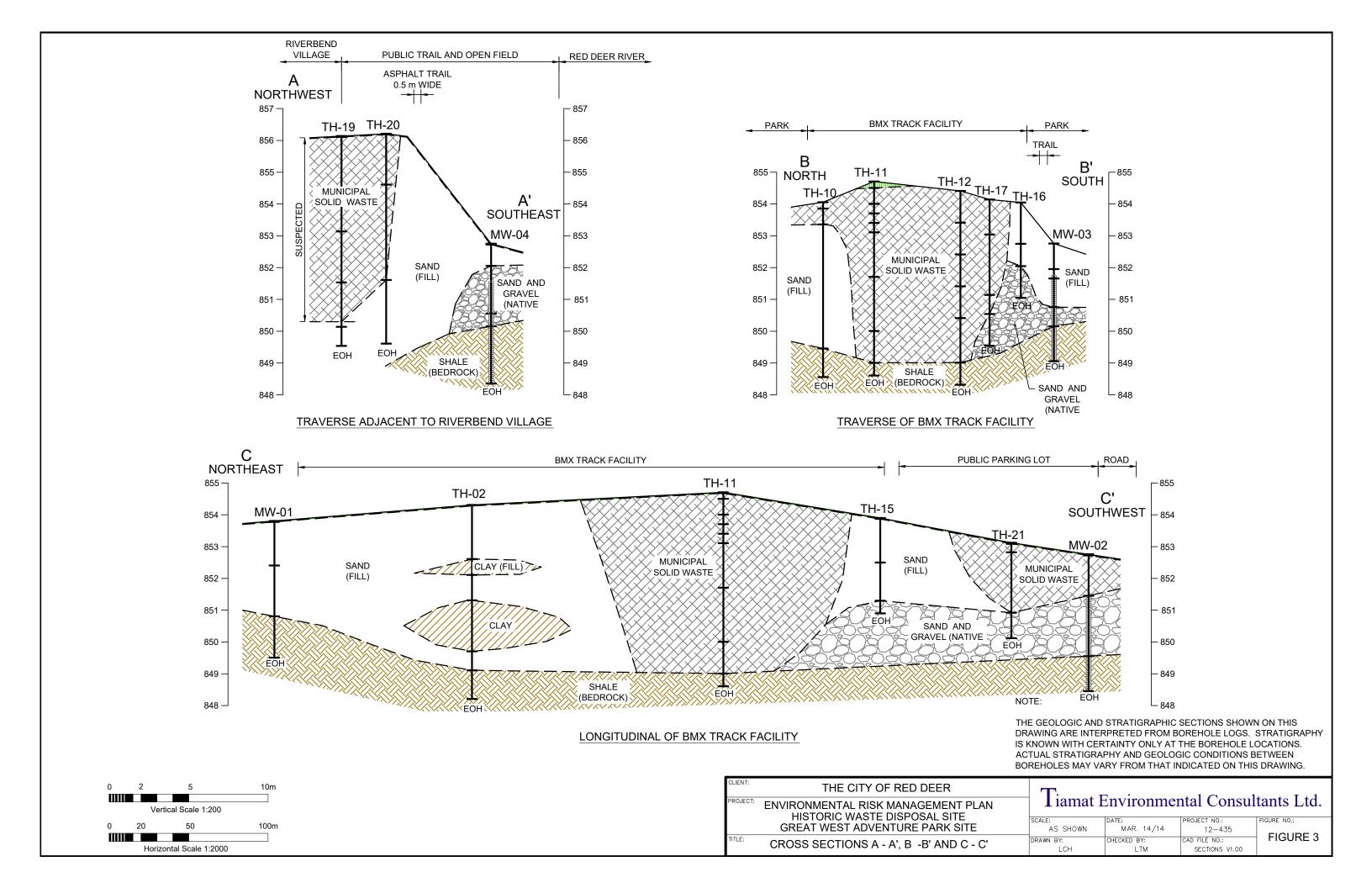
The Client, and any Authorized Party, acknowledges that the Professional Document is based on limited data and that the conclusions, opinions, and recommendations contained in the Professional Document are the result of the application of professional judgment to such limited data.

The Professional Document is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site conditions present, or variation in assumed conditions which might form the basis of design or recommendations as outlined in this report, at or on the development proposed as of the date of the Professional Document requires a supplementary investigation and assessment.

TETRA TECH is neither qualified to, nor is it making, any recommendations with respect to the purchase, sale, investment or development of the property, the decisions on which are the sole responsibility of the Client.

1.7 NOTIFICATION OF AUTHORITIES


In certain instances, the discovery of hazardous substances or conditions and materials may require that regulatory agencies and other persons be informed and the client agrees that notification to such bodies or persons as required may be done by TETRA TECH in its reasonably exercised discretion.



APPENDIX B

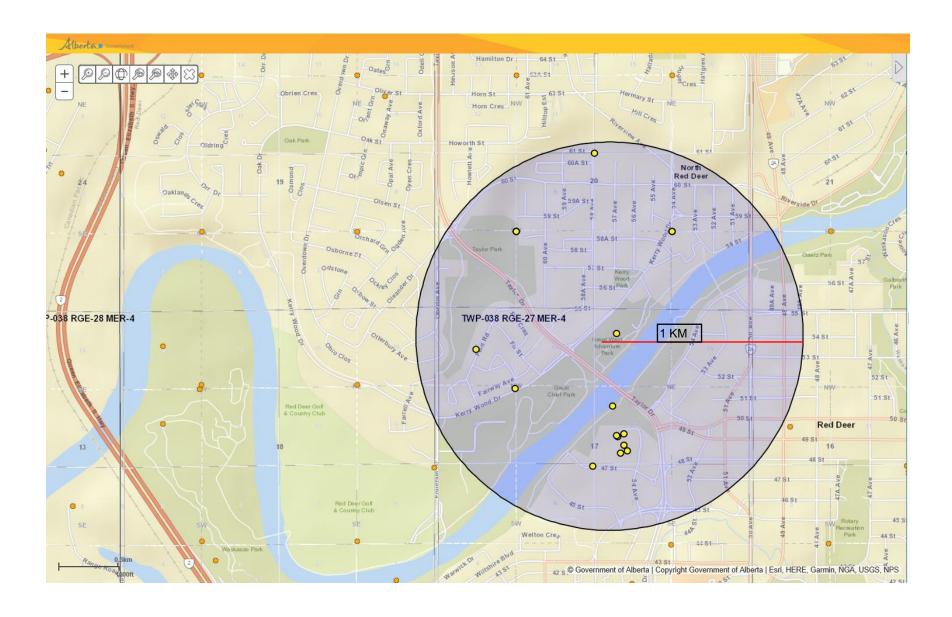
CROSS-SECTIONS (TIAMAT 2014A)

APPENDIX C

WATER WELL DATA

Reconnaissance Report

View in Metric


Export to Excel

Groundwater Wells

Please click the water Well ID to generate the Water Well Drilling Report.

GIC Well ID	LSD	SEC	TWP	RGE	М	DRILLING COMPANY	DATE COMPLETED	DEPTH (ft)	TYPE OF WORK	USE	СНМ	LT	PT	WELL OWNER	STATIC LEVEL (ft)	TEST RATE (igpm)	SC_DIA (in)
96216	NW	17	38	27	4	FORRESTER DRILLING	1977-05-03	135.00	New Well	Domestic		9		MURRAY, JOHN	15.00	20.00	7.00
<u>96217</u>	13	17	38	27	4	OTHER	1960-10-07	190.00	New Well	Unknown		3	2	FRIESEN, BEN	66.00	4.00	4.00
<u>96218</u>		17	38	27	4	MCDONNEL & SCHMIDT	1960-06-01	130.00	New Well	Industrial		8	2	PINEWOOD INDUSTRIES	79.00	10.00	4.50
<u>96268</u>	SE	20	38	27	4	UNKNOWN DRILLER		150.00	Chemistry	Domestic	1			SIMS AUCTION MART			0.00
<u>96269</u>	SE	20	38	27	4	UNKNOWN DRILLER		0.00	Chemistry	Domestic				ST JOSEPH'S CONVENT			0.00
<u>96270</u>	SW	20	38	27	4	COMFORT DRLG	1972-11-18	170.00	New Well	Domestic		8		SCHMIDT, PETER	80.00	7.00	4.50
<u>96271</u>	SW	20	38	27	4	UNKNOWN DRILLER		90.00	Chemistry	Domestic	1			CURZON, W.B.	60.00		0.00
<u>96272</u>	SW	20	38	27	4	UNKNOWN DRILLER		0.00	Chemistry	Domestic				LEES, W.			0.00
96273	SW	20	38	27	4	FORRESTER DRILLING	1963-10-09	75.00	New Well	Domestic		5		BOURNE, DAVID	20.00	30.00	7.00
<u>96276</u>		20	38	27	4	FORRESTER DRILLING	1972-02-16	100.00	New Well	Domestic		5	1	RED DEER, CITY OF	56.00	15.00	5.50
<u>1590215</u>	15	17	38	27	4	PARSONS WATER WELLS LTD (o/a AMA Drilling)	1986-07-12	25.00	New Well	Other		3		CITY OF RED DEER	13.00	100.00	32.00
<u>9826058</u>	10	17	38	27	4	ALTAIR WATER AND DRILLING SERVICES INC.			Existing Well- Decommissioned	Unknown				CITY OF RED DEER			
<u>9826059</u>	10	17	38	27	4	ALTAIR WATER AND DRILLING SERVICES INC.			Existing Well- Decommissioned	Unknown				CITY OF RED DEER			
<u>9826060</u>	10	17	38	27	4	ALTAIR WATER AND DRILLING SERVICES INC.			Existing Well- Decommissioned	Unknown				CITY OF RED DEER			
<u>9826061</u>	10	17	38	27	4	ALTAIR WATER AND DRILLING SERVICES INC.			Existing Well- Decommissioned	Unknown				CITY OF RED DEER			
9826062	10	17	38	27	4	ALTAIR WATER AND DRILLING SERVICES INC.			Existing Well- Decommissioned	Unknown				CITY OF RED DEER			
9826063	10	17	38	27	4	ALTAIR WATER AND DRILLING SERVICES INC.			Existing Well- Decommissioned	Unknown				CITY OF RED DEER			
9826064	10	17	38	27	4	ALTAIR WATER AND DRILLING SERVICES INC.			Existing Well- Decommissioned	Unknown				CITY OF RED DEER			

Printed on 1/23/2020 1:46:30 PM Page: 1 / 1

APPENDIX D

LABORATORY ANALYTICAL REPORTS

TETRA TECH CANADA INC.

ATTN: Darby Madalena

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Date Received: 06-DEC-19

Report Date: 27-DEC-19 16:13 (MT)

Version: FINAL

Client Phone: 403-203-3355

Certificate of Analysis

Lab Work Order #: L2393423

Project P.O. #:

SWOP04071-01.001

Job Reference:

SWOP04071-01.001

C of C Numbers:

GREAT WEST

Legal Site Desc:

Inayat Dhaliwal Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298

ALS CANADA LTD | Part of the ALS Group | An ALS Limited Company

L2393423 CONTD.... PAGE 2 of 18 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393423-1 MW-01							
Sampled By: RYAN MILLER on 05-DEC-19 @ 10:45							
Matrix: WATER F1 (C6-C10) and F2 (>C10-C16)							
CCME F2-4 Hydrocarbons							
F2: (C10-C16)	<0.10		0.10	mg/L	16-DEC-19	17-DEC-19	R4944846
Surrogate: 2-Bromobenzotrifluoride	67.9		60-140	%	16-DEC-19	17-DEC-19	R4944846
F1 (C6-C10)	07.0		00 110		10 020 10	., 520 .0	111011010
F1(C6-C10)	<0.10		0.10	mg/L		10-DEC-19	R4938070
F1-BTEX	<0.10		0.10	mg/L		10-DEC-19	R4938070
Surrogate: 3,4-Dichlorotoluene	97.3		70-130	%		10-DEC-19	R4938070
Miscellaneous Parameters							
AOX	ND U		10	mg/L		12-DEC-19	R4955245
Ammonia, Total (as N)	0.231		0.050	mg/L		16-DEC-19	R4943991
Dissolved Organic Carbon	9.9		1.0	mg/L		13-DEC-19	R4943327
Xylenes	<0.00071		0.00071	mg/L		16-DEC-19	
Total Kjeldahl Nitrogen	3.1	DLM	1.0	mg/L		12-DEC-19	R4943090
Phosphorus (P)-Total	1.27	DLHC	0.10	mg/L		13-DEC-19	R4943276
Volatile fatty/carboxylic acids	'		3.13	gr.c			
Formic Acid	<50	DLM	50	mg/L		14-DEC-19	R4943956
Acetic Acid	<10		10	mg/L		14-DEC-19	R4943956
Propionic Acid	<5.0		5.0	mg/L		14-DEC-19	R4943956
Butyric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Isobutyric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Valeric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Isovaleric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Caproic (Hexanoic) Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Major Ions & Trace Dissolved Metals							
Chloride in Water by IC							
Chloride (CI)	267	DLHC	2.5	mg/L	ļ	07-DEC-19	R4942649
Dissolved Mercury in Water by CVAAS						40.050.40	
Mercury (Hg)-Dissolved	<0.000050		0.0000050	mg/L		13-DEC-19	R4943011
Dissolved Mercury Filtration Location	FIELD					13-DEC-19	R4942998
Dissolved Metals in Water by CRC ICPMS Dissolved Metals Filtration Location	EIEL D					09-DEC-19	D4020407
Aluminum (Al)-Dissolved	FIELD 0.0112	DLDS	0.0050	mg/L		09-DEC-19	R4938487 R4937828
Antimony (Sb)-Dissolved	<0.0050	DLDS	0.00050	mg/L		09-DEC-19	R4937828
Arsenic (As)-Dissolved	0.00208	DLDS	0.00050	mg/L		09-DEC-19	R4937828
Barium (Ba)-Dissolved	0.224	DLDS	0.00050	mg/L		09-DEC-19	R4937828
Boron (B)-Dissolved	0.057	DLDS	0.050	mg/L		09-DEC-19	R4937828
Cadmium (Cd)-Dissolved	0.000049	DLDS	0.000025	mg/L		09-DEC-19	R4937828
Calcium (Ca)-Dissolved	173	DLDS	0.25	mg/L		09-DEC-19	R4937828
Chromium (Cr)-Dissolved	<0.00050	DLDS	0.00050	mg/L		09-DEC-19	R4937828
Copper (Cu)-Dissolved	<0.0010	DLDS	0.0010	mg/L		09-DEC-19	R4937828
Iron (Fe)-Dissolved	7.59	DLDS	0.050	mg/L		09-DEC-19	R4937828
Lead (Pb)-Dissolved	<0.00025	DLDS	0.00025	mg/L		09-DEC-19	R4937828
Magnesium (Mg)-Dissolved	43.4	DLDS	0.025	mg/L		09-DEC-19	R4937828
Manganese (Mn)-Dissolved	1.96	DLDS	0.00050	mg/L		09-DEC-19	R4937828
Nickel (Ni)-Dissolved	0.0082	DLDS	0.0025	mg/L		09-DEC-19	R4937828
Potassium (K)-Dissolved	4.04	DLDS	0.25	mg/L		09-DEC-19	R4937828
Selenium (Se)-Dissolved	<0.00025	DLDS	0.00025	mg/L		09-DEC-19	R4937828
Silver (Ag)-Dissolved	<0.000050	DLDS	0.000050	mg/L		09-DEC-19	R4937828
Sodium (Na)-Dissolved	114	DLDS	0.25	mg/L		09-DEC-19	R4937828
Uranium (U)-Dissolved	0.00449	DLDS	0.000050	mg/L		09-DEC-19	R4937828
Zinc (Zn)-Dissolved	<0.0050	DLDS	0.0050	mg/L		09-DEC-19	R4937828

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393423 CONTD.... PAGE 3 of 18 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393423-1 MW-01							
Sampled By: RYAN MILLER on 05-DEC-19 @ 10:45							
Matrix: WATER							
Fluoride in Water by IC Fluoride (F)	<0.10	DLHC	0.10	mg/L		07-DEC-19	R4942649
Ion Balance Calculation							
Ion Balance	99.2			%		16-DEC-19	
TDS (Calculated) Hardness (as CaCO3)	923 611			mg/L		16-DEC-19	
	611			mg/L		16-DEC-19	
Nitrate in Water by IC Nitrate (as N)	<0.10	DLHC	0.10	mg/L		07-DEC-19	R4942649
Nitrate+Nitrite				_			
Nitrate and Nitrite (as N)	<0.11		0.11	mg/L		13-DEC-19	
Nitrite in Water by IC							
Nitrite (as N)	<0.050	DLHC	0.050	mg/L		07-DEC-19	R4942649
Sulfate in Water by IC	GE 4		4.5	m.c./1		07 DEC 40	B4042640
Sulfate (SO4)	65.1	DLHC	1.5	mg/L		07-DEC-19	R4942649
pH, Conductivity and Total Alkalinity pH	7.62		0.10	pН		14-DEC-19	R4943994
Conductivity (EC)	1590		2.0	uS/cm		14-DEC-19	R4943994
Bicarbonate (HCO3)	521		5.0	mg/L		14-DEC-19	R4943994
Carbonate (CO3)	<5.0		5.0	mg/L		14-DEC-19	R4943994
Hydroxide (OH)	<5.0		5.0	mg/L		14-DEC-19	R4943994
Alkalinity, Total (as CaCO3)	427		2.0	mg/L		14-DEC-19	R4943994
EPA 8260 Volatile Organics							
VOCs in Water							
1,1,1,2-Tetrachloroethane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,1,1-Trichloroethane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,1,2,2-Tetrachloroethane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,1,2-Trichloroethane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,1-Dichloroethane 1,1-Dichloroethene	<0.00050	lí	0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,1-Dichloropropene	<0.00050 <0.0010		0.00050 0.0010	mg/L mg/L	10-DEC-19 10-DEC-19	10-DEC-19 10-DEC-19	R4937909 R4937909
1,2,3-Trichlorobenzene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,2,3-Trichloropropane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,2,4-Trichlorobenzene	<0.0010		0.0000	mg/L	10-DEC-19	10-DEC-19	R4937909
1,2,4-Trimethylbenzene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,2-Dibromo-3-chloropropane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,2-Dichlorobenzene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,2-Dichloroethane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,2-Dichloropropane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,3,5-Trimethylbenzene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,3-Dichlorobenzene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,3-Dichloropropane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,4-Dichlorobenzene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
2,2-Dichloropropane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
2-Chlorotoluene 4-Chlorotoluene	<0.0010		0.0010	mg/L	10-DEC-19 10-DEC-19	10-DEC-19 10-DEC-19	R4937909
p-Isopropyltoluene	<0.0010 <0.0010		0.0010 0.0010	mg/L mg/L	10-DEC-19 10-DEC-19	10-DEC-19 10-DEC-19	R4937909 R4937909
Benzene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Bromobenzene	<0.0010		0.00030	mg/L	10-DEC-19	10-DEC-19	R4937909
Bromochloromethane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Bromodichloromethane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Bromoform	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Bromomethane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Carbon tetrachloride	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393423 CONTD.... PAGE 4 of 18 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393423-1 MW-01							
Sampled By: RYAN MILLER on 05-DEC-19 @ 10:45							
Matrix: WATER							
VOCs in Water Chlorobenzene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Chloroethane	<0.0010		0.00030	mg/L	10-DEC-19	10-DEC-19	R4937909
Chloroform	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Chloromethane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
cis-1,2-Dichloroethene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
cis-1,3-Dichloropropene	< 0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Dibromochloromethane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Dibromomethane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Dichlorodifluoromethane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Ethylbenzene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Ethylene dibromide	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Hexachlorobutadiene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Isopropylbenzene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
m+p-Xylenes	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Methylene chloride	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
n-Butylbenzene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
n-Propylbenzene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
o-Xylene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19 10-DEC-19	R4937909
sec-Butylbenzene Styrene	<0.0010		0.0010 0.00050	mg/L	10-DEC-19 10-DEC-19	10-DEC-19	R4937909
tert-Butylbenzene	<0.00050 <0.0010		0.00050	mg/L mg/L	10-DEC-19	10-DEC-19	R4937909 R4937909
Tetrachloroethylene	<0.0010		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909 R4937909
Toluene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
trans-1,2-Dichloroethene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
trans-1,3-Dichloropropene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Trichloroethene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Trichlorofluoromethane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Vinyl chloride	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Surrogate: 1,4-Difluorobenzene	98.9		70-130	%	10-DEC-19	10-DEC-19	R4937909
Surrogate: 4-Bromofluorobenzene	78.3		70-130	%	10-DEC-19	10-DEC-19	R4937909

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393423 CONTD.... PAGE 5 of 18

Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1 2202422 2 MW 02							
L2393423-2 MW-02							
Sampled By: RYAN MILLER on 05-DEC-19 @ 11:50							
Matrix: WATER							
F1 (C6-C10) and F2 (>C10-C16)							
CCME F2-4 Hydrocarbons							
F2: (C10-C16)	<0.10		0.10	mg/L	16-DEC-19	17-DEC-19	R4944846
Surrogate: 2-Bromobenzotrifluoride	60.5		60-140	%	16-DEC-19	17-DEC-19	R4944846
F1 (C6-C10)						40 DEO 40	
F1(C6-C10)	<0.10		0.10	mg/L		10-DEC-19	R4938070
F1-BTEX	<0.10		0.10	mg/L %		10-DEC-19 10-DEC-19	R4938070
Surrogate: 3,4-Dichlorotoluene Miscellaneous Parameters	99.9		70-130	70		10-050-19	R4938070
	No.		40			40.050.40	D4055045
AOX	ND U		10	mg/L		12-DEC-19	R4955245
Ammonia, Total (as N)	0.338		0.050	mg/L		16-DEC-19	R4943991
Dissolved Organic Carbon	7.8		1.0	mg/L		13-DEC-19	R4943327
Xylenes	<0.00071		0.00071	mg/L		16-DEC-19	
Total Kjeldahl Nitrogen	40.9	DLHC	5.0	mg/L		12-DEC-19	R4943090
Phosphorus (P)-Total	12.5	DLHC	0.50	mg/L		13-DEC-19	R4943276
Volatile fatty/carboxylic acids						ľ	
Formic Acid	<50	DLM	50	mg/L		14-DEC-19	R4943956
Acetic Acid	<10		10	mg/L		14-DEC-19	R4943956
Propionic Acid	<5.0		5.0	mg/L		14-DEC-19	R4943956
Butyric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Isobutyric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Valeric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Isovaleric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Caproic (Hexanoic) Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Major Ions & Trace Dissolved Metals							
Chloride in Water by IC		BLUG		_			
Chloride (CI)	233	DLHC	2.5	mg/L	1	07-DEC-19	R4942649
Dissolved Mercury in Water by CVAAS	-0.0000000		0.0000000	no. er/l		42 DEC 40	D4040044
Mercury (Hg)-Dissolved	<0.0000050		0.0000050	mg/L		13-DEC-19 13-DEC-19	R4943011
Dissolved Mercury Filtration Location	FIELD					13-DEC-19	R4942998
Dissolved Metals in Water by CRC ICPMS Dissolved Metals Filtration Location	FIELD					09-DEC-19	R4938487
Aluminum (Al)-Dissolved	0.0157	DLDS	0.0050	mg/L		09-DEC-19	R4937828
Antimony (Sb)-Dissolved	<0.0050	DLDS	0.0050	mg/L		09-DEC-19	R4937828
Arsenic (As)-Dissolved	0.00679	DLDS	0.00050	mg/L		09-DEC-19	R4937828
Barium (Ba)-Dissolved	0.257	DLDS	0.00050	mg/L		09-DEC-19	R4937828
Boron (B)-Dissolved	0.067	DLDS	0.050	mg/L		09-DEC-19	R4937828
Cadmium (Cd)-Dissolved	0.00377	DLDS	0.000025	mg/L		09-DEC-19	R4937828
Calcium (Ca)-Dissolved	177	DLDS	0.25	mg/L		09-DEC-19	R4937828
Chromium (Cr)-Dissolved	<0.00050	DLDS	0.00050	mg/L		09-DEC-19	R4937828
Copper (Cu)-Dissolved	<0.0010	DLDS	0.0010	mg/L		09-DEC-19	R4937828
Iron (Fe)-Dissolved	6.80	DLDS	0.050	mg/L		09-DEC-19	R4937828
Lead (Pb)-Dissolved	<0.00025	DLDS	0.00025	mg/L		09-DEC-19	R4937828
Magnesium (Mg)-Dissolved	47.7	DLDS	0.025	mg/L		09-DEC-19	R4937828
Manganese (Mn)-Dissolved	1.56	DLDS	0.00050	mg/L		09-DEC-19	R4937828
Nickel (Ni)-Dissolved	0.0064	DLDS	0.0025	mg/L		09-DEC-19	R4937828
Potassium (K)-Dissolved	4.85	DLDS	0.25	mg/L		09-DEC-19	R4937828
Selenium (Se)-Dissolved	<0.00025	DLDS	0.00025	mg/L		09-DEC-19	R4937828
Silver (Ag)-Dissolved	<0.000050	DLDS	0.000050	mg/L		09-DEC-19	R4937828
Sodium (Na)-Dissolved	112	DLDS	0.25	mg/L		09-DEC-19	R4937828
Uranium (U)-Dissolved	0.00243	DLDS	0.000050	mg/L		09-DEC-19	R4937828
Zinc (Zn)-Dissolved	0.0161	DLDS	0.0050	mg/L		09-DEC-19	R4937828
				_			

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393423 CONTD.... PAGE 6 of 18 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1 2202422 2 MW 02							
L2393423-2 MW-02							
Sampled By: RYAN MILLER on 05-DEC-19 @ 11:50							
Matrix: WATER							
Fluoride in Water by IC Fluoride (F)	<0.10	DLHC	0.10	mg/L		07-DEC-19	R4942649
Ion Balance Calculation							
Ion Balance	94.1			%		16-DEC-19	
TDS (Calculated)	965			mg/L		16-DEC-19	
Hardness (as CaCO3)	638			mg/L		16-DEC-19	
Nitrate in Water by IC Nitrate (as N)	<0.10	DLHC	0.10	mg/L		07-DEC-19	R4942649
Nitrate+Nitrite Nitrate and Nitrite (as N)	<0.11		0.11	mg/L		13-DEC-19	
Nitrite in Water by IC	-5.11		0.11	,gr.c		10 020 10	
Nitrite (as N)	<0.050	DLHC	0.050	mg/L		07-DEC-19	R4942649
Sulfate in Water by IC	54.0	DI 100	4.5	r#		07 DEC 40	D4040040
Sulfate (SO4)	54.6	DLHC	1.5	mg/L		07-DEC-19	R4942649
pH, Conductivity and Total Alkalinity pH	7.72		0.10	pН		14-DEC-19	R4943994
Conductivity (EC)	1590		2.0	uS/cm		14-DEC-19	R4943994
Bicarbonate (HCO3)	683		5.0	mg/L		14-DEC-19	R4943994
Carbonate (CO3)	<5.0		5.0	mg/L		14-DEC-19	R4943994
Hydroxide (OH)	<5.0		5.0	mg/L		14-DEC-19	R4943994
Alkalinity, Total (as CaCO3)	560		2.0	mg/L		14-DEC-19	R4943994
EPA 8260 Volatile Organics							
VOCs in Water							
1,1,1,2-Tetrachloroethane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,1,1-Trichloroethane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,1,2,2-Tetrachloroethane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,1,2-Trichloroethane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,1-Dichloroethane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,1-Dichloroethene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,1-Dichloropropene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	<0.0010		0.0010	mg/L	10-DEC-19 10-DEC-19	10-DEC-19 10-DEC-19	R4937909
1,2,4-Trichlorobenzene	<0.00050		0.00050 0.0010	mg/L mg/L	10-DEC-19	10-DEC-19	R4937909 R4937909
1,2,4-Trimethylbenzene	<0.0010 <0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,2-Dibromo-3-chloropropane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,2-Dichlorobenzene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,2-Dichloroethane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,2-Dichloropropane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,3,5-Trimethylbenzene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,3-Dichlorobenzene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,3-Dichloropropane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,4-Dichlorobenzene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
2,2-Dichloropropane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
2-Chlorotoluene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
4-Chlorotoluene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
p-Isopropyltoluene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Benzene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Bromobenzene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Bromochloromethane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Bromodichloromethane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Bromoform	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Bromomethane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Carbon tetrachloride	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393423 CONTD.... PAGE 7 of 18 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393423-2 MW-02							
Sampled By: RYAN MILLER on 05-DEC-19 @ 11:50							
Matrix: WATER							
VOCs in Water Chlorobenzene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Chloroethane	<0.0010		0.00030	mg/L	10-DEC-19	10-DEC-19	R4937909
Chloroform	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Chloromethane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
cis-1,2-Dichloroethene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
cis-1,3-Dichloropropene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Dibromochloromethane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Dibromomethane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Dichlorodifluoromethane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Ethylbenzene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Ethylene dibromide	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Hexachlorobutadiene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Isopropylbenzene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
m+p-Xylenes	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Methylene chloride n-Butylbenzene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
n-Butylbenzene n-Propylbenzene	<0.0010 <0.0010		0.0010 0.0010	mg/L mg/L	10-DEC-19 10-DEC-19	10-DEC-19 10-DEC-19	R4937909 R4937909
o-Xylene	<0.0010		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
sec-Butvlbenzene	<0.0010		0.00030	mg/L	10-DEC-19	10-DEC-19	R4937909
Styrene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
tert-Butylbenzene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Tetrachloroethylene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Toluene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
trans-1,2-Dichloroethene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
trans-1,3-Dichloropropene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Trichloroethene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Trichlorofluoromethane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Vinyl chloride	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Surrogate: 1,4-Difluorobenzene	99.1		70-130	%	10-DEC-19	10-DEC-19	R4937909
Surrogate: 4-Bromofluorobenzene	80.3		70-130	%	10-DEC-19	10-DEC-19	R4937909

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393423 CONTD.... PAGE 8 of 18 Version: FINAL

Sample Details/Parameters	Result	Qualifier ⁴	D.L.	Units	Extracted	Analyzed	Batch
L2393423-3 MW-03							
Sampled By: RYAN MILLER on 05-DEC-19 @ 10:20							
Matrix: WATER		1					
F1 (C6-C10) and F2 (>C10-C16)							
CCME F2-4 Hydrocarbons							
F2: (C10-C16)	<0.10		0.10	mg/L	16-DEC-19	17-DEC-19	R4944846
Surrogate: 2-Bromobenzotrifluoride	85.9		60-140	%	16-DEC-19	17-DEC-19	R4944846
F1 (C6-C10)							
F1(C6-C10)	<0.10		0.10	mg/L		10-DEC-19	R4938070
F1-BTEX	<0.10		0.10	mg/L		10-DEC-19	R4938070
Surrogate: 3,4-Dichlorotoluene	97.5		70-130	%		10-DEC-19	R4938070
Miscellaneous Parameters							
AOX	ND U		10	mg/L		12-DEC-19	R4955245
Ammonia, Total (as N)	0.174		0.050	mg/L		16-DEC-19	R4943991
Dissolved Organic Carbon	6.9		1.0	mg/L		13-DEC-19	R4943327
Xylenes	<0.00071		0.00071	mg/L		16-DEC-19	
Total Kjeldahl Nitrogen	5.1	DLHC	2.0	mg/L		12-DEC-19	R4943090
Phosphorus (P)-Total	4.26	DLHC	0.25	mg/L		13-DEC-19	R4943276
Volatile fatty/carboxylic acids							
Formic Acid	<50	DLM	50	mg/L		14-DEC-19	R4943956
Acetic Acid	<10		10	mg/L		14-DEC-19	R4943956
Propionic Acid	<5.0		5.0	mg/L		14-DEC-19	R4943956
Butyric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Isobutyric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Valeric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Isovaleric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Caproic (Hexanoic) Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Major Ions & Trace Dissolved Metals							
Chloride in Water by IC Chloride (CI)	234	DLHC	ا ء ا			07 DEC 40	B4040C40
	234	DLHO	2.5	mg/L		07-DEC-19	R4942649
Dissolved Mercury in Water by CVAAS Mercury (Hq)-Dissolved	<0.0000050		0.0000050	mg/L		13-DEC-19	R4943011
Dissolved Mercury Filtration Location	FIELD		0.0000000	mg/L		13-DEC-19	R4942998
Dissolved Metals in Water by CRC ICPMS	''בבט					10-020-10	111012000
Dissolved Metals Filtration Location	FIELD					09-DEC-19	R4938487
Aluminum (Al)-Dissolved	<0.0050	DLDS	0.0050	mg/L		09-DEC-19	R4937828
Antimony (Sb)-Dissolved	<0.00050	DLDS	0.00050	mg/L		09-DEC-19	R4937828
Arsenic (As)-Dissolved	0.00415	DLDS	0.00050	mg/L		09-DEC-19	R4937828
Barium (Ba)-Dissolved	0.239	DLDS	0.00050	mg/L		09-DEC-19	R4937828
Boron (B)-Dissolved	0.157	DLDS	0.050	mg/L		09-DEC-19	R4937828
Cadmium (Cd)-Dissolved	0.000035	DLDS	0.000025	mg/L		09-DEC-19	R4937828
Calcium (Ca)-Dissolved	178	DLDS	0.25	mg/L		09-DEC-19	R4937828
Chromium (Cr)-Dissolved	<0.00050	DLDS	0.00050	mg/L		09-DEC-19	R4937828
Copper (Cu)-Dissolved	<0.0010	DLDS	0.0010	mg/L		09-DEC-19	R4937828
Iron (Fe)-Dissolved	4.52	DLDS	0.050	mg/L		09-DEC-19	R4937828
Lead (Pb)-Dissolved	<0.00025	DLDS	0.00025	mg/L		09-DEC-19	R4937828
Magnesium (Mg)-Dissolved	46.3	DLDS	0.025	mg/L		09-DEC-19	R4937828
Manganese (Mn)-Dissolved	0.822	DLDS	0.00050	mg/L		09-DEC-19	R4937828
Nickel (Ni)-Dissolved	0.0042 4.34	DLDS	0.0025	mg/L		09-DEC-19	R4937828
Potassium (K)-Dissolved Selenium (Se)-Dissolved	4.34 <0.00025	DLDS	0.25 0.00025	mg/L mg/L		09-DEC-19 09-DEC-19	R4937828
Silver (Ag)-Dissolved	<0.00025	DLDS	0.00025	mg/L		09-DEC-19	R4937828 R4937828
Sodium (Na)-Dissolved	114	DLDS	0.000050	mg/L		09-DEC-19	R4937828
Uranium (U)-Dissolved	0.00205	DLDS	0.000050	mg/L		09-DEC-19	R4937828
Zinc (Zn)-Dissolved	<0.0050	DLDS	0.0000	mg/L		09-DEC-19	R4937828
			0000				

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393423 CONTD.... PAGE 9 of 18 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393423-3 MW-03							
Sampled By: RYAN MILLER on 05-DEC-19 @ 10:20							
Matrix: WATER							
Fluoride in Water by IC Fluoride (F)	<0.10	DLHC	0.10	mg/L		07-DEC-19	R4942649
Ion Balance Calculation							
Ion Balance	97.1			%		16-DEC-19	
TDS (Calculated)	951			mg/L		16-DEC-19	
Hardness (as CaCO3)	635			mg/L		16-DEC-19	
Nitrate in Water by IC Nitrate (as N)	<0.10	DLHC	0.10	mg/L		07-DEC-19	R4942649
Nitrate+Nitrite Nitrate and Nitrite (as N)	<0.11		0.11	mg/L		13-DEC-19	
Nitrite in Water by IC				_			
Nitrite (as N)	<0.050	DLHC	0.050	mg/L		07-DEC-19	R4942649
Sulfate in Water by IC							
Sulfate (SO4)	62.8	DLHC	1.5	mg/L		07-DEC-19	R4942649
pH, Conductivity and Total Alkalinity			0.40			44 855 45	D4040004
pH Conductivity (EC)	7.71		0.10	pH uS/cm		14-DEC-19	R4943994
Conductivity (EC)	1560		2.0			14-DEC-19	R4943994
Bicarbonate (HCO3) Carbonate (CO3)	634 <5.0		5.0 5.0	mg/L mg/L		14-DEC-19 14-DEC-19	R4943994 R4943994
Hydroxide (OH)	<5.0 <5.0		5.0	mg/L		14-DEC-19	R4943994 R4943994
Alkalinity, Total (as CaCO3)	520		2.0	mg/L		14-DEC-19	R4943994
EPA 8260 Volatile Organics	320		2.0	IIIg/L		14-020-13	114545554
VOCs in Water							
1,1,1,2-Tetrachloroethane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,1,1-Trichloroethane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,1,2,2-Tetrachloroethane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,1,2-Trichloroethane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,1-Dichloroethane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,1-Dichloroethene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,1-Dichloropropene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,2,3-Trichlorobenzene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,2,3-Trichloropropane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,2,4-Trichlorobenzene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	<0.0010		0.0010	mg/L	10-DEC-19 10-DEC-19	10-DEC-19 10-DEC-19	R4937909
1,2-Dichlorobenzene	<0.0010 <0.00050		0.0010 0.00050	mg/L mg/L	10-DEC-19	10-DEC-19	R4937909 R4937909
1,2-Dichloroethane	<0.0010		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,2-Dichloropropane	<0.0000		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,3,5-Trimethylbenzene	<0.0010		0.00030	mg/L	10-DEC-19	10-DEC-19	R4937909
1,3-Dichlorobenzene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,3-Dichloropropane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,4-Dichlorobenzene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
2,2-Dichloropropane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
2-Chlorotoluene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
4-Chlorotoluene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
p-Isopropyltoluene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Benzene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Bromobenzene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Bromochloromethane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Bromodichloromethane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Bromoform	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Bromomethane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Carbon tetrachloride	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393423 CONTD.... PAGE 10 of 18 Version: FINAL

Sample Details/Parameters	Result	Qualifier* D.L.	Units	Extracted	Analyzed	Batch
L2393423-3 MW-03						
Sampled By: RYAN MILLER on 05-DEC-19 @ 10:20						
Matrix: WATER						
VOCs in Water						
Chlorobenzene	<0.00050	0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Chloroethane	<0.0010	0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Chloroform	<0.00050	0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Chloromethane	<0.0010	0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
cis-1,2-Dichloroethene	<0.0010	0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
cis-1,3-Dichloropropene	<0.00050	0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Dibromochloromethane Dibromomethane	<0.00050	0.00050	mg/L	10-DEC-19 10-DEC-19	10-DEC-19 10-DEC-19	R4937909
Dichlorodifluoromethane	<0.00050 <0.00050	0.00050 0.00050	mg/L mg/L	10-DEC-19	10-DEC-19	R4937909 R4937909
Ethylbenzene	<0.00050	0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Ethylene dibromide	<0.00050	0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Hexachlorobutadiene	<0.0010	0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Isopropylbenzene	<0.0010	0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
m+p-Xylenes	<0.00050	0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Methylene chloride	<0.0010	0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
n-Butylbenzene	<0.0010	0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
n-Propylbenzene	<0.0010	0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
o-Xylene	<0.00050	0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
sec-Butylbenzene	<0.0010	0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Styrene	<0.00050	0.00050	mg/L	10-DEC-19 10-DEC-19	10-DEC-19	R4937909
tert-Butylbenzene Tetrachloroethylene	<0.0010 <0.00050	0.0010	mg/L mg/L	10-DEC-19	10-DEC-19 10-DEC-19	R4937909 R4937909
Toluene	<0.00050	0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
trans-1,2-Dichloroethene	<0.00050	0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
trans-1,3-Dichloropropene	<0.0010	0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Trichloroethene	<0.00050	0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Trichlorofluoromethane	<0.0010	0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Vinyl chloride	<0.00050	0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Surrogate: 1,4-Difluorobenzene	99.2	70-130	%	10-DEC-19	10-DEC-19	R4937909
Surrogate: 4-Bromofluorobenzene	79.1	70-130	%	10-DEC-19	10-DEC-19	R4937909

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393423 CONTD.... PAGE 11 of 18

Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393423-4 MW-04							
Sampled By: RYAN MILLER on 05-DEC-19 @ 12:20							
Matrix: WATER		1					
F1 (C6-C10) and F2 (>C10-C16)							
CCME F2-4 Hydrocarbons							
F2: (C10-C16)	<0.10		0.10	mg/L	16-DEC-19	17-DEC-19	R4944846
Surrogate: 2-Bromobenzotrifluoride	64.1		60-140	%	16-DEC-19	17-DEC-19	R4944846
F1 (C6-C10)							
F1(C6-C10)	<0.10		0.10	mg/L		10-DEC-19	R4938070
F1-BTEX	<0.10		0.10	mg/L		10-DEC-19	R4938070
Surrogate: 3,4-Dichlorotoluene	99.7		70-130	%		10-DEC-19	R4938070
Miscellaneous Parameters							
AOX	ND U		10	mg/L		12-DEC-19	R4955245
Ammonia, Total (as N)	<0.050		0.050	mg/L		16-DEC-19	R4943991
Dissolved Organic Carbon	4.0		1.0	mg/L		13-DEC-19	R4943327
Xylenes	<0.00071		0.00071	mg/L		16-DEC-19	
Total Kjeldahl Nitrogen	2.3	DLM	1.0	mg/L		12-DEC-19	R4943090
Phosphorus (P)-Total	1.33	DLHC	0.10	mg/L		13-DEC-19	R4943276
Volatile fatty/carboxylic acids							
Formic Acid	<50	DLM	50	mg/L		14-DEC-19	R4943956
Acetic Acid	<10		10	mg/L		14-DEC-19	R4943956
Propionic Acid	<5.0		5.0	mg/L		14-DEC-19	R4943956
Butyric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Isobutyric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Valeric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Isovaleric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Caproic (Hexanoic) Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Major Ions & Trace Dissolved Metals							
Chloride in Water by IC	400	DLHC				07 DE0 40	
Chloride (CI)	162	DLHC	2.5	mg/L		07-DEC-19	R4942649
Dissolved Mercury in Water by CVAAS Mercury (Hq)-Dissolved	<0.0000050		0.0000050	mg/L		13-DEC-19	R4943011
Dissolved Mercury Filtration Location	FIELD		0.0000000	IIIg/L		13-DEC-19	R4942998
Dissolved Metals in Water by CRC ICPMS	11225					13-020-13	114542550
Dissolved Metals Filtration Location	FIELD					09-DEC-19	R4938487
Aluminum (Al)-Dissolved	0.0024		0.0010	mg/L		09-DEC-19	R4937828
Antimony (Sb)-Dissolved	0.00011		0.00010	mg/L		09-DEC-19	R4937828
Arsenic (As)-Dissolved	0.00019		0.00010	mg/L		09-DEC-19	R4937828
Barium (Ba)-Dissolved	0.122		0.00010	mg/L		09-DEC-19	R4937828
Boron (B)-Dissolved	0.091		0.010	mg/L		09-DEC-19	R4937828
Cadmium (Cd)-Dissolved	0.000120		0.0000050	mg/L		09-DEC-19	R4937828
Calcium (Ca)-Dissolved	166		0.050	mg/L		09-DEC-19	R4937828
Chromium (Cr)-Dissolved	<0.00010		0.00010	mg/L		09-DEC-19	R4937828
Copper (Cu)-Dissolved	0.00277		0.00020	mg/L		09-DEC-19	R4937828
Iron (Fe)-Dissolved	<0.010		0.010	mg/L		09-DEC-19	R4937828
Lead (Pb)-Dissolved	0.000066		0.000050	mg/L		09-DEC-19	R4937828
Magnesium (Mg)-Dissolved	40.4		0.0050	mg/L		09-DEC-19	R4937828
Manganese (Mn)-Dissolved	0.00576		0.00010	mg/L		09-DEC-19	R4937828
Nickel (Ni)-Dissolved	0.00195		0.00050	mg/L		09-DEC-19	R4937828
Potassium (K)-Dissolved	4.17		0.050	mg/L		09-DEC-19	R4937828
Selenium (Se)-Dissolved	0.00357		0.000050	mg/L		09-DEC-19 09-DEC-19	R4937828
Silver (Ag)-Dissolved Sodium (Na)-Dissolved	<0.000010 96.9		0.000010 0.050	mg/L		09-DEC-19	R4937828 R4937828
Uranium (U)-Dissolved	0.00351		0.00010	mg/L mg/L		09-DEC-19	R4937828
Zinc (Zn)-Dissolved	0.00351		0.000010	mg/L		09-DEC-19	R4937828
	3.0017		0.0010	ingre		00-DE0-10	. 11007020

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393423 CONTD.... PAGE 12 of 18 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393423-4 MW-04							
Sampled By: RYAN MILLER on 05-DEC-19 @ 12:20							
Matrix: WATER							
Fluoride in Water by IC Fluoride (F)	<0.10	DLHC	0.10	mg/L		07-DEC-19	R4942649
Ion Balance Calculation							
Ion Balance	105			%		16-DEC-19	
TDS (Calculated) Hardness (as CaCO3)	823 581			mg/L		16-DEC-19	
	501			mg/L		16-DEC-19	
Nitrate in Water by IC Nitrate (as N)	0.24	DLHC	0.10	mg/L		07-DEC-19	R4942649
Nitrate+Nitrite				_			
Nitrate and Nitrite (as N)	0.24		0.11	mg/L		13-DEC-19	
Nitrite in Water by IC							
Nitrite (as N)	<0.050	DLHC	0.050	mg/L		07-DEC-19	R4942649
Sulfate in Water by IC	07.5	DLHC	4 5	pa a ll		07 DEC 40	B4043640
Sulfate (SO4)	87.5	DLHC	1.5	mg/L		07-DEC-19	R4942649
pH, Conductivity and Total Alkalinity pH	7.68		0.10	pН		14-DEC-19	R4943994
Conductivity (EC)	1290		2.0	uS/cm		14-DEC-19	R4943994
Bicarbonate (HCO3)	538		5.0	mg/L		14-DEC-19	R4943994
Carbonate (CO3)	<5.0		5.0	mg/L		14-DEC-19	R4943994
Hydroxide (OH)	<5.0		5.0	mg/L		14-DEC-19	R4943994
Alkalinity, Total (as CaCO3)	441		2.0	mg/L		14-DEC-19	R4943994
EPA 8260 Volatile Organics							
VOCs in Water				_			
1,1,1,2-Tetrachloroethane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,1,1-Trichloroethane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,1,2,2-Tetrachloroethane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,1,2-Trichloroethane 1,1-Dichloroethane	<0.00050 <0.00050		0.00050 0.00050	mg/L	10-DEC-19 10-DEC-19	10-DEC-19 10-DEC-19	R4937909 R4937909
1,1-Dichloroethene	<0.00050		0.00050	mg/L mg/L	10-DEC-19	10-DEC-19	R4937909
1,1-Dichloropropene	<0.0010		0.00030	mg/L	10-DEC-19	10-DEC-19	R4937909
1,2,3-Trichlorobenzene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,2,3-Trichloropropane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,2,4-Trichlorobenzene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,2,4-Trimethylbenzene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,2-Dibromo-3-chloropropane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,2-Dichlorobenzene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,2-Dichloroethane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,2-Dichloropropane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,3,5-Trimethylbenzene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,3-Dichlorobenzene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
1,3-Dichloropropane 1,4-Dichlorobenzene	<0.0010 <0.00050		0.0010 0.00050	mg/L mg/L	10-DEC-19 10-DEC-19	10-DEC-19 10-DEC-19	R4937909 R4937909
2,2-Dichloropropane	<0.00050		0.00050	mg/L mg/L	10-DEC-19	10-DEC-19	R4937909 R4937909
2-Chlorotoluene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
4-Chlorotoluene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
p-Isopropyltoluene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Benzene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Bromobenzene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Bromochloromethane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Bromodichloromethane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Bromoform	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Bromomethane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Carbon tetrachloride	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393423 CONTD.... PAGE 13 of 18 Version: FINAL

Sample Details/Parameters	Result	Qualifier* D.L.	Units	Extracted	Analyzed	Batch
L2393423-4 MW-04						
Sampled By: RYAN MILLER on 05-DEC-19 @ 12:20						
Matrix: WATER						
VOCs in Water						
Chlorobenzene	<0.00050	0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Chloroethane	<0.0010	0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Chloroform	<0.00050	0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Chloromethane	<0.0010	0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
cis-1,2-Dichloroethene	<0.0010	0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
cis-1,3-Dichloropropene	<0.00050	0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Dibromochloromethane Dibromomethane	<0.00050 <0.00050	0.00050	mg/L mg/L	10-DEC-19 10-DEC-19	10-DEC-19 10-DEC-19	R4937909 R4937909
Dichlorodifluoromethane	<0.00050	0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Ethylbenzene	<0.00050	0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Ethylene dibromide	<0.00050	0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Hexachlorobutadiene	<0.0010	0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Isopropylbenzene	<0.0010	0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
m+p-Xylenes	<0.00050	0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Methylene chloride	<0.0010	0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
n-Butylbenzene	<0.0010	0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
n-Propylbenzene	<0.0010	0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
o-Xylene	<0.00050	0.00050	mg/L	10-DEC-19 10-DEC-19	10-DEC-19 10-DEC-19	R4937909
sec-Butylbenzene Styrene	<0.0010 <0.00050	0.0010	mg/L mg/L	10-DEC-19	10-DEC-19	R4937909 R4937909
tert-Butylbenzene	<0.0010	0.00030	mg/L	10-DEC-19	10-DEC-19	R4937909
Tetrachloroethylene	<0.00050	0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Toluene	<0.00050	0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
trans-1,2-Dichloroethene	<0.00050	0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
trans-1,3-Dichloropropene	<0.0010	0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Trichloroethene	<0.00050	0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Trichlorofluoromethane	<0.0010	0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Vinyl chloride	<0.00050	0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Surrogate: 1,4-Difluorobenzene	98.7	70-130	% %	10-DEC-19	10-DEC-19	R4937909
Surrogate: 4-Bromofluorobenzene	78.9	70-130	76	10-DEC-19	10-DEC-19	R4937909
					L	

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393423 CONTD.... PAGE 14 of 18 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393423-5 MW-05							
Sampled By: RYAN MILLER on 05-DEC-19 @ 11:25							
Matrix: WATER		1					
F1 (C6-C10) and F2 (>C10-C16)							
CCME F2-4 Hydrocarbons							
F2: (C10-C16)	<0.10		0.10	mg/L	16-DEC-19	17-DEC-19	R4944846
Surrogate: 2-Bromobenzotrifluoride	69.9		60-140	%	16-DEC-19	17-DEC-19	R4944846
F1 (C6-C10)							
F1(C6-C10)	<0.10		0.10	mg/L		10-DEC-19	R4938070
F1-BTEX	<0.10		0.10	mg/L		10-DEC-19	R4938070
Surrogate: 3,4-Dichlorotoluene	103.5		70-130	%		10-DEC-19	R4938070
Miscellaneous Parameters							
AOX	ND U		10	mg/L		12-DEC-19	R4955245
Ammonia, Total (as N)	0.082		0.050	mg/L		16-DEC-19	R4943991
Dissolved Organic Carbon	5.3		1.0	mg/L		13-DEC-19	R4943327
Xylenes	<0.00071		0.00071	mg/L		16-DEC-19	
Total Kjeldahl Nitrogen	11.3	DLHC	2.0	mg/L		12-DEC-19	R4943090
Phosphorus (P)-Total	6.69	DLHC	0.50	mg/L		13-DEC-19	R4943276
Volatile fatty/carboxylic acids							
Formic Acid	<50	DLM	50	mg/L		14-DEC-19	R4943956
Acetic Acid	<10		10	mg/L		14-DEC-19	R4943956
Propionic Acid	<5.0		5.0	mg/L		14-DEC-19	R4943956
Butyric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Isobutyric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Valeric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Isovaleric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Caproic (Hexanoic) Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Major Ions & Trace Dissolved Metals							
Chloride in Water by IC	l	DLHC				07 DE0 40	D4040040
Chloride (CI)	141	DLHC	2.5	mg/L	ł	07-DEC-19	R4942649
Dissolved Mercury in Water by CVAAS Mercury (Hg)-Dissolved	<0.0000050		0.0000050	mg/L		13-DEC-19	R4943011
Dissolved Mercury Filtration Location	FIELD		0.0000000	IIIg/L		13-DEC-19	R4942998
Dissolved Metals in Water by CRC ICPMS	11225					13-020-13	114342330
Dissolved Metals Filtration Location	FIELD					09-DEC-19	R4938487
Aluminum (AI)-Dissolved	0.248		0.0010	mg/L		09-DEC-19	R4937828
Antimony (Sb)-Dissolved	0.00021		0.00010	mg/L		09-DEC-19	R4937828
Arsenic (As)-Dissolved	0.00084		0.00010	mg/L		09-DEC-19	R4937828
Barium (Ba)-Dissolved	0.151		0.00010	mg/L		09-DEC-19	R4937828
Boron (B)-Dissolved	0.052		0.010	mg/L		09-DEC-19	R4937828
Cadmium (Cd)-Dissolved	0.00219		0.0000050	mg/L		09-DEC-19	R4937828
Calcium (Ca)-Dissolved	144		0.050	mg/L		09-DEC-19	R4937828
Chromium (Cr)-Dissolved	0.00067		0.00010	mg/L		09-DEC-19	R4937828
Copper (Cu)-Dissolved	0.00823		0.00020	mg/L		09-DEC-19	R4937828
Iron (Fe)-Dissolved	0.450		0.010	mg/L		09-DEC-19	R4937828
Lead (Pb)-Dissolved	0.000738		0.000050	mg/L		09-DEC-19	R4937828
Magnesium (Mg)-Dissolved	37.0		0.0050	mg/L		09-DEC-19	R4937828
Manganese (Mn)-Dissolved	0.0975		0.00010	mg/L		09-DEC-19	R4937828
Nickel (Ni)-Dissolved	0.00327		0.00050	mg/L		09-DEC-19	R4937828
Potassium (K)-Dissolved	4.27		0.050	mg/L		09-DEC-19	R4937828
Selenium (Se)-Dissolved	0.00273		0.000050	mg/L		09-DEC-19	R4937828
Silver (Ag)-Dissolved	<0.000010		0.000010	mg/L		09-DEC-19	R4937828
Sodium (Na)-Dissolved	101		0.050	mg/L		09-DEC-19	R4937828
Uranium (U)-Dissolved	0.00436 0.0070		0.000010	mg/L		09-DEC-19	R4937828
Zinc (Zn)-Dissolved	0.0070		0.0010	mg/L		09-DEC-19	R4937828

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393423 CONTD.... PAGE 15 of 18 Version: FINAL

L2393423-5 MW-495 Marite Water by IC Fluoride (F)	Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
Sampled By: RYAN MILLER on 05-DEC-19 @ 11-25 Matrix WATER	1 2393423_5 MW.05							
Matrix WATER Fluoride Pluoride Plu								
Fluoride in Water by IC Fluoride (F)								
Fluoride (F)								
Incident 100	Fluoride (F)	<0.10	DLHC	0.10	mg/L		07-DEC-19	R4942649
TOS (Calculated) ToS Factor		400			.,		40 DEO 40	
Hardness (as CaCO3) 512								
Nitrate in Water by IC Nitrate (as N) Nitrate-Nitritle Nitrate and Nitritle (as N) Nitrate-Nitritle Nitrate in Water by IC Nitritle (as N) Nitritle water by IC Nitritle (as N) Nitritle water by IC Nitritle (as N) Nitritle water by IC Sulfate (SO4) Sulfate in Water by IC Sulfate (SO4) PH, Conductivity and Total Alkalinity pH Conductivity and Total Alkalinity pH Conductivity (EC) 1220 2.0	, ,				_			
Nitrate Nitrite Nitrate and Nitrite (as N)	, ,	312			IIIg/L		10-DEC-19	
Nitrate and Nitrite (as N)	,	<0.10	DLHC	0.10	mg/L		07-DEC-19	R4942649
Nitrite in Water by IC Nitrite (as N) Sulfate in Water by IC Sulfate (SO4) pH, Conductivity and Total Alkalinity pH 7.76 Conductivity (EC) 1.20 1.5 Mg/L 1.5 Mg/L 1.6 Mg/L 1.6 Mg/L 1.7 R4942649 R494284 R494264 R49426	Nitrate+Nitrite				_			
Nitrite (as N)	Nitrate and Nitrite (as N)	<0.11		0.11	mg/L		13-DEC-19	
Sulfate in Water by IC Sulfate (SO4) 42.7 DLHC 1.5 mg/L 07-DEC-19 R4942649 R49426	_							
Sulfate (SO4)		<0.050	DLHC	0.050	mg/L		07-DEC-19	R4942649
PH. Conductivity and Total Alkalinity pH	,	42.7		4 5	pa a fi		07 DEC 40	P4043640
PH		42.7	DLHC	1.5	mg/L		U/-DEC-19	134342649
Conductivity (EC)	• •	7 76		0.40	nH		14.DEC 19	B4043004
Bicarbonate (HCO3)								
Carbonate (CO3)	1							
Hydroxide (OH)					_			
Alkalinity, Total (as CaCO3) EPA 8260 Volatile Organics VOCs in Water 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 20,00050 1,1,1-Tirichloroethane 30,00050 1,1,2-Tetrachloroethane 30,00050 1,1,2-Tetrachloroethane 30,00050 30,0005	1	I			_		14-DEC-19	1 1
VOCs in Water 40.0010 0.0010 mg/L 10-DEC-19 10-D	Alkalinity, Total (as CaCO3)	I			_		14-DEC-19	
1,1,1,2-Tetrachloroethane	EPA 8260 Volatile Organics				_			
1,1,1-Trichloroethane	VOCs in Water							
1,1,2,2-Tetrachloroethane <0.00050	1	<0.0010		0.0010	mg/L	l .		R4937909
1,1,2-Trichloroethane <0.00050	l * *				_	I .		
1,1-Dichloroethane <0.00050	1							
1,1-Dichloroethene <0.00050	''				_	I .		
1,1-Dichloropropene <0.0010	_	l	lí		_			1 1
1,2,3-Trichlorobenzene	I -				_			
1,2,3-Trichloropropane <0.00050	1				_			
1,2,4-Trichlorobenzene <0.0010	* *	l			_			1 1
1,2,4-Trimethylbenzene <0.0010	1	l			_			1 1
1,2-Dibromo-3-chloropropane <0.0010	1							
1,2-Dichlorobenzene <0.00050	1,2-Dibromo-3-chloropropane	<0.0010		0.0010	_	10-DEC-19	10-DEC-19	R4937909
1,2-Dichloropropane <0.00050	1,2-Dichlorobenzene	<0.00050				10-DEC-19	10-DEC-19	
1,3,5-Trimethylbenzene <0.0010	1,2-Dichloroethane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
1,3-Dichlorobenzene <0.00050	1	<0.00050		0.00050	mg/L			R4937909
1,3-Dichloropropane <0.0010	''	I			_			1 1
1,4-Dichlorobenzene <0.00050	l -	I			_			
2,2-Dichloropropane <0.0010					_			
2-Chlorotoluene <0.0010	l ·	I			-			1 1
4-Chlorotoluene <0.0010	' ' '	I			_			
p-Isopropyltoluene <0.0010 0.0010 mg/L 10-DEC-19 10-DEC-19 R4937909 Benzene <0.00050		l			_			1 1
Benzene <0.00050 mg/L 10-DEC-19 10-DEC-19 R4937909 Bromobenzene <0.0010		I			_			1 1
Bromobenzene <0.0010 0.0010 mg/L 10-DEC-19 10-DEC-19 R4937909 Bromochloromethane <0.0010	1	I						1 1
Bromochloromethane <0.0010 0.0010 mg/L 10-DEC-19 10-DEC-19 R4937909		I						
		l						1 1
3- 3-		I			_			
Bromoform <0.00050 0.00050 mg/L 10-DEC-19 10-DEC-19 R4937909		1			-			
Bromomethane <0.0010 0.0010 mg/L 10-DEC-19 10-DEC-19 R4937909	Bromomethane	l .			_			
Carbon tetrachloride <0.00050 0.00050 mg/L 10-DEC-19 10-DEC-19 R4937909	Carbon tetrachloride	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393423 CONTD.... PAGE 16 of 18 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
2393423-5 MW-05							
Sampled By: RYAN MILLER on 05-DEC-19 @ 11:25							
Matrix: WATER							
VOCs in Water							
Chlorobenzene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Chloroethane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Chloroform	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Chloromethane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
cis-1,2-Dichloroethene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
cis-1,3-Dichloropropene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Dibromochloromethane Dibromomethane	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Dichlorodifluoromethane	<0.00050 <0.00050		0.00050 0.00050	mg/L	10-DEC-19 10-DEC-19	10-DEC-19 10-DEC-19	R4937909 R4937909
Ethylbenzene	<0.00050		0.00050	mg/L mg/L	10-DEC-19	10-DEC-19	R4937909
Ethylene dibromide	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Hexachlorobutadiene	<0.0010		0.00030	mg/L	10-DEC-19	10-DEC-19	R4937909
Isopropylbenzene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
m+p-Xylenes	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Methylene chloride	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
n-Butylbenzene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
n-Propylbenzene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
o-Xylene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
sec-Butylbenzene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Styrene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
tert-Butylbenzene	<0.0010 <0.00050		0.0010 0.00050	mg/L	10-DEC-19 10-DEC-19	10-DEC-19 10-DEC-19	R4937909 R4937909
Tetrachloroethylene Toluene	<0.00050		0.00050	mg/L mg/L	10-DEC-19	10-DEC-19	R4937909
trans-1,2-Dichloroethene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
trans-1,3-Dichloropropene	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Trichloroethene	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Trichlorofluoromethane	<0.0010		0.0010	mg/L	10-DEC-19	10-DEC-19	R4937909
Vinyl chloride	<0.00050		0.00050	mg/L	10-DEC-19	10-DEC-19	R4937909
Surrogate: 1,4-Difluorobenzene	98.7		70-130	%	10-DEC-19	10-DEC-19	R4937909
Surrogate: 4-Bromofluorobenzene	80.3		70-130	%	10-DEC-19	10-DEC-19	R4937909

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393423 CONTD....

PAGE 17 of 18 Version: FINAL

Reference Information

Sample Parameter Qualifier Key:

Sumple I ala	moor quantor roy.
Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
AOX-MISA-KL	Water	Adsorbable Organic Halides	EPA 1650
BTXS-HS-MS-CL	Water	BTEX and Styrene	EPA 8260C/5021A

The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. BTEX Target compound concentrations are measured using mass spectrometry detection.

C-DIS-ORG-CL Water Dissolved Organic Carbon APHA 5310 B-Instrumental

Filtered (0.45 um) sample is acidified and purged to remove inorganic carbon, then injected into a heated reaction chamber where organic carbon is oxidized to CO2 which is then transported in the carrier gas stream and measured via a non-dispersive infrared analyzer.

CL-IC-N-CL Water Chloride in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

F-IC-N-CL Water Fluoride in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

F1-HS-FID-CL Water F1 (C6-C10) EPA 5021A / CWS PHC Tier 1

This analysis is based on the "Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil - Tier 1 Method, Canadian Council of Ministers of the Environment, December 2001." For F1 (C6-C10) analysis, the water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a GC-FID for analysis.

F2-4-ME-FID-CL Water CCME F2-4 Hydrocarbons EPA 3511/ CCME PHC CWS GC-FID

Water samples are spiked with 2-BBTF surrogate, and extracted by reciprocal action shaker for 30 minutes using a single micro-extraction with hexane. Instrumental analysis is by GC-FID, as per the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil, Tier 1 Method, CCME, December 2001.

HG-D-CVAA-CL Water Dissolved Mercury in Water by CVAAS APHA 3030B/EPA 1631E (mod)

Water samples are filtered (0.45 um), preserved with hydrochloric acid, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

APHA 1030E

IONBALANCE-CL Water Ion Balance Calculation

MET-D-CCMS-CL Water Dissolved Metals in Water by CRC ICPMS APHA 3030B/6020A (mod)

Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

N2N3-CALC-CL Water Nitrate+Nitrite CALCULATION

NH3-F-CL Water Ammonia by Fluorescence J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al.

NO2-IC-N-CL Water Nitrite in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-IC-N-CL Water Nitrate in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

P-T-COL-CL Water Total P in Water by Colour APHA 4500-P PHOSPHORUS

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is determined colourimetrically after persulphate digestion of the sample.

PH/EC/ALK-CL Water pH, Conductivity and Total Alkalinity APHA 4500H,2510,2320

All samples analyzed by this method for pH will have exceeded the 15 minute recommended hold time from time of sampling (field analysis is recommended for pH where highly accurate results are needed)

VFA-WP

L2393423 CONTD....

PAGE 18 of 18 Version: FINAL

Reference Information

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

pH measurement is determined from the activity of the hydrogen ions using a hydrogen electrode and a reference electrode.

Alkalinity measurement is based on the sample's capacity to neutralize acid

Water

Conductivity measurement is based on the sample's capacity to convey an electric current

SO4-IC-N-CL Water Sulfate in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

TKN-F-CL Water Total Kjeldahl Nitrogen by Fluorescence APHA 4500-NORG (TKN)

This analysis is carried out using procedures adapted from APHA Method 4500-Norg D. "Block Digestion and Flow Injection Analysis". Total Kjeldahl

Nitrogen is determined using block digestion followed by Flow-injection analysis with fluorescence detection.

Volatile fatty/carboxylic acids

In the field, water and soil samples are collected in certified clean glass jars. In the laboratory, water samples are filtered and transferred to an autosampler vial for analysis. Soil samples are extracted with water and an aliquot of water is filtered. All extracts have internal standard added prior to injection. Analysis is performed by GC/MS in the selected ion monitoring (SIM) mode.

ASTM D2908-91

VOC-HS-MS-CL Water VOCs in Water EPA 8260C/5021A

The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph.

VOC Target compound concentrations are measured using mass spectrometry detection.

XYLENES-CALC-CL Water Sum of Xylene Isomer Concentrations CALCULATION

Calculation of Total Xylenes

Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WP	ALS ENVIRONMENTAL - WINNIPEG, MANITOBA, CANADA
KL	ALS ENVIRONMENTAL - KELSO, WASHINGTON, USA
CL	ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA

Chain of Custody Numbers:

GREAT WEST

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Routine Water Chemistry Report

L2393423

Lab ID Sample ID					Lab ID Sampl	e ID			
L2393423-1 MW-01					L2393423-2 MW-02				
Sample Date: 05-DEC-19					Sample Date: 05-DEC-19				
Matrix: WATER					Matrix: WATER				
Ion Balance	Result 99.2	UNITS %	MEQ/L	MEQ %	Ion Balance	Result 94.1	UNITS %	MEQ/L	MEQ %
Routine Anions Bicarbonate	521	mg/L	8.54	25	Routine Anions Bicarbonate	683	mg/L	11.19	31
Carbonate	<5.0	mg/L	0	0	Carbonate	<5.0	mg/L	0	0
Hydroxide	<5.0	mg/L	0	0	Hydroxide	<5.0	mg/L	0	0
Chloride	267	mg/L	7.53	22	Chloride	233	mg/L	6.57	18
Sulfate	65.1	mg/L	1.36	4	Sulfate	54.6	mg/L	1.14	3
Nitrate+Nitrite-N		mg/L	0	0	Nitrate+Nitrite-N		mg/L	0	0
Anion Sum		1	17.43	50	Anion Sum	1		18.90	52
Routine Cations Calcium	173	mg/L	8.63	25	Routine Cations Calcium	177	mg/L	8.83	24
Magnesium	43.4	mg/L	3.57	10	Magnesium	47.7	mg/L	3.93	11
Sodium	114	mg/L	4.96	14	Sodium	112	mg/L	4.87	13
Potassium	4.04	mg/L	0.10	0	Potassium	4.85	mg/L	0.12	0
Ammonium	0.231	mg/L	0.02	0	Ammonium	0.338	mg/L	0.02	0
Cation Surr			17.28	50	Cation Sur	n		17.78	48
L2393423-3 MW-03			1112		L2393423-4 MW-04				
Sample Date: 05-DEC-19					Sample Date: 05-DEC-19				
Matrix: WATER					Matrix: WATER				
Ion Balance	Result 97.1	UNITS %	MEQ/L	MEQ %	Ion Balance	Result 105	UNITS %	MEQ/L	MEQ %
Routine Anions Bicarbonate	634	mg/L	10.39	29	Routine Anions Bicarbonate	538	mg/L	8.82	28
Carbonate	<5.0	mg/L	0	0	Carbonate	<5.0	mg/L	0	0
Hydroxide	<5.0	mg/L	0	0	Hydroxide	<5.0	mg/L	0	0
Chloride	234	mg/L	6.60	18	Chloride	162	mg/L	4.57	15
Sulfate	62.8	mg/L	1.31	4	Sulfate	87.5	mg/L	1.82	6
Nitrate+Nitrite-N		mg/L	0	0	Nitrate+Nitrite-N		mg/L	0.02	0
Anion Sum			18.30	51	Anion Sum		-	15.23	49
Routine Cations Calcium	178	mg/L	8.88	25	Routine Cations Calcium	166	mg/L	8.28	27
Magnesium	46.3	mg/L	3.81	11	Magnesium	40.4	mg/L	3.33	11
Sodium	114	mg/L	4.96	14	Sodium	96.9	mg/L	4.21	14
Potassium	4.34	mg/L	0.11	0	Potassium	4.17	mg/L	0.11	0
Ammonium	0.174	mg/L	0.01	0	Ammonium	<0.050	mg/L	0	0
Cation Sur		g. L	17.78	49	Cation Sur			15.93	51
					- Cadon Sui		_	.5.55	-

ALS Routine Water Chemistry Report

L2393423

Ion Balance Routine Anions Bicarbonate Carbonate Hydroxide Chloride	Result 100 600 <5.0	UNITS %	MEQ/L	MEQ %				
Ion Balance Routine Anions Bicarbonate Carbonate Hydroxide Chloride	100 600		MEQ/L	MEQ %				
Bicarbonate Carbonate Hydroxide Chloride		1	l I					
Hydroxide Chloride	<5.0	mg/L	9.83	33				
Chloride		mg/L	0	0				
	<5.0	mg/L	0	0				
	141	mg/L	3.98	14				
Sulfate	42.7	mg/L	0.89	3				
Nitrate+Nitrite-N		mg/L	0	0				
Anion Sum			14.70	50				
Routine Cations Calcium	144	mg/L	7.19	24				
Magnesium	37.0	mg/L	3.05	10				
Sodium	101	mg/L	4.39	15				
Potassium	4.27	mg/L	0.11	0				
Ammonium	0.082	mg/L	0.01	0				
Cation Surr			14.74	50				

ALS LABORATORY GROUP SOIL SALINITY CONVERSION

Lab ID	Sample II	D				Lab ID	Sam	ple ID	 	
"Calculatio Methods of Homer D. (University of August, 19	ns are as p	per:								
Homer D. (Tanaiysis f Chadman a	ior Solls, and Park	, Plant\$ ker F. P	and Wat ratt	ers					
University	of Californi	a, Rivers	side, Cl	-						
August, 19	ь1."									

Report Date: 27-DEC-19 Workorder: L2393423 Page 1 of 17

TETRA TECH CANADA INC. Client:

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
C-DIS-ORG-CL	Water							
Batch R49 WG3242690-7 Dissolved Organ	943327 DUP nic Carbon	L2390727-1 12.7	11.3		mg/L	12	20	13-DEC-19
WG3242690-2 Dissolved Organ			106.1		%		80-120	13-DEC-19
WG3242690-6 Dissolved Organ			114.9		%		80-120	13-DEC-19
WG3242690-1 Dissolved Organ	MB nic Carbon		<1.0		mg/L		1	13-DEC-19
WG3242690-5 Dissolved Organ	MB nic Carbon		<1.0		mg/L		1	13-DEC-19
WG3242690-8 Dissolved Organ	MS nic Carbon	L2390727-1	95.2		%		70-130	13-DEC-19
CL-IC-N-CL	Water							
Batch R49	942649							
WG3241458-7 Chloride (CI)	DUP	L2393392-1 <0.50	<0.50	RPD-NA	mg/L	N/A	20	07-DEC-19
WG3241458-6 Chloride (CI)	LCS		103.3		%		90-110	07-DEC-19
WG3241458-5 Chloride (CI)	мв		<0.50		mg/L		0.5	07-DEC-19
WG3241458-8 Chloride (CI)	MS	L2393392-1	108.4		%		75-125	07-DEC-19
F-IC-N-CL	Water							
Batch R49	942649							
WG3241458-7 Fluoride (F)	DUP	L2393392-1 <0.020	<0.020	RPD-NA	mg/L	N/A	20	07-DEC-19
WG3241458-6 Fluoride (F)	LCS		105.9		%		90-110	07-DEC-19
WG3241458-5 Fluoride (F)	МВ		<0.020		mg/L		0.02	07-DEC-19
WG3241458-8 Fluoride (F)	MS	L2393392-1	99.97		%		75-125	07-DEC-19
F1-HS-FID-CL	Water							
	938070							
WG3238489-3 F1(C6-C10)		L2393363-1 <0.10	<0.10	RPD-NA	mg/L	N/A	30	09-DEC-19
WG3238489-2	LCS							

Qualifier

Workorder: L2393423 Report Date: 27-DEC-19 Page 2 of 17

RPD

Limit

Analyzed

Units

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Matrix

Reference

Result

Calgary AB T2C 3G3

Contact: Darby Madalena

Test

P1-HS-FID-CL Water Batch R4938970 WG3238498-2 LCS F1(C6-C10) 72.1 % 70.130 10.DEC-19 70.130 10.DEC-19 70.130 70.130 70.DEC-19								
WG3238489-1 MB	F1-HS-FID-CL Wa	ter						
F1(C6-C10	Batch R4938070							
MG323848-1 MB F1(G-C10)			70.4		0.			
F1(C6-C10)			72.1		76		70-130	10-DEC-19
Surrogate: 3,4-Dichlorotoluene			<0.10		ma/L		0.1	09-DEC-19
Batch		ie.			_			
Batch								03-DEC-13
WG3243467-1 MB F2: (C10-C16)		ter						
F2: (C10-C16) C10-C16 C10-								
HG-D-CVAA-CL Water Batch R4943011 WG3242289-3 DUP Mercury (Hg)-Dissolved <0.0000050 <0.0000050 RPD-NA mg/L N/A 20 13-DEC-19 WG3242289-2 LCS Mercury (Hg)-Dissolved 112.0 % 80-120 13-DEC-19 WG3242289-1 MB Mercury (Hg)-Dissolved 106.0 % 70-130 13-DEC-19 WG3242289-4 MS Mercury (Hg)-Dissolved 106.0 % 70-130 13-DEC-19 WG3242289-4 MS Mercury (Hg)-Dissolved 106.0 % 70-130 13-DEC-19 WG3242289-4 MS Mercury (Hg)-Dissolved 106.0 % Wester Mercury (Hg)-Dissolved 13-DEC-19 WG3243289-4 MS Mercury (Hg)-Dissolved 0.0040 0.0040 % Wester Mercury (Hg)-Dissolved 0.0040 0.0040 Mg/L 0.9 20 13-DEC-19 Mercury (Hg)-Dissolved 0.0040 0.0040 Mg/L 0.9 20 13-DEC-19 Mathimum (Al)-Dissolved 0.0040 0.0040 0.0040 Mg/L 0.9 0.9 0.9 13-DEC-19 Mathimum (Al)-Dissolved 0.00040 0.00040 Mg/L 0.0040 Mg/L 0.9 0.0040 0.00040 Mg/L 0.000000 0.00000000000000000000000			<0.10		mg/L		0.1	17-DEC-19
High-D-CVAA-CL Water Hather R4943011 WG3242289-3 DUP Mercury (Hg)-Dissolved 40.0000050 40.0000050 RPD-NA mg/L N/A 20 13-DEC-19 RPD-NA mg/L M/A 20 13-DEC-19 RPD-NA Mg/L M/A M/A	Surrogate: 2-Bromobenzotrifl	uoride	70.9		%		60-140	17-DEC-19
Batch R4943011 WG3242289-3 DUP L2393429-4	HC D CVAA CI We	tor						
WG3242289-3 DUP Mercury (Hg)-Dissolved L2393429-4 <0.0000050 c0.0000050 RPD-NA mg/L N/A 20 13-DEC-19 WG3242289-2 LCS Mercury (Hg)-Dissolved 112.0 % 80-120 13-DEC-19 WG3242289-1 MB Mercury (Hg)-Dissolved <0.000005		rei.						
Mercury (Hg)-Dissolved <0.0000050 <0.0000050 RPD-NA mg/L N/A 20 13-DEC-19 WG3242289-2 LCS Mercury (Hg)-Dissolved 112.0 % 80-120 13-DEC-19 WG3242289-1 MB Mercury (Hg)-Dissolved <0.0000050 mg/L 0.000005 13-DEC-19 MET-D-CCMS-CL Water Water Valuation of the control of th		L2393429-4						
Mercury (Hg)-Dissolved 112.0 % 80-120 13-DEC-19 WG3242289-1 MB Mercury (Hg)-Dissolved L2393429-4 106.0 mg/L 0.000005 13-DEC-19 MET-D-CCMS-CL Water Batch R4937828 R937828 WG32385947 DUP L2393428-4 Mercury (Hg)-Dissolved 0.0040 0.0040 mg/L 0.9 20 13-DEC-19 Artimony (Sb)-Dissolved 0.00010 <0.00010 RPD-NA mg/L 0.94 20 13-DEC-19 Barium (Ba)-Dissolved 0.0004 0.088 J mg/L 9.4 20 13-DEC-19 Barium (Ba)-Dissolved 0.0000 0.088 J mg/L 5.6 20 13-DEC-19 Boron (B)-Dissolved 0.0000000 0.0000707 0.000070			<0.0000050	RPD-NA	mg/L	N/A	20	13-DEC-19
WG3242289-1 MB Mercury (Hg)-Dissolved c.0.000005C mg/L c.0.000005 13-DEC-19 WG3242289-4 MS Mercury (Hg)-Dissolved L2393429-4 106.0 % 70-130 13-DEC-19 MET-D-CCMS-CL Water Batch R4937828 WG3238594-7 DUP L2393428-4 C.0.0040 0.0040 mg/L 0.9 20 13-DEC-19 Antimony (Sb)-Dissolved 0.00010 c.0.00010 RPD-NA mg/L 0.0 13-DEC-19 Arsenic (As)-Dissolved 0.00046 0.00042 mg/L 9.4 20 13-DEC-19 Barium (Ba)-Dissolved 0.272 0.288 mg/L 0.018 0.02 13-DEC-19 Boron (B)-Dissolved 0.000707 0.0000799 mg/L 12 20 13-DEC-19	WG3242289-2 LCS							
Mercury (Hg)-Dissolved <0.000005€ mg/L 0.000005 13-DEC-19 WG32422894 MS Mercury (Hg)-Dissolved L2393429-4 106.0 % 70-130 13-DEC-19 MET-D-CCMS-CL Water Water V V V 70-130 13-DEC-19 Batch R4937828 R4937828 WG3238594-7 DUP Aluminum (Al)-Dissolved L2393428-4 O.00040 Mercury (Hg)-Dissolved Mg/L 0.9 20 13-DEC-19 Antimony (Sb)-Dissolved <0.00010 <0.00010 RPD-NA mg/L N/A 20 13-DEC-19 Arsenic (As)-Dissolved <0.00046 0.00042 mg/L 9.4 20 13-DEC-19 Barium (Ba)-Dissolved 0.272 0.288 J mg/L 5.6 20 13-DEC-19 Boron (B)-Dissolved 0.070 0.088 J mg/L 12 20 13-DEC-19 Calcium (Ca)-Dissolved 157 168 mg/L 12 20 13-DEC-19 Chromium (Cr)-Dissolved 0.00055 0.00010 RPD-NA mg/L <td>Mercury (Hg)-Dissolved</td> <td></td> <td>112.0</td> <td></td> <td>%</td> <td></td> <td>80-120</td> <td>13-DEC-19</td>	Mercury (Hg)-Dissolved		112.0		%		80-120	13-DEC-19
WG3242289-4 MS Mercury (Hg)-Dissolved L2393429-4 106.0 % 70-130 13-DEC-19 MET-D-CCMS-CL Water Batch R4937828 WG3238594-7 DUP Aluminum (Al)-Dissolved 0.0040 0.0040 0.0040 0.0040 N/A Aluminum (Al)-Dissolved 0.00040 0.00010 RPD-NA mg/L N/A 20 13-DEC-19 Antimony (Sb)-Dissolved 0.00046 0.00042 mg/L 9.4 20 13-DEC-19 Barium (Ba)-Dissolved 0.272 0.288 mg/L 5.6 20 13-DEC-19 Boron (B)-Dissolved 0.070 0.088 J mg/L 0.018 0.02 13-DEC-19 Cadmium (Cd)-Dissolved 0.0000707 0.0000799 mg/L 12 20 13-DEC-19 Calcium (Ca)-Dissolved 157 168 mg/L 6.4 20 13-DEC-19 Chromium (Cr)-Dissolved 0.00010 <0.00010 RPD-NA mg/L N/A 20 13-DEC-19							0.000005	
Mercury (Hg)-Dissolved 106.0 % 70-130 13-DEC-19 MET-D-CCMS-CL Water Batch R4937828 WG3238594-7 DUP Aluminum (Al)-Dissolved 0.0040 0.0040 0.0040 0.0040 0.0010 RPD-NA mg/L 0.9 20 13-DEC-19 Antimony (Sb)-Dissolved <0.00010			<0.0000050		mg/L		0.000005	13-DEC-19
MET-D-CCMS-CL Water Batch R4937828 WG3238594-7 DUP L2393428-4 Aluminum (Al)-Dissolved 0.0040 0.0040 mg/L 0.9 20 13-DEC-19 Antimony (Sb)-Dissolved <0.00010		L2393429-4	106.0		%		70-130	13 DEC 19
Batch R4937828 WG3238594-7 DUP Aluminum (Al)-Dissolved L2393428-4 0.0040 0.0040 mg/L 0.9 20 13-DEC-19 Antimony (Sb)-Dissolved <0.00010			100.0		70		70-150	13-DEC-19
WG3238594-7 DUP L2393428-4 O.0040 O.0040 D.0040 O.0040 O.0040 O.0040 O.0040 O.0040 O.0040 O.0040 O.0040 Mg/L O.9 20 13-DEC-19 Antimony (Sb)-Dissolved <0.00010		ter						
Aluminum (Al)-Dissolved 0.0040 0.0040 mg/L 0.9 20 13-DEC-19 Antimony (Sb)-Dissolved <0.00010		1 2202420 4						
Arsenic (As)-Dissolved 0.00046 0.00042 mg/L 9.4 20 13-DEC-19 Barium (Ba)-Dissolved 0.272 0.288 mg/L 5.6 20 13-DEC-19 Boron (B)-Dissolved 0.070 0.088 J mg/L 0.018 0.02 13-DEC-19 Cadmium (Cd)-Dissolved 0.0000707 0.0000799 mg/L 12 20 13-DEC-19 Calcium (Ca)-Dissolved 157 168 mg/L 6.4 20 13-DEC-19 Chromium (Cr)-Dissolved <0.00010			0.0040		mg/L	0.9	20	13-DEC-19
Barium (Ba)-Dissolved 0.272 0.288 mg/L 5.6 20 13-DEC-19 Boron (B)-Dissolved 0.070 0.088 J mg/L 0.018 0.02 13-DEC-19 Cadmium (Cd)-Dissolved 0.0000707 0.0000799 mg/L 12 20 13-DEC-19 Calcium (Ca)-Dissolved 157 168 mg/L 6.4 20 13-DEC-19 Chromium (Cr)-Dissolved <0.00010	Antimony (Sb)-Dissolved	<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	13-DEC-19
Boron (B)-Dissolved 0.070 0.088 J mg/L 0.018 0.02 13-DEC-19 Cadmium (Cd)-Dissolved 0.0000707 0.0000799 mg/L 12 20 13-DEC-19 Calcium (Ca)-Dissolved 157 168 mg/L 6.4 20 13-DEC-19 Chromium (Cr)-Dissolved <0.00010	Arsenic (As)-Dissolved	0.00046	0.00042		mg/L	9.4	20	13-DEC-19
Cadmium (Cd)-Dissolved 0.0000707 0.0000799 mg/L 12 20 13-DEC-19 Calcium (Ca)-Dissolved 157 168 mg/L 6.4 20 13-DEC-19 Chromium (Cr)-Dissolved <0.00010	Barium (Ba)-Dissolved	0.272	0.288		mg/L	5.6	20	13-DEC-19
Cadmium (Cd)-Dissolved 0.0000707 0.0000799 mg/L 12 20 13-DEC-19 Calcium (Ca)-Dissolved 157 168 mg/L 6.4 20 13-DEC-19 Chromium (Cr)-Dissolved <0.00010	Boron (B)-Dissolved	0.070	0.088	J	mg/L	0.018	0.02	13-DEC-19
Calcium (Ca)-Dissolved 157 168 mg/L 6.4 20 13-DEC-19 Chromium (Cr)-Dissolved <0.00010	Cadmium (Cd)-Dissolved	0.0000707	0.0000799		mg/L	12	20	
Chromium (Cr)-Dissolved <0.00010 <0.00010 RPD-NA mg/L N/A 20 13-DEC-19 Copper (Cu)-Dissolved 0.00055 0.00061 mg/L 9.8 20 13-DEC-19 Iron (Fe)-Dissolved 0.106 0.118 mg/L 11 20 13-DEC-19 Lead (Pb)-Dissolved <0.000050	Calcium (Ca)-Dissolved	157	168		mg/L		20	
Copper (Cu)-Dissolved 0.00055 0.00061 mg/L 9.8 20 13-DEC-19 Iron (Fe)-Dissolved 0.106 0.118 mg/L 11 20 13-DEC-19 Lead (Pb)-Dissolved <0.000050				RPD-NA				
Iron (Fe)-Dissolved 0.106 0.118 mg/L 11 20 13-DEC-19 Lead (Pb)-Dissolved <0.000050								
Lead (Pb)-Dissolved <0.000050 <0.000050 RPD-NA mg/L N/A 20 13-DEC-19					-			
				RPD-NA	_			
	. ,				_			
	magnesian (mg/ processor	04.7	12.0				20	13-020-13
	Magnesium (Mg)-Dissolved	64.7	72.3		mg/L	11	20	13-DEC-19

Workorder: L2393423 Report Date: 27-DEC-19 Page 3 of 17

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-CL	Water							
Batch R4937828								
WG3238594-7 DUP	-	L2393428-4						
Manganese (Mn)-Dissol	ved	1.03	1.12		mg/L	8.4	20	13-DEC-19
Nickel (Ni)-Dissolved		0.00519	0.00553		mg/L	6.3	20	13-DEC-19
Potassium (K)-Dissolved	1	10.1	9.80		mg/L	3.5	20	13-DEC-19
Selenium (Se)-Dissolved	d	0.000088	0.000068	J	mg/L	0.000020	0.0001	13-DEC-19
Silver (Ag)-Dissolved		<0.000010	<0.000010	RPD-NA	mg/L	N/A	20	13-DEC-19
Sodium (Na)-Dissolved		57.5	67.8		mg/L	16	20	13-DEC-19
Uranium (U)-Dissolved		0.00551	0.00604		mg/L	9.2	20	13-DEC-19
Zinc (Zn)-Dissolved		0.0015	0.0015		mg/L	2.8	20	13-DEC-19
WG3238594-6 LCS								
Aluminum (Al)-Dissolved			98.2		%		80-120	09-DEC-19
Antimony (Sb)-Dissolved	1		92.9		%		80-120	09-DEC-19
Arsenic (As)-Dissolved			94.2		%		80-120	09-DEC-19
Barium (Ba)-Dissolved			90.9		%		80-120	09-DEC-19
Boron (B)-Dissolved			93.0		%		80-120	09-DEC-19
Cadmium (Cd)-Dissolve			92.2		%		80-120	09-DEC-19
Calcium (Ca)-Dissolved			106.7		%		80-120	09-DEC-19
Chromium (Cr)-Dissolve	d		93.7		%		80-120	09-DEC-19
Copper (Cu)-Dissolved			93.4		%		80-120	09-DEC-19
Iron (Fe)-Dissolved			97.2		%		80-120	09-DEC-19
Lead (Pb)-Dissolved			93.4		%		80-120	09-DEC-19
Magnesium (Mg)-Dissol			91.2		%		80-120	09-DEC-19
Manganese (Mn)-Dissol	ved		95.8		%		80-120	09-DEC-19
Nickel (Ni)-Dissolved			92.9		%		80-120	09-DEC-19
Potassium (K)-Dissolved	1		94.9		%		80-120	09-DEC-19
Selenium (Se)-Dissolved	i		111.2		%		80-120	09-DEC-19
Silver (Ag)-Dissolved			103.0		%		80-120	09-DEC-19
Sodium (Na)-Dissolved			86.0		%		80-120	09-DEC-19
Uranium (U)-Dissolved			103.0		%		80-120	09-DEC-19
Zinc (Zn)-Dissolved			93.6		%		80-120	09-DEC-19
WG3238594-5 MB							0.004	
Aluminum (Al)-Dissolved			<0.0010		mg/L		0.001	09-DEC-19
Antimony (Sb)-Dissolved	1		<0.00010		mg/L		0.0001	09-DEC-19
Arsenic (As)-Dissolved			<0.00010		mg/L		0.0001	09-DEC-19
Barium (Ba)-Dissolved			<0.00010		mg/L		0.0001	09-DEC-19

Workorder: L2393423 Report Date: 27-DEC-19 Page 4 of 17

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-CL	Water							
Batch R4937828	;							
WG3238594-5 MB								
Boron (B)-Dissolved			<0.010		mg/L		0.01	09-DEC-19
Cadmium (Cd)-Dissolve			<0.000005	50	mg/L		0.000005	09-DEC-19
Calcium (Ca)-Dissolved			<0.050		mg/L		0.05	09-DEC-19
Chromium (Cr)-Dissolv			<0.00010		mg/L		0.0001	09-DEC-19
Copper (Cu)-Dissolved			<0.00020		mg/L		0.0002	09-DEC-19
Iron (Fe)-Dissolved			<0.010		mg/L		0.01	09-DEC-19
Lead (Pb)-Dissolved			<0.000050)	mg/L		0.00005	09-DEC-19
Magnesium (Mg)-Disso	olved		<0.0050		mg/L		0.005	09-DEC-19
Manganese (Mn)-Disso	olved		<0.00010		mg/L		0.0001	09-DEC-19
Nickel (Ni)-Dissolved			<0.00050		mg/L		0.0005	09-DEC-19
Potassium (K)-Dissolve	ed		<0.050		mg/L		0.05	09-DEC-19
Selenium (Se)-Dissolve	ed		<0.000050)	mg/L		0.00005	09-DEC-19
Silver (Ag)-Dissolved			<0.000010)	mg/L		0.00001	09-DEC-19
Sodium (Na)-Dissolved	l		<0.050		mg/L		0.05	09-DEC-19
Uranium (U)-Dissolved			<0.000010)	mg/L		0.00001	09-DEC-19
Zinc (Zn)-Dissolved			<0.0010		mg/L		0.001	09-DEC-19
WG3238594-8 MS		L2393428-4						
Aluminum (AI)-Dissolve			120.8		%		70-130	14-DEC-19
Antimony (Sb)-Dissolve	ed		103.8		%		70-130	14-DEC-19
Arsenic (As)-Dissolved			120.6		%		70-130	14-DEC-19
Barium (Ba)-Dissolved			N/A	MS-B	%		-	14-DEC-19
Boron (B)-Dissolved			111.5		%		70-130	14-DEC-19
Cadmium (Cd)-Dissolve	ed		121.0		%		70-130	14-DEC-19
Calcium (Ca)-Dissolved	1		N/A	MS-B	%		-	14-DEC-19
Chromium (Cr)-Dissolv	ed		117.2		%		70-130	14-DEC-19
Copper (Cu)-Dissolved			117.4		%		70-130	14-DEC-19
Iron (Fe)-Dissolved			103.6		%		70-130	14-DEC-19
Lead (Pb)-Dissolved			108.0		%		70-130	14-DEC-19
Magnesium (Mg)-Disso	olved		N/A	MS-B	%		-	14-DEC-19
Manganese (Mn)-Disso	olved		N/A	MS-B	%		-	14-DEC-19
Nickel (Ni)-Dissolved			119.6		%		70-130	14-DEC-19
Potassium (K)-Dissolve	ed		127.0		%		70-130	14-DEC-19
Selenium (Se)-Dissolve	ed		110.4		%		70-130	14-DEC-19
Silver (Ag)-Dissolved			92.2		%		70-130	14-DEC-19

Page 5 of 17

Workorder: L2393423 Report Date: 27-DEC-19

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-CL	Water							
Batch R4937828								
WG3238594-8 MS Sodium (Na)-Dissolved		L2393428-4	N/A	MS-B	%			14 DEC 10
Uranium (U)-Dissolved			110.8	MIS-D	%		- 70-130	14-DEC-19 14-DEC-19
Zinc (Zn)-Dissolved			117.1		%		70-130	14-DEC-19
NH3-F-CL	Water							
Batch R4943991								
WG3242302-14 LCS Ammonia, Total (as N)			94.7		%		05 445	46 DEC 40
WG3242302-13 MB			54.1		70		85-115	16-DEC-19
Ammonia, Total (as N)			<0.050		mg/L		0.05	16-DEC-19
NO2-IC-N-CL	Water							
Batch R4942649								
WG3241458-6 LCS Nitrite (as N)			106.1		%		90-110	07-DEC-19
WG3241458-5 MB Nitrite (as N)			<0.010		mg/L		0.01	07-DEC-19
NO3-IC-N-CL	Water							
Batch R4942649								
WG3241458-6 LCS Nitrate (as N)			104.0		%		90-110	07-DEC-19
WG3241458-5 MB Nitrate (as N)			<0.020		mg/L		0.02	07-DEC-19
P-T-COL-CL	Water							
Batch R4943276								
WG3242072-10 LC\$ Phosphorus (P)-Total			92.6		%		80-120	13-DEC-19
WG3242072-6 LC\$ Phosphorus (P)-Total			91.3		%		80-120	13-DEC-19
WG3242072-5 MB Phosphorus (P)-Total			<0.0050		mg/L		0.005	13-DEC-19
WG3242072-9 MB Phosphorus (P)-Total			<0.0050		mg/L		0.005	13-DEC-19
PH/EC/ALK-CL	Water							
Batch R4943994								
WG3243425-11 LCS Conductivity (EC)			99.3		%		90-110	14-DEC-19

Workorder: L2393423 Report Date: 27-DEC-19 Page 6 of 17

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PH/EC/ALK-CL Water							
Batch R4943994 WG3243425-11 LCS Alkalinity, Total (as CaCO3)		104.4		%		85-115	14-DEC-19
WG3243425-8 LCS Conductivity (EC)		98.6		%		90-110	14-DEC-19
Alkalinity, Total (as CaCO3)		104.1		%		85-115	14-DEC-19
WG3243425-10 MB Conductivity (EC)		<2.0		uS/cm		2	14-DEC-19
Bicarbonate (HCO3)		<5.0		mg/L		5	14-DEC-19
Carbonate (CO3)		<5.0		mg/L		5	14-DEC-19
Hydroxide (OH)		<5.0		mg/L		5	14-DEC-19
Alkalinity, Total (as CaCO3)		<2.0		mg/L		2	14-DEC-19
WG3243425-7 MB Conductivity (EC)		<2.0		uS/cm		2	14-DEC-19
Bicarbonate (HCO3)		<5.0		mg/L		5	14-DEC-19
Carbonate (CO3)		<5.0		mg/L		5	14-DEC-19
Hydroxide (OH)		<5.0		mg/L		5	14-DEC-19
Alkalinity, Total (as CaCO3)		<2.0		mg/L		2	14-DEC-19
SO4-IC-N-CL Water							
Batch R4942649							
WG3241458-7 DUP Sulfate (SO4)	L2393392-1 <0.30	0.40	RPD-NA	mg/L	N/A	20	07-DEC-19
WG3241458-6 LCS Sulfate (SO4)		100.3		%		90-110	07-DEC-19
WG3241458-5 MB Sulfate (SO4)		<0.30		mg/L		0.3	07-DEC-19
WG3241458-8 MS Sulfate (SO4)	L2393392-1	105.6		%		75-125	07-DEC-19
TKN-F-CL Water							
Batch R4943090							
WG3242367-15 DUP Total Kjeldahl Nitrogen	L2393430-1 0.69	0.64		mg/L	8.0	20	12-DEC-19
WG3242367-17 DUP Total Kjeldahl Nitrogen	L2393876-2 18	17		mg/L	0.5	20	12-DEC-19
WG3242367-18 DUP Total Kjeldahl Nitrogen	L2393879-1 74	71		mg/L	4.4	20	12-DEC-19
WG3242367-3 DUP Total Kjeldahl Nitrogen	L2394735-1 3.93	3.82		mg/L			12-DEC-19

Workorder: L2393423 Report Date: 27-DEC-19 Page 7 of 17

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TKN-F-CL	Water							
Batch R4943090								
WG3242367-3 DUP Total Kjeldahl Nitrogen		L2394735-1 3.93	3.82		mg/L	2.8	20	12-DEC-19
WG3242367-10 LCS Total Kjeldahl Nitrogen			102.0		%		75-125	12-DEC-19
WG3242367-14 LCS Total Kjeldahl Nitrogen			102.0		%		75-125	12-DEC-19
WG3242367-2 LCS Total Kjeldahl Nitrogen			98.4		%		75-125	12-DEC-19
WG3242367-6 LC\$ Total Kjeldahl Nitrogen			100.2		%		75-125	12-DEC-19
WG3242367-1 MB Total Kjeldahl Nitrogen			<0.20		mg/L		0.2	12-DEC-19
WG3242367-13 MB Total Kjeldahl Nitrogen			<0.20		mg/L		0.2	12-DEC-19
WG3242367-5 MB Total Kjeldahl Nitrogen			<0.20		mg/L		0.2	12-DEC-19
WG3242367-9 MB Total Kjeldahl Nitrogen			<0.20		mg/L		0.2	12-DEC-19
WG3242367-16 MS Total Kjeldahl Nitrogen		L2393430-1	99.9		%		70-130	12-DEC-19
WG3242367-4 MS Total Kjeldahl Nitrogen		L2394735-1	107.0		%		70-130	12-DEC-19
VFA-WP	Water							
Batch R4943956								
WG3243150-3 DUP Formic Acid		L2393425-3 <50	<50	RPD-NA	mg/L	N/A	30	14-DEC-19
Acetic Acid		<10	<10	RPD-NA	mg/L	N/A	30	14-DEC-19
Propionic Acid		<5.0	<5.0	RPD-NA	mg/L	N/A	30	14-DEC-19
Butyric Acid		<1.0	<1.0	RPD-NA	mg/L	N/A	30	14-DEC-19
Isobutyric Acid		<1.0	<1.0	RPD-NA	mg/L	N/A	30	14-DEC-19
Valeric Acid		<1.0	<1.0	RPD-NA	mg/L	N/A	30	14-DEC-19
Isovaleric Acid		<1.0	<1.0	RPD-NA	mg/L	N/A	30	14-DEC-19
Caproic (Hexanoic) Acid		<1.0	<1.0	RPD-NA	mg/L	N/A	30	14-DEC-19
WG3243154-3 DUP Formic Acid		L2393428-2 <50	<50	RPD-NA	mg/L	N/A	30	14-DEC-19
Acetic Acid		<10	<10	RPD-NA	mg/L	N/A	30	14-DEC-19
Propionic Acid		<5.0	<5.0	RPD-NA	mg/L	N/A	30	14-DEC-19

Workorder: L2393423 Report Date: 27-DEC-19 Page 8 of 17

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VFA-WP	Water							
Batch R4943956								
WG3243154-3 DUP		L2393428-2	-4.0					
Butyric Acid		<1.0	<1.0	RPD-NA	mg/L	N/A	30	14-DEC-19
Isobutyric Acid		<1.0	<1.0	RPD-NA	mg/L	N/A	30	14-DEC-19
Valeric Acid		<1.0	<1.0	RPD-NA	mg/L	N/A	30	14-DEC-19
Isovaleric Acid		<1.0	<1.0	RPD-NA	mg/L	N/A	30	14-DEC-19
Caproic (Hexanoic) Acid		<1.0	<1.0	RPD-NA	mg/L	N/A	30	14-DEC-19
WG3243150-2 LCS Formic Acid			126.9		%		70-130	16-DEC-19
Acetic Acid			79.8		%		70-130	16-DEC-19
Propionic Acid			82.0		%		70-130	16-DEC-19
Butyric Acid			72.2		%		70-130	16-DEC-19
Isobutyric Acid			78.9		%		70-130	16-DEC-19
Valeric Acid			73.7		%		70-130	16-DEC-19
Isovaleric Acid			70.0		%		70-130	16-DEC-19
Caproic (Hexanoic) Acid			82.3		%		70-130	16-DEC-19
WG3243154-2 LCS								
Formic Acid			124.7		%		70-130	16-DEC-19
Acetic Acid			73.5		%		70-130	16-DEC-19
Propionic Acid			87.7		%		70-130	16-DEC-19
Butyric Acid			70.6		%		70-130	16-DEC-19
Isobutyric Acid			76.8		%		70-130	16-DEC-19
Valeric Acid			75.6		%		70-130	16-DEC-19
Isovaleric Acid			71.7		%		70-130	16-DEC-19
Caproic (Hexanoic) Acid			85.2		%		70-130	16-DEC-19
WG3243150-1 MB Formic Acid			<30		mg/L		30	13-DEC-19
Acetic Acid			<10		mg/L		10	13-DEC-19
Propionic Acid			<5.0		mg/L		5	13-DEC-19
Butyric Acid			<1.0		mg/L		1	13-DEC-19
Isobutyric Acid			<1.0		mg/L		1	13-DEC-19
Valeric Acid			<1.0		mg/L		1	13-DEC-19
Isovaleric Acid			<1.0		mg/L		1	13-DEC-19
Caproic (Hexanoic) Acid			<1.0		mg/L		1	13-DEC-19
WG3243154-1 MB Formic Acid			<30		mg/L		30	13-DEC-19

Workorder: L2393423 Report Date: 27-DEC-19 Page 9 of 17

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VFA-WP	Water							
Batch R4943956								
WG3243154-1 MB Acetic Acid			<10		mg/L		10	13-DEC-19
Propionic Acid			<5.0		mg/L		5	13-DEC-19
Butyric Acid			<1.0		mg/L		1	13-DEC-19
Isobutyric Acid			<1.0		mg/L		1	13-DEC-19
Valeric Acid			<1.0		mg/L		1	13-DEC-19
Isovaleric Acid			<1.0		mg/L		1	13-DEC-19
Caproic (Hexanoic) Acid	ſ		<1.0		mg/L		1	13-DEC-19
WG3243150-4 MS Formic Acid		L2393410-5	89.8		%		70.400	42 DEC 40
Acetic Acid					%		70-130	13-DEC-19
			82.9 79.8		%		70-130	13-DEC-19
Propionic Acid Butyric Acid			79.6		%		70-130	13-DEC-19
Isobutyric Acid			80.4		%		70-130	13-DEC-19
Valeric Acid			85.5		%		70-130	13-DEC-19
Isovaleric Acid			75.3		%		70-130	13-DEC-19
Caproic (Hexanoic) Acid	1		97.3		%		70-130	13-DEC-19
WG3243154-4 MS	J	L2393423-2	31.3		70		70-130	13-DEC-19
Formic Acid		L2393423-2	92.1		%		70-130	13-DEC-19
Acetic Acid			78.9		%		70-130	13-DEC-19
Propionic Acid			74.4		%		70-130	13-DEC-19
Butyric Acid			72.4		%		70-130	13-DEC-19
Isobutyric Acid			80.5		%		70-130	13-DEC-19
Valeric Acid			72.6		%		70-130	13-DEC-19
Isovaleric Acid			70.3		%		70-130	13-DEC-19
Caproic (Hexanoic) Acid	í		91.8		%		70-130	13-DEC-19
VOC-HS-MS-CL	Water							
Batch R4937909								
WG3238459-5 DUP		L2393231-1						
1,1,1,2-Tetrachloroethan	ie	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
1,1,1-Trichloroethane		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
1,1,2,2-Tetrachloroethan	ie	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
1,1,2-Trichloroethane		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
1,1-Dichloroethane		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19

Workorder: L2393423 Report Date: 27-DEC-19 Page 10 of 17

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-HS-MS-CL	Water							
Batch R4937909	9							
WG3238459-5 DUP 1,1-Dichloropropene		L2393231-1 <0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
1,2,3-Trichlorobenzene	е	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
1,2,3-Trichloropropane	;	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
1,2,4-Trichlorobenzene	е	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
1,2,4-Trimethylbenzen	е	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
1,2-Dibromo-3-chlorop	ropane	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
1,2-Dichlorobenzene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
1,2-Dichloroethane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
1,2-Dichloropropane		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
1,3,5-Trimethylbenzen	е	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
1,3-Dichlorobenzene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
1,3-Dichloropropane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
1,4-Dichlorobenzene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
2,2-Dichloropropane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
2-Chlorotoluene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
4-Chlorotoluene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
p-Isopropyltoluene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	50	10-DEC-19
Benzene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
Bromobenzene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
Bromochloromethane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
Bromodichloromethan	е	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
Bromoform		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
Bromomethane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
Carbon tetrachloride		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
Chlorobenzene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
Chloroethane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
Chloroform		0.00166	0.00171		mg/L	3.0	30	10-DEC-19
Chloromethane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
cis-1,2-Dichloroethene	:	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
cis-1,3-Dichloroproper	ie	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
Dibromochloromethan	е	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
Dibromomethane		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
Dichlorodifluorometha	ne	<0.00050	<0.00050		mg/L			10-DEC-19

Workorder: L2393423 Report Date: 27-DEC-19 Page 11 of 17

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-HS-MS-CL	Water							
Batch R4937909								
WG3238459-5 DUP Dichlorodifluoromethane		L2393231-1 <0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
Ethylbenzene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
Ethylene dibromide		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
Hexachlorobutadiene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
Isopropylbenzene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
m+p-Xylenes		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
Methylene chloride		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
n-Butylbenzene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
n-Propylbenzene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
o-Xylene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
sec-Butylbenzene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
Styrene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
tert-Butylbenzene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
Tetrachloroethylene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
Toluene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
trans-1,2-Dichloroethene	:	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
trans-1,3-Dichloroproper	ne	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
Trichloroethene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
Trichlorofluoromethane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	10-DEC-19
Vinyl chloride		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	10-DEC-19
WG3238459-2 LCS								
1,1,1,2-Tetrachloroethan	e		104.2		%		70-130	09-DEC-19
1,1,1-Trichloroethane			96.0		%		70-130	09-DEC-19
1,1,2,2-Tetrachloroethan	ie		94.1		%		70-130	09-DEC-19
1,1,2-Trichloroethane			93.3		%		70-130	09-DEC-19
1,1-Dichloroethane			100.0		%		70-130	09-DEC-19
1,1-Dichloroethene			99.8		%		70-130	09-DEC-19
1,1-Dichloropropene			87.0		%		70-130	09-DEC-19
1,2,3-Trichlorobenzene			95.0		%		70-130	09-DEC-19
1,2,3-Trichloropropane			98.2		%		70-130	09-DEC-19
1,2,4-Trichlorobenzene			96.7		%		70-130	09-DEC-19
1,2,4-Trimethylbenzene			100.5		%		70-130	09-DEC-19
1,2-Dibromo-3-chloropro	pane		88.1		%		70-130	09-DEC-19

Workorder: L2393423 Report Date: 27-DEC-19 Page 12 of 17

Client: TETRA TECH CANADA INC. 110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-HS-MS-CL	Water							
Batch R4937909								
WG3238459-2 LCS			404.0					
1,2-Dichlorobenzene			101.3		%		70-130	09-DEC-19
1,2-Dichloroethane			93.1		%		70-130	09-DEC-19
1,2-Dichloropropane			95.9		%		70-130	09-DEC-19
1,3,5-Trimethylbenzene			101.4		%		70-130	09-DEC-19
1,3-Dichlorobenzene			100.6		%		70-130	09-DEC-19
1,3-Dichloropropane			92.3		%		70-130	09-DEC-19
1,4-Dichlorobenzene			106.6		%		70-130	09-DEC-19
2,2-Dichloropropane			94.4		%		70-130	09-DEC-19
2-Chlorotoluene			98.4		%		70-130	09-DEC-19
4-Chlorotoluene			94.9		%		70-130	09-DEC-19
p-Isopropyltoluene			96.2		%		50-150	09-DEC-19
Benzene			96.6		%		70-130	09-DEC-19
Bromobenzene			101.9		%		70-130	09-DEC-19
Bromochloromethane			92.5		%		70-130	09-DEC-19
Bromodichloromethane			98.0		%		70-130	09-DEC-19
Bromoform			96.4		%		70-130	09-DEC-19
Bromomethane			111.8		%		60-140	09-DEC-19
Carbon tetrachloride			94.1		%		70-130	09-DEC-19
Chlorobenzene			103.2		%		70-130	09-DEC-19
Chloroethane			126.5		%		60-140	09-DEC-19
Chloroform			96.6		%		70-130	09-DEC-19
Chloromethane			120.3		%		60-140	09-DEC-19
cis-1,2-Dichloroethene			92.9		%		70-130	09-DEC-19
cis-1,3-Dichloropropene	:		85.8		%		70-130	09-DEC-19
Dibromochloromethane			97.9		%		70-130	09-DEC-19
Dibromomethane			94.2		%		70-130	09-DEC-19
Dichlorodifluoromethane	9		122.0		%		60-140	09-DEC-19
Ethylbenzene			97.2		%		70-130	09-DEC-19
Ethylene dibromide			88.4		%		70-130	09-DEC-19
Hexachlorobutadiene			102.7		%		70-130	09-DEC-19
Isopropylbenzene			98.0		%		70-130	09-DEC-19
m+p-Xylenes			104.8		%		70-130	09-DEC-19
Methylene chloride			92.5		%		60-140	09-DEC-19
-								

Workorder: L2393423 Report Date: 27-DEC-19 Page 13 of 17

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-HS-MS-CL	Water							
Batch R4937909								
WG3238459-2 LCS n-Butylbenzene			98.5		%		70.400	00 DE0 40
n-butyibenzene n-Propylbenzene			92.2		%		70-130	09-DEC-19
o-Xylene			92.6		%		70-130	09-DEC-19
sec-Butylbenzene			103.6		%		70-130 70-130	09-DEC-19 09-DEC-19
Styrene			87.5		%		70-130	09-DEC-19 09-DEC-19
tert-Butylbenzene			98.5		%		70-130	09-DEC-19
Tetrachloroethylene			102.0		%		70-130	09-DEC-19
Toluene			89.9		%			
trans-1,2-Dichloroethene	9		98.2		%		70-130 70-130	09-DEC-19 09-DEC-19
trans-1,3-Dichloroproper			91.6		%		70-130	
Trichloroethene			98.1		%		70-130	09-DEC-19 09-DEC-19
Trichlorofluoromethane			122.0		%		60-140	09-DEC-19
Vinyl chloride			117.5		%		60-140	09-DEC-19
WG3238459-1 MB							JU- 14U	U3-DEC-19
1,1,1,2-Tetrachloroethar	ne		<0.0010		mg/L		0.001	09-DEC-19
1,1,1-Trichloroethane			<0.00050		mg/L		0.0005	09-DEC-19
1,1,2,2-Tetrachloroethar	ne		<0.00050		mg/L		0.0005	09-DEC-19
1,1,2-Trichloroethane			<0.00050		mg/L		0.0005	09-DEC-19
1,1-Dichloroethane			<0.00050		mg/L		0.0005	09-DEC-19
1,1-Dichloroethene			<0.00050		mg/L		0.0005	09-DEC-19
1,1-Dichloropropene			<0.0010		mg/L		0.001	09-DEC-19
1,2,3-Trichlorobenzene			<0.0010		mg/L		0.001	09-DEC-19
1,2,3-Trichloropropane			<0.00050		mg/L		0.0005	09-DEC-19
1,2,4-Trichlorobenzene			<0.0010		mg/L		0.001	09-DEC-19
1,2,4-Trimethylbenzene			<0.0010		mg/L		0.001	09-DEC-19
1,2-Dibromo-3-chloropro	pane		<0.0010		mg/L		0.001	09-DEC-19
1,2-Dichlorobenzene			<0.00050		mg/L		0.0005	09-DEC-19
1,2-Dichloroethane			<0.0010		mg/L		0.001	09-DEC-19
1,2-Dichloropropane			<0.00050		mg/L		0.0005	09-DEC-19
1,3,5-Trimethylbenzene			<0.0010		mg/L		0.001	09-DEC-19
1,3-Dichlorobenzene			<0.00050		mg/L		0.0005	09-DEC-19
1,3-Dichloropropane			<0.0010		mg/L		0.001	09-DEC-19
1,4-Dichlorobenzene			<0.00050		mg/L		0.0005	09-DEC-19
2,2-Dichloropropane			<0.0010		mg/L		0.001	09-DEC-19

Workorder: L2393423 Report Date: 27-DEC-19 Page 14 of 17

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-HS-MS-CL	Water							
Batch R4937909								
WG3238459-1 MB 2-Chlorotoluene			<0.0010		ma/l		0.001	00.050.40
4-Chlorotoluene					mg/L mg/L		0.001	09-DEC-19
			<0.0010 <0.0010		_		0.001	09-DEC-19
p-Isopropyltoluene					mg/L		0.0005	09-DEC-19
Benzene			<0.00050		mg/L			09-DEC-19
Bromobenzene Bromochloromethane			<0.0010		mg/L		0.001	09-DEC-19
			<0.0010		mg/L		0.001	09-DEC-19
Bromodichloromethane			<0.00050		mg/L		0.0005	09-DEC-19
Bromoform			<0.00050		mg/L		0.0005	09-DEC-19
Bromomethane			<0.0010		mg/L		0.001	09-DEC-19
Carbon tetrachloride			<0.00050		mg/L		0.0005	09-DEC-19
Chlorobenzene			<0.00050		mg/L		0.0005	09-DEC-19
Chloroethane			<0.0010		mg/L		0.001	09-DEC-19
Chloroform			<0.00050		mg/L		0.0005	09-DEC-19
Chloromethane			<0.0010		mg/L		0.001	09-DEC-19
cis-1,2-Dichloroethene			<0.0010		mg/L		0.001	09-DEC-19
cis-1,3-Dichloropropene			<0.00050		mg/L		0.0005	09-DEC-19
Dibromochloromethane			<0.00050		mg/L		0.0005	09-DEC-19
Dibromomethane			<0.00050		mg/L		0.0005	09-DEC-19
Dichlorodifluoromethane	•		<0.00050		mg/L		0.0005	09-DEC-19
Ethylbenzene			<0.00050		mg/L		0.0005	09-DEC-19
Ethylene dibromide			<0.00050		mg/L		0.0005	09-DEC-19
Hexachlorobutadiene			<0.0010		mg/L		0.001	09-DEC-19
Isopropylbenzene			<0.0010		mg/L		0.001	09-DEC-19
m+p-Xylenes			<0.00050		mg/L		0.0005	09-DEC-19
Methylene chloride			<0.0010		mg/L		0.001	09-DEC-19
n-Butylbenzene			<0.0010		mg/L		0.001	09-DEC-19
n-Propylbenzene			<0.0010		mg/L		0.001	09-DEC-19
o-Xylene			<0.00050		mg/L		0.0005	09-DEC-19
sec-Butylbenzene			<0.0010		mg/L		0.001	09-DEC-19
Styrene			<0.00050		mg/L		0.0005	09-DEC-19
tert-Butylbenzene			<0.0010		mg/L		0.001	09-DEC-19
Tetrachloroethylene			<0.00050		mg/L		0.0005	09-DEC-19
Toluene			<0.00050		mg/L		0.0005	09-DEC-19

Workorder: L2393423 Report Date: 27-DEC-19 Page 15 of 17

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-HS-MS-CL	Water							
Batch R4937909								
WG3238459-1 MB	_		-0.00000				0.0005	
trans-1,2-Dichloroethen			<0.00050		mg/L		0.0005	09-DEC-19
trans-1,3-Dichloroprope	ne		<0.0010		mg/L		0.001	09-DEC-19
Trichloroethene			<0.00050		mg/L		0.0005	09-DEC-19
Trichlorofluoromethane			<0.0010		mg/L		0.001	09-DEC-19
Vinyl chloride			<0.00050		mg/L		0.0005	09-DEC-19
Surrogate: 1,4-Difluorob			100.6		%		70-130	09-DEC-19
Surrogate: 4-Bromofluor	robenzene		80.9		%		70-130	09-DEC-19
WG3238459-6 MS 1,1,1,2-Tetrachloroethar	ne	L2393231-2	99.0		%		50-140	00 DEC 40
1,1,1-Trichloroethane	110		99.0		%		50-140	09-DEC-19 09-DEC-19
1,1,2,2-Tetrachloroetha	ne.		87.1		%		50-140	
1,1,2-Trichloroethane	iiG		88.5		%			09-DEC-19
1,1-Dichloroethane			101.6		%		50-140 50-140	09-DEC-19 09-DEC-19
1,1-Dichloroethene			102.3		%		50-140	
1,1-Dichloropropene			94.7		%		50-140	09-DEC-19 09-DEC-19
1,2,3-Trichlorobenzene			109.6		%		50-140	
1,2,3-Trichloropropane			89.8		%		70-130	09-DEC-19 09-DEC-19
1,2,4-Trichlorobenzene			106.1		%		50-140	09-DEC-19
1,2,4-Trimethylbenzene			102.6		%		50-140	09-DEC-19
1,2-Dibromo-3-chloropro			92.5		%		50-140	09-DEC-19
1,2-Dichlorobenzene	spano .		100.5		%		50-140	09-DEC-19
1,2-Dichloroethane			89.2		%		50-140	09-DEC-19
1,2-Dichloropropane			96.1		%		50-140	09-DEC-19
1,3,5-Trimethylbenzene			103.0		%		50-140	
1,3-Dichlorobenzene			98.8		%		50-140	09-DEC-19 09-DEC-19
1,3-Dichloropropane			88.8		%		50-140	09-DEC-19
1.4-Dichlorobenzene			104.7		%		50-140	09-DEC-19
2,2-Dichloropropane			98.2		%		50-140	09-DEC-19
2-Chlorotoluene			99.5		%			
4-Chlorotoluene			95.2		%		50-140 50-140	09-DEC-19 09-DEC-19
p-Isopropyltoluene			101.3		%			
Benzene			98.9		%		50-140	09-DEC-19
Bromobenzene			98.7		%		50-140	09-DEC-19 09-DEC-19
Bromochloromethane			90.1		%		50-140	
Diomocniolomethalle			JU. 1		/0		50-140	09-DEC-19

Workorder: L2393423 Report Date: 27-DEC-19 Page 16 of 17

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-HS-MS-CL	Water							
Batch R4937909								
WG3238459-6 MS		L2393231-2	05.0					
Bromodichloromethane			95.6		%		50-140	09-DEC-19
Bromoform			89.3		%		50-140	09-DEC-19
Bromomethane			113.0		%		50-140	09-DEC-19
Carbon tetrachloride			96.1		%		50-140	09-DEC-19
Chlorobenzene			100.3		%		50-140	09-DEC-19
Chloroethane			127.7		%		50-140	09-DEC-19
Chloroform			96.5		%		50-140	09-DEC-19
Chloromethane			120.4		%		50-140	09-DEC-19
cis-1,2-Dichloroethene			95.9		%		50-140	09-DEC-19
cis-1,3-Dichloropropene			89.3		%		50-140	09-DEC-19
Dibromochloromethane			95.2		%		50-140	09-DEC-19
Dibromomethane			89.7		%		50-140	09-DEC-19
Dichlorodifluoromethane	;		122.6		%		50-140	09-DEC-19
Ethylbenzene			101.7		%		50-140	09-DEC-19
Ethylene dibromide			84.8		%		50-140	09-DEC-19
Hexachlorobutadiene			104.6		%		50-140	09-DEC-19
Isopropylbenzene			100.7		%		50-140	09-DEC-19
m+p-Xylenes			102.3		%		50-140	09-DEC-19
Methylene chloride			91.4		%		50-140	09-DEC-19
n-Butylbenzene			100.9		%		50-140	09-DEC-19
n-Propylbenzene			98.8		%		50-140	09-DEC-19
o-Xylene			97.8		%		50-140	09-DEC-19
sec-Butylbenzene			103.9		%		50-140	09-DEC-19
Styrene			92.3		%		50-140	09-DEC-19
tert-Butylbenzene			101.5		%		50-140	09-DEC-19
Tetrachloroethylene			102.1		%		50-140	09-DEC-19
Toluene			95.8		%		50-140	09-DEC-19
trans-1,2-Dichloroethene	:		99.0		%		50-140	09-DEC-19
trans-1,3-Dichloroproper	ne		92.1		%		50-140	09-DEC-19
Trichloroethene			101.5		%		50-140	09-DEC-19
Trichlorofluoromethane			110.9		%		50-140	09-DEC-19
			122.7		%			

Workorder: L2393423 Report Date: 27-DEC-19

Client: TETRA TECH CANADA INC. Page 17 of 17

110, 140 Quarry Park Blvd SE Calgary AB T2C 3G3

Contact: Darby Madalena

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Service Request No:K1911630

Inayat Dhaliwal ALS Environmental - Canada 2559 29 Street NE Calgary, AB T1Y 7B5

Laboratory Results for: L2393423

Dear Inayat,

Enclosed are the results of the sample(s) submitted to our laboratory December 12, 2019 For your reference, these analyses have been assigned our service request number **K1911630**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3293. You may also contact me via email at Elizabeth.Harris@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Elizabeth Harris Project Manager

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Client: ALS Environmental - Canada Service Request: K1911630

Project: L2393423 Date Received: 12/12/2019

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Five water samples were received for analysis at ALS Environmental on 12/12/2019. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

General Chemistry:

No significant anomalies were noted with this analysis.

Approved by ______ Date ____12/26/2019

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com Client: ALS Environmental - Canada Service Request:K1911630

Project: L2393423

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	TIME
K1911630-001	L2393423-1	12/5/2019	
K1911630-002	L2393423-2	12/5/2019	
K1911630-003	L2393423-3	12/5/2019	
K1911630-004	L2393423-4	12/5/2019	
K1911630-005	L2393423-5	12/5/2019	

L2393423

CALGARY

Subcontract Request Form

L2393423

Subcontract To:

ALS ENVIRONMENTAL - KELSO, WASHINGTON, USA

NOTES: Please reference on final report and invoice: PO#

1317 S. 13TH AVE KELSO,WA 98626

Please see enclosed 5 sam	ple(s) in <u>5</u> Container(s)					
SAMPLE NUMBER ANALYTI	CAL REQUIRED	DATE SAMPLED Priority DUE DATE Flag				
L2393423-1 MW-01 Adsorbable	e Organic Halides (AOX-MISA-KL 1)	12/ 5/ 2019 12/30/2019				
L2393423-2 MW-02 Adsorbab	e Organic Halides (AOX-MISA-KL 1)	12/ 5/ 2019 12/30/2019				
L2393423-3 MW-03 Adsorbab	le Organic Halides (AOX-MISA-KL 1)	12/ 5/ 2019 12/30/2019				
L2393423-4 MW-04 Adsorbab	le Organic Halides (AOX-MISA-KL 1)	12/ 5/ 2019 12/30/2019				
L2393423-5 MW-05 Adsorbab	le Organic Halides (AOX-MISA-KL 1)	12/ 5/ 2019 12/30/2019				
Subcontract Info Contact: Analysis and reporting info contact:	John Forbes (403) 291-9897 Inayat Dhaliwal 2559 29 STREET NE CALGARY,AB T1Y 7B5 Phone: (403) 291-9897	Email: inayat.dhaliwal@alsglobal.com				
Please email confirmation of rece	ipt to: inayat.dhaliwal	@alsglobal.com				
Shipped By:	Date Shipped:					
Received By:	Date Received:	12/12/19 1000				
Verified By:	Date Verified:					
	Temperature:					
Sample Integrity Issues:						

nt ALS	5 CAN	JA-P A	<u> </u>	Cooler	Necei	рс ал			Request		116	30			
ived: 12/	12/19	Ор	ened:12/	12/19		Ву						12/19	Ву:	CG	
amples wer	e received	in: (circle		Fed Ex	Box	PS 1	DHL Enveloj	Pi pe	DX C	Courier	Han	d Deliver	ed .	NA	
Were <u>custod</u> f present, w		S 20		Y AV		シ		¥	many an nt, were t			dated?		 У	 N
			orrected	Corr.		momet			COC ID			Tracking	Numbe		11
	rTemp Tem		mp Blank	Factor	4	07	- -		_ (N/	7	770	00%	00	607 N	IA Filed
	-/			10. 3			_			-	112	-000	0 01	00 /	-
												,			
Packing man									Dry Ic	<u>.) </u>	eves				
Were sample Were all samp Did all samp Were appro Were the p Were VOA Was C12/I	uple labels le labels a priate bott H-preserve vials rece	If applic complete nd tags ag les/contain ed bottles eived with	cable, tiss (i.e analy ree with ners and (see SMO	sue sample ysis, prese custody p volumes r	es were rvation apers? eceived) recei dicate	e receiven, etc.)? Indicated for the ved at the content of the co	red: ate maj e tests he app able be	Froze or disc indicat ropriat	n Para repancies ed?	tially Ti	hawed table on		NA NA NA NA		N N N N N
Sa	ımple ID			Count	Out of	Head-	Broke	рН	Reage		/olume	Reager Num		Initials	Time
-2393	+23 -	- Contraction of the Contraction	1-250,					X	HMs		2.5.	RE1-4	18-4	<i>C6</i>	1315
	4	2_		1				<u>X</u>				The second secon	The second secon	CG	1315
		- 55	<u> </u>					$\stackrel{\times}{\rightarrow}$			Marine Ma			<u>CG</u>	1315
	th _{ése,}		1	Manage .				X.	ł			No.		16	13/2
			10										, ,		
otes, Discre	epancies,	& Resoli	utions:_	L23	734	123	-1,	12	393	ht 2:	3-2	· PH	didn	ot adju	ist-to-
7/25/16													Раре	of	

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.

 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client: ALS Environmental - Canada

Project: L2393423/ Service Request: K1911630

Date Collected: 12/5/19

Date Collected: 12/5/19

Sample Name: L2393423-1 Lab Code: K1911630-001

Sample Matrix: Water **Date Received:** 12/12/19

Analysis Method

1650C

Analyzed By Extracted/Digested By

ESCHLOSS

Sample Name: L2393423-2 Lab Code: K1911630-002

Sample Matrix: Water **Date Received:** 12/12/19

Analysis Method

1650C

Extracted/Digested By

Analyzed By ESCHLOSS

Date Collected: 12/5/19

Sample Name: L2393423-3 Lab Code: K1911630-003

Water

Sample Matrix:

Date Received: 12/12/19

Analysis Method

1650C

Extracted/Digested By Analyzed By

ESCHLOSS

Sample Name: L2393423-4 **Date Collected:** 12/5/19 Lab Code: K1911630-004

Sample Matrix: Water **Date Received:** 12/12/19

Analysis Method

1650C

Analyzed By Extracted/Digested By

ESCHLOSS

Sample Name: L2393423-5 **Date Collected:** 12/5/19 Lab Code: K1911630-005

Sample Matrix: Water **Date Received:** 12/12/19

Analysis Method

1650C

Analyzed By Extracted/Digested By

ESCHLOSS

Printed 12/23/2019 5:14:23 PM Superset Reference:19-0000534635 rev 00

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: ALS Environmental - Canada

Project: L2393423

393423 **Date Collected:** 12/05/19

Service Request: K1911630

Sample Matrix: Water Date Received: 12/12/19 10:00

Sample Name: L2393423-1 Basis: NA

Lab Code: K1911630-001

General Chemistry Parameters

Analysis

	1 111111 9 515						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Halides, Adsorbable Organic (AOX)	1650C	ND U	mg/L	0.025	2.5	12/18/19 10:50	

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: ALS Environmental - Canada

Project: L2393423

Sample Matrix: Water

Sample Name: L2393423-2 Lab Code: K1911630-002

Service Request: K1911630 **Date Collected:** 12/05/19

Date Received: 12/12/19 10:00

Basis: NA

General Chemistry Parameters

Analysis

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Halides, Adsorbable Organic (AOX)	1650C	ND U	mg/L	0.025	2.5	12/18/19 10:50	

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: ALS Environmental - Canada

Project: L2393423

Sample Matrix: Water

Service Request: K1911630 Date Collected: 12/05/19

Date Received: 12/12/19 10:00

Sample Name: L2393423-3 Basis: NA

Lab Code: K1911630-003

General Chemistry Parameters

Analysis Analyte Name Method Units MRL Dil. **Date Analyzed** Result Q 1650C 12/18/19 10:50 Halides, Adsorbable Organic (AOX) ND U mg/L 0.025 2.5

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: ALS Environmental - Canada

Project: L2393423

Sample Matrix: Water

Date Collected: 12/05/19 ater Date Received: 12/12/19 10:00

Sample Name: L2393423-4 Basis: NA

Lab Code: K1911630-004

General Chemistry Parameters

Analysis

	1 111111 9 515						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Halides, Adsorbable Organic (AOX)	1650C	ND U	mg/L	0.025	2.5	12/18/19 10:50	

Service Request: K1911630

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: ALS Environmental - Canada

Project: L2393423

Sample Matrix:

Sample Name:

Lab Code:

Water

Service Request: K1911630

Date Collected: 12/05/19

Date Received: 12/12/19 10:00

L2393423-5 K1911630-005 Basis: NA

General Chemistry Parameters

Analysis

	1 kildly 515						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Halides, Adsorbable Organic (AOX)	1650C	ND U	mg/L	0.025	2.5	12/18/19 10:50	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: ALS Environmental - Canada

Project: L2393423

Date Collected: NA

Service Request: K1911630

Sample Matrix:

Sample Name:

Water

Date Received: NA

Basis: NA Method Blank

Lab Code: K1911630-MB

General Chemistry Parameters

Analysis

	1 x11tt1 y 515						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Halides, Adsorbable Organic (AOX)	1650C	ND U	mg/L	0.010	1	12/18/19 10:50	

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: ALS Environmental - Canada

Project: L2393423/
Sample Matrix: Water

Service Request: K1911630

Date Collected: NA
Date Received: NA

Date Analyzed: 12/18/2019 **Analysis Lot:** 663758

Calibration and Method Blank Summary Halides, Adsorbable Organic (AOX)

1650C

	Halide Check Standard (ug)	Instrument Calibration Standard (ug)	PAR Standard (ug/L)
True Value	3.64	10.0	0.100
Run A Percent Recovery A	3.72 102	10.3 103	0.105 105
Run B	3.66	9.96	
Percent Recovery B	101	100	

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: ALS Environmental - Canada

L2393423

Sample Matrix: Water **Service Request: Date Collected:**

K1911630

N/A N/A

Date Received: Date Analyzed:

12/18/19

Date Extracted:

NA

Duplicate Matrix Spike Summary

Halides, Adsorbable Organic (AOX)

Batch QC

Units:

mg/L

Lab Code:

Prep Method:

Sample Name:

Project:

K1911720-001

Basis:

NA

Analysis Method:

1650C

None

Matrix Spike

Duplicate Matrix Spike

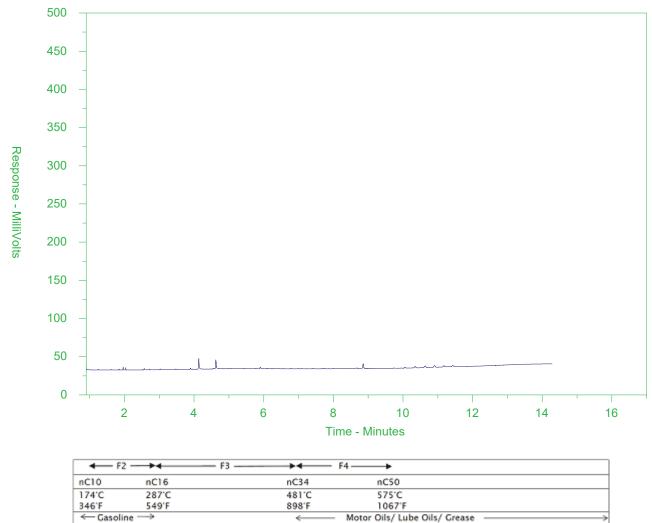
K1911720-001DMS

K1911720-001MS

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Halides, Adsorbable Organic (AOX)	2.35	12.3	10.0	100	12.4	10.0	100	90-110	<1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

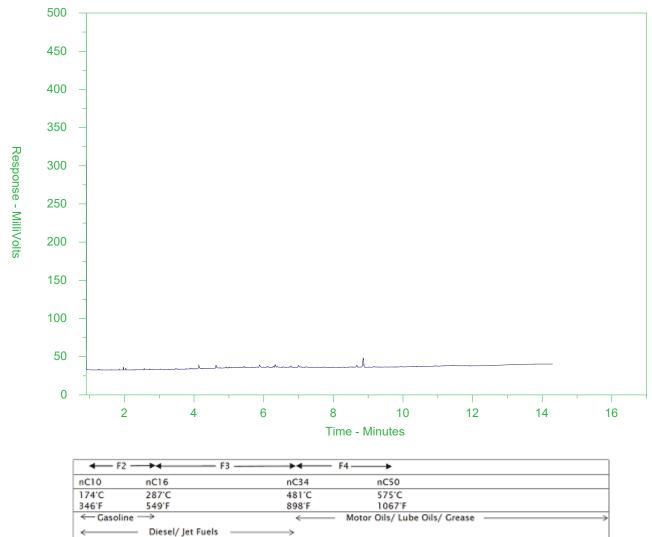
Results flagged with a pound (#) indicate the control criteria is not applicable.


Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 12/23/2019 5:14:23 PM Superset Reference: 19-0000534635 rev 00

ALS Sample ID: L2393423-1 Client Sample ID: MW-01

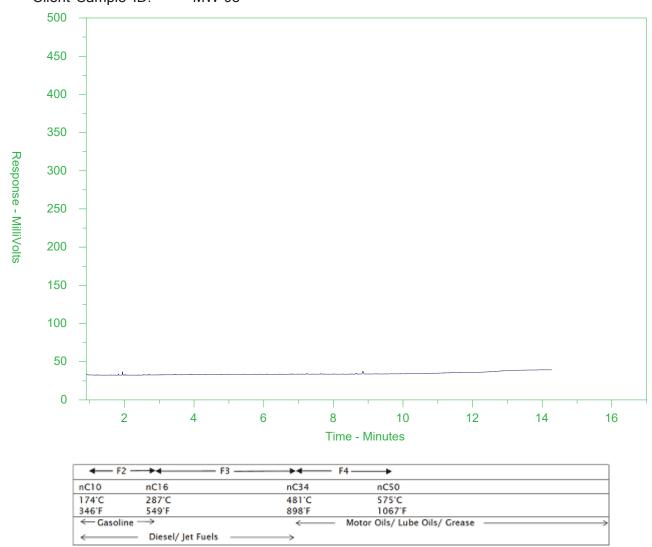
Diesel/ Jet Fuels


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

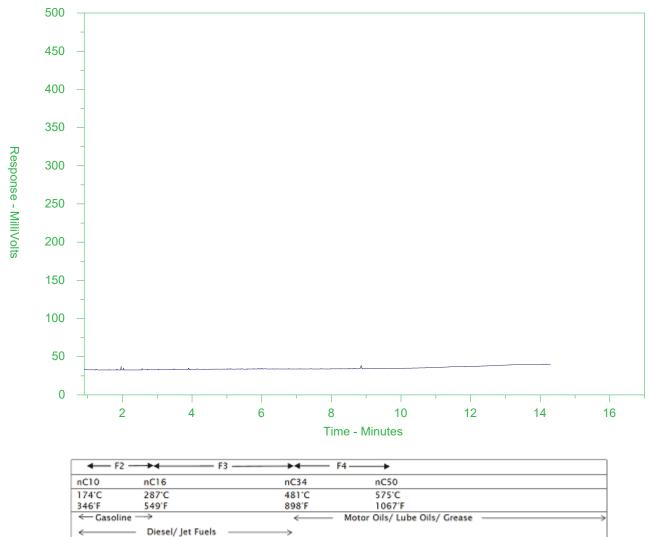
ALS Sample ID: L2393423-2 Client Sample ID: MW-02


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

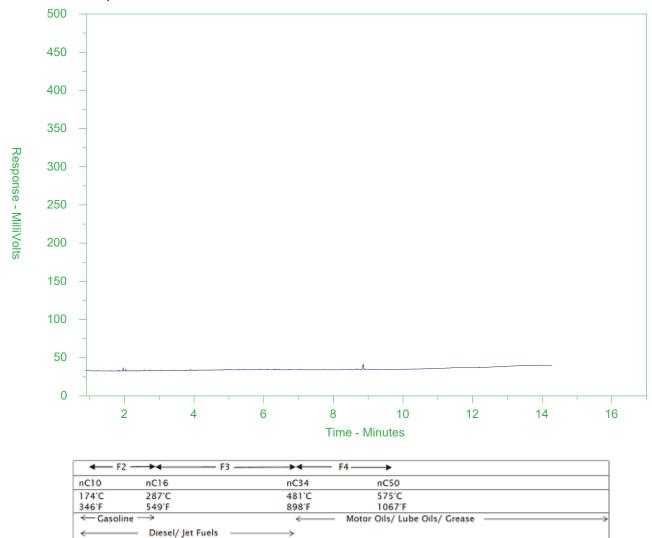
ALS Sample ID: L2393423-3R Client Sample ID: MW-03


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L2393423-4 Client Sample ID: MW-04


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L2393423-5 Client Sample ID: MW-05

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Laboratory Group

Environmental Division

ALS

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878

COC CORD Great West Adventure

Canada Toll Free: 1 800 668 9878	
www.alsglobal.com	Page <u>1</u> of <u>1</u>

Report to:	Report Format / I)istribution	1		Ser	Service Requested:									
Company: Tetra Tech Canada Inc.	☐ Standard ☐	Other			₩	Reg	ular S	ervic	e (De	ault)					
Contact: Darby Madalena	₩ PDF ₩ E	xcel Γ	Fax		Γ	Rus	h Sen	rice (:	2-3 D	ays)					
Address: 110, 140 Quarry Park Blvd SE, Calgary, AB T2C 3G3	Email 1: darby.m	adalena@t	etratech.com			Prio	rity Se	rvice	(1 Da	y or /	4SAP	')			
	Email 2:				T	Eme	rgenc	y Sei	rvice	<1 Da	ay / V	/ken	d) - Co	intac	t ALS
Phone: 403-723-6867 Fax: 403-203-3301	ALS Digital Crosst	ab results							Anal	ysis F	₹equ	est			
Involce To: Same as Report			Indicate Bottle	s: Filtered / Preserved (F/P) →	-T_			-		\top					
Company: SAME AS REPORT	Client / Project In	formation:							Т	T	Т				/
Contact:	Job #:	5	SWOP04071-01	1.001]		1								/
Address:	PO/AFE:		SWOP04071-01	1.001]		힉	1	-					S 8
Sample	Legal Site Descrip	tion:]			ĖΙ		1					are are
Phone: Fax:	Quote #: Q71650				ي [ا ــ ا		D-ABT1	힉		۱_				들 품
(lab use only)	ALS Wendy	Sears	Sampler (Initials):	yan Miller	BTX,F1,F2-CI	VOC-8260-CL	ᅵᇦ	. 11	ġΙ		AOX-MISA-KL	_		Hazardous?	Highly Contaminated? Number of Containers
Sample Identification	Da	te	Time	Sample Type	75	8	TKN-F-CL	ROU-MET	C-DIS-OR	, 당	₹	VFA-WP		틸	골 월
(This description will appear on the report)	dd-m	ımm-yy	hh:mm	(Select from drop-down list)	16	ÌŠ	횜	윤	ᇷ		. ĝ	🖺	1	훈	Highly Numbe
\$7566.430 MW-01	05-c	10:19	1045	Water	Х	х	х	х .	x >	C X	Х	Х			112
		1	1150	Water	X	х	x	x :	x >	(x	X	X	П)2
			OSOI	Water	Х	х	X	X .	x >	(X	х	Х		\neg	12
※ ※ MW-04			064	Water	х	х	х	x :	x >	(x	х	х	П	\neg	Q
○ MW-05	-	47	17/25	Water	х	х	х	х	x >	: x	Х	х	П	\top	13
					1			\neg	$\neg \vdash$	1	Т		П	T	
2°C28000										1	Т				$\neg \neg$
######################################								T		\top	\top	\Box	П	十	$\neg \neg$
								T		\top	\top	Г		\neg	$\neg \neg$
TOWN AND THE PROPERTY OF THE P							\Box	\top	\neg	1				\top	
Guidelines / Regulations				Special Instruction	s / Ha	zard	O auc	etalis	5						
	- h	18t 31	1 + Ha	+ DOC F/	p										
Failure to complete	all portions of this	form/n/ay	delay analysis	. Please fill in this form	LEG	IBLY	<i>'</i> .								
By the use of this form the user ackn	owledges and agi	ees with th	e Terms and C	onditions as specified											
Relinquished By: Date & Time: D	Received	/// 1//	Date & Timo:	1211			rature	-					у) пывач	CLASSING SZ	M.P. Spectrus
By: Personal Date & Timo: 1600	By: Received By:		Date & Time:	100/	┥ -	ampr	nature		Conditi	Recenon? Y / wided d	N (i	if no			
					_		_							_	

TETRA TECH CANADA INC.

ATTN: Darby Madalena

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Date Received: 06-DEC-19

Report Date: 24-DEC-19 15:24 (MT)

Version: FINAL

Client Phone: 403-203-3355

Certificate of Analysis

Lab Work Order #: L2393610

Project P.O. #:

SWM.SWOP04071-01.001

Job Reference:

SWM.SWOP04071-01.001 (GREAT WEST

ADVENTURE PARK)

C of C Numbers: Legal Site Desc:

Inayat Dhaliwal Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2393610 CONTD.... PAGE 2 of 17 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393610-1 VW-01]					
Sampled By: MEGAN ROUSE on 04-DEC-19 @ 13:42							
Matrix: SG							
Total F1 and F2+ Sub Fractionation							
Aliphatic/Aromatic PHC Sub-Fractionation							
Aliphatic C6-C8	22		15	ug/m3		24-DEC-19	R4953507
Aliphatic C>8-C10	33		15	ug/m3		24-DEC-19	R4953507
Aliphatic C>10-C12	27		15	ug/m3		24-DEC-19	R4953507
Aliphatic C>12-C16	<30		30	ug/m3		24-DEC-19	R4953507
Aromatic C>8-C10	<15		15	ug/m3		24-DEC-19	R4953507
Aromatic C>10-C12	<15		15	ug/m3		24-DEC-19	R4953507
Aromatic C>12-C16	<30		30	ug/m3		24-DEC-19	R4953507
Total F1and F2 fractions (not corrected)							
F1 (C6-C10)	53		15	ug/m3		24-DEC-19	R4953507
F2 (C10-C16)	61		15	ug/m3		24-DEC-19	R4953507
Surrogate: 4-Bromofluorobenzene	99.8		50-150	%		24-DEC-19	R4953507
High Level Fixed Gases by TCD Nitrogen	72.6		1.0	%		13-DEC-19	R4944389
Oxygen	19.5		0.10	% %		13-DEC-19	R4944389
Carbon Dioxide	1.40		0.050	% %		13-DEC-19	R4944389
Carbon Monoxide	<0.050		0.050	%		13-DEC-19	R4944389
Methane	<0.050		0.050	%		13-DEC-19	R4944389
BTEX and Naphthalene	-2.222		0.000				
Naphthalene	<2.6		2.6	ug/m3		24-DEC-19	R4953168
Naphthalene	<0.50		0.50	ppb(V)		24-DEC-19	R4953168
Surrogate: 4-Bromofluorobenzene	94.2		50-150	%		24-DEC-19	R4953168
Canister EPA TO-15							
1,1,1-Trichloroethane	<1.1		1.1	ug/m3		24-DEC-19	R4953168
1,1,1-Trichloroethane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,1,2,2-Tetrachloroethane	<1.4		1.4	ug/m3		24-DEC-19	R4953168
1,1,2,2-Tetrachloroethane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,1,2-Trichloroethane	<1.1		1.1	ug/m3		24-DEC-19	R4953168
1,1,2-Trichloroethane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,1-Dichloroethane 1,1-Dichloroethane	<0.81		0.81	ug/m3		24-DEC-19	R4953168
1,1-Dichloroethene	<0.20 <0.79		0.20 0.79	ppb(V) ug/m3		24-DEC-19 24-DEC-19	R4953168
1,1-Dichloroethene	<0.79		0.79	ppb(V)		24-DEC-19 24-DEC-19	R4953168 R4953168
1,2,4-Trichlorobenzene	<1.5		1.5	ug/m3		24-DEC-19	R4953168
1,2,4-Trichlorobenzene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,2,4-Trimethylbenzene	<0.98		0.98	ug/m3		24-DEC-19	R4953168
1,2,4-Trimethylbenzene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,2-Dibromoethane	<1.5		1.5	ug/m3		24-DEC-19	R4953168
1,2-Dibromoethane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,2-Dichlorobenzene	<1.2		1.2	ug/m3		24-DEC-19	R4953168
1,2-Dichlorobenzene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,2-Dichloroethane	<0.81		0.81	ug/m3		24-DEC-19	R4953168
1,2-Dichloroethane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,2-Dichloropropane	<0.92		0.92	ug/m3		24-DEC-19	R4953168
1,2-Dichloropropane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,3,5-Trimethylbenzene	<0.98		0.98	ug/m3		24-DEC-19	R4953168
1,3,5-Trimethylbenzene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,3-Butadiene	<0.44		0.44	ug/m3		24-DEC-19	R4953168
1,3-Butadiene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,3-Dichlorobenzene	<1.2		1.2	ug/m3		24-DEC-19	R4953168
1,3-Dichlorobenzene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393610 CONTD.... PAGE 3 of 17 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393610-1 VW-01							
Sampled By: MEGAN ROUSE on 04-DEC-19 @ 13:42							
Matrix: SG							
Canister EPA TO-15							
1,4-Dichlorobenzene	<1.2		1.2	ug/m3		24-DEC-19	R4953168
1,4-Dichlorobenzene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,4-Dioxane	<0.72		0.72	ug/m3		24-DEC-19	R4953168
1,4-Dioxane	<0.20		0.72	ppb(V)		24-DEC-19	R4953168
2-Hexanone	<4.1		4.1	ug/m3		24-DEC-19	R4953168
2-Hexanone	<1.0		1.0	ppb(V)		24-DEC-19	R4953168
4-Ethyltoluene	<0.98		0.98	ug/m3		24-DEC-19	R4953168
4-Ethyltoluene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Acetone	2.3	AI	1.2	ug/m3		24-DEC-19	R4953168
Acetone	0.99	AI	0.50	ppb(V)		24-DEC-19	R4953168
Allyl chloride	<0.63		0.63	ug/m3		24-DEC-19	R4953168
Allyl chloride	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Benzene	<0.64		0.64	ug/m3		24-DEC-19	R4953168
Benzene	<0.20		0.20	ppb(∀)		24-DEC-19	R4953168
Benzyl chloride	<1.0		1.0	ug/m3		24-DEC-19	R4953168
Benzyl chloride	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Bromodichloromethane	<1.3		1.3	ug/m3		24-DEC-19	R4953168
Bromodichloromethane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Bromoform	<2.1		2.1	ug/m3		24-DEC-19	R4953168
Bromoform	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Bromomethane	<0.78		0.78	ug/m3		24-DEC-19	R4953168
Bromomethane	<0.20		0.20	ppb(∀)		24-DEC-19	R4953168
Carbon Disulfide	<0.62		0.62	ug/m3		24-DEC-19	R4953168
Carbon Disulfide	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Carbon Tetrachloride	<1.3		1.3	ug/m3		24-DEC-19	R4953168
Carbon Tetrachloride	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Chlorobenzene	<0.92	1	0.92	ug/m3		24-DEC-19	R4953168
Chlorobenzene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Chloroethane	<0.53		0.53	ug/m3		24-DEC-19	R4953168
Chloroethane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Chloroform	1.70		0.98	ug/m3		24-DEC-19	R4953168
Chloroform	0.35		0.20	ppb(V)		24-DEC-19	R4953168
Chloromethane	<0.41		0.41	ug/m3		24-DEC-19	R4953168
Chloromethane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
cis-1,2-Dichloroethene cis-1,2-Dichloroethene	<0.79		0.79	ug/m3		24-DEC-19	R4953168
cis-1,3-Dichloropropene	<0.20 <0.91		0.20	ppb(V) ug/m3		24-DEC-19 24-DEC-19	R4953168
cis-1,3-Dichloropropene	<0.91		0.91 0.20	_		24-DEC-19	R4953168 R4953168
Cyclohexane	<0.69		0.69	ppb(V) ug/m3		24-DEC-19	R4953168
Cyclohexane	<0.69		0.09	ppb(V)		24-DEC-19 24-DEC-19	R4953168
Dibromochloromethane	<1.7		1.7	ug/m3		24-DEC-19	R4953168
Dibromochloromethane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Dichlorodifluoromethane	1.86		0.20	ug/m3		24-DEC-19	R4953168
Dichlorodifluoromethane	0.38		0.33	ppb(V)		24-DEC-19	R4953168
Ethyl acetate	<0.72		0.72	ug/m3		24-DEC-19	R4953168
Ethyl acetate	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Ethylbenzene	<0.87		0.87	ug/m3		24-DEC-19	R4953168
Ethylbenzene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Freon 113	<1.5		1.5	ug/m3		24-DEC-19	R4953168
Freon 113	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Freon 114	<1.4		1.4	ug/m3		24-DEC-19	R4953168

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393610 CONTD.... PAGE 4 of 17 Version: FINAL

Sample Details/	/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393610-1	VW-01							
Sampled By:	MEGAN ROUSE on 04-DEC-19 @ 13:42							
Matrix:	SG							
Canister EP	A TO-15							
Freon 114		<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Hexachlorobu	utadiene	<2.1		2.1	ug/m3		24-DEC-19	R4953168
Hexachlorobu	utadiene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Isooctane		< 0.93		0.93	ug/m3		24-DEC-19	R4953168
Isooctane		<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Isopropyl alco	phol	<2.5		2.5	ug/m3		24-DEC-19	R4953168
Isopropyl alco	phol	<1.0		1.0	ppb(V)		24-DEC-19	R4953168
Isopropylben	zene	<0.98		0.98	ug/m3		24-DEC-19	R4953168
Isopropylbena	zene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
m&p-Xylene		<1.7		1.7	ug/m3		24-DEC-19	R4953168
m&p-Xylene		<0.40		0.40	ppb(V)		24-DEC-19	R4953168
Methyl ethyl I	ketone	< 0.59		0.59	ug/m3		24-DEC-19	R4953168
Methyl ethyl I	ketone	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Methyl isobut	tyl ketone	< 0.82		0.82	ug/m3		24-DEC-19	R4953168
Methyl isobut	tyl ketone	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Methylene ch	loride	< 0.69		0.69	ug/m3		24-DEC-19	R4953168
Methylene ch	loride	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
MTBE		< 0.72		0.72	ug/m3		24-DEC-19	R4953168
MTBE		<0.20		0.20	ppb(V)		24-DEC-19	R4953168
n-Heptane		1.41		0.82	ug/m3		24-DEC-19	R4953168
n-Heptane		0.34		0.20	ppb(V)		24-DEC-19	R4953168
n-Hexane		2.75		0.70	ug/m3		24-DEC-19	R4953168
n-Hexane		0.78		0.20	ppb(V)		24-DEC-19	R4953168
o-Xylene		<0.87		0.87	ug/m3		24-DEC-19	R4953168
o-Xylene		<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Propylene		< 0.34		0.34	ug/m3		24-DEC-19	R4953168
Propylene		<0.20	1 1	0.20	ppb(V)		24-DEC-19	R4953168
Styrene		< 0.85		0.85	ug/m3		24-DEC-19	R4953168
Styrene		<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Tetrachloroet	thylene	<1.4		1.4	ug/m3		24-DEC-19	R4953168
Tetrachloroet	thylene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Tetrahydrofur	ran	< 0.59		0.59	ug/m3		24-DEC-19	R4953168
Tetrahydrofur	ran	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Toluene		<0.75		0.75	ug/m3		24-DEC-19	R4953168
Toluene		<0.20		0.20	ppb(V)		24-DEC-19	R4953168
trans-1,2-Dic	hloroethene	< 0.79		0.79	ug/m3		24-DEC-19	R4953168
trans-1,2-Dic	hloroethene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
trans-1,3-Dicl	hloropropene	<0.91		0.91	ug/m3		24-DEC-19	R4953168
trans-1,3-Dicl	hloropropene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Trichloroethy	lene	<1.1		1.1	ug/m3		24-DEC-19	R4953168
Trichloroethy	lene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Trichlorofluor	omethane	<1.1		1.1	ug/m3		24-DEC-19	R4953168
Trichlorofluor	omethane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Vinyl acetate		<1.8		1.8	ug/m3		24-DEC-19	R4953168
Vinyl acetate		< 0.50		0.50	ppb(V)		24-DEC-19	R4953168
Vinyl bromide		<0.87		0.87	ug/m3		24-DEC-19	R4953168
Vinyl bromide		<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Vinyl chloride		<0.51		0.51	ug/m3		24-DEC-19	R4953168
Vinyl chloride		<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Surrogate: 4-	Bromofluorobenzene	94.2		50-150	%		24-DEC-19	R4953168
	ne Isomer Concentrations		1			l		I

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393610 CONTD.... PAGE 5 of 17 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393610-1 VW-01							
Sampled By: MEGAN ROUSE on 04-DEC-19 @ 13:42							
Matrix: SG							
Sum of Xylene Isomer Concentrations							
Xylenes (Total)	<0.45		0.45	ppb(V)		24-DEC-19	
Xylenes (Total)	<2.0		2.0	ug/m3		24-DEC-19	
Select list of 7 C1-C5 hydrocarbon gases							
Methane	0.00135		0.00010	%		10-DEC-19	R4944650
Ethane	<0.00020		0.00020	%		10-DEC-19	R4944650
Ethene	<0.00020		0.00020	%		10-DEC-19	R4944650
Propane	<0.00020		0.00020	%		10-DEC-19	R4944650
Propene	<0.00020		0.00020	%		10-DEC-19	R4944650
Butane	<0.00020		0.00020	%		10-DEC-19	R4944650
Pentane Conjeter Information	<0.00020		0.00020	%		10-DEC-19	R4944650
Canister Information Pressure on Receipt	-4.9		-30	in Hg	17-DEC-19	17-DEC-19	R4944737
Canister ID	01400-0323		-50		17-DEC-19	17-DEC-19	R4944737
Regulator ID	G39				17-DEC-19	17-DEC-19	R4944737
Batch Proof ID	191119.102				17-DEC-19	17-DEC-19	R4944737

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393610 CONTD.... PAGE 6 of 17 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393610-2 VW-02							
Sampled By: MEGAN ROUSE on 04-DEC-19 @ 14:19							
Matrix: SG Total F1 and F2+ Sub Fractionation							
Aliphatic/Aromatic PHC Sub-Fractionation							
Aliphatic C6-C8	43		15	ug/m3		24-DEC-19	R4953507
Aliphatic C>8-C10	253		15	ug/m3		24-DEC-19	R4953507
Aliphatic C>10-C12	292		15	ug/m3		24-DEC-19	R4953507
Aliphatic C>12-C16	<30		30	ug/m3		24-DEC-19	R4953507
Aromatic C>8-C10	<15		15	ug/m3		24-DEC-19	R4953507
Aromatic C>10-C12	<15		15	ug/m3		24-DEC-19	R4953507
Aromatic C>12-C16	<30		30	ug/m3		24-DEC-19	R4953507
Total F1and F2 fractions (not corrected)				_			
F1 (C6-C10)	300		15	ug/m3		24-DEC-19	R4953507
F2 (C10-C16)	421		15	ug/m3		24-DEC-19	R4953507
Surrogate: 4-Bromofluorobenzene	98.4		50-150	%		24-DEC-19	R4953507
High Level Fixed Gases by TCD						40	
Nitrogen	74.1		1.0	%		13-DEC-19	R4944389
Oxygen	20.5		0.10	%		13-DEC-19	R4944389
Carbon Dioxide	0.064		0.050	%		13-DEC-19	R4944389
Carbon Monoxide	<0.050		0.050	%		13-DEC-19	R4944389
Methane	<0.050		0.050	%		13-DEC-19	R4944389
BTEX and Naphthalene Naphthalene	<2.6		2.6	ug/m3		24-DEC-19	R4953168
Naphthalene	<0.50		0.50	ppb(V)		24-DEC-19	R4953168
Surrogate: 4-Bromofluorobenzene	99.5		50-150	% %		24-DEC-19	R4953168
Canister EPA TO-15	33.3		30-130	/0		24-020-13	114333100
1,1,1-Trichloroethane	<1.1		1.1	ug/m3		24-DEC-19	R4953168
1,1,1-Trichloroethane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,1,2,2-Tetrachloroethane	<1.4		1.4	ug/m3		24-DEC-19	R4953168
1,1,2,2-Tetrachloroethane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,1,2-Trichloroethane	<1.1		1.1	ug/m3		24-DEC-19	R4953168
1,1,2-Trichloroethane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,1-Dichloroethane	<0.81		0.81	ug/m3		24-DEC-19	R4953168
1,1-Dichloroethane	<0.20		0.20	ppb(∀)		24-DEC-19	R4953168
1,1-Dichloroethene	<0.79		0.79	ug/m3		24-DEC-19	R4953168
1,1-Dichloroethene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,2,4-Trichlorobenzene	<1.5		1.5	ug/m3		24-DEC-19	R4953168
1,2,4-Trichlorobenzene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,2,4-Trimethylbenzene	<0.98		0.98	ug/m3		24-DEC-19	R4953168
1,2,4-Trimethylbenzene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,2-Dibromoethane	<1.5		1.5	ug/m3		24-DEC-19	R4953168
1,2-Dibromoethane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,2-Dichlorobenzene	<1.2		1.2	ug/m3		24-DEC-19	R4953168
1,2-Dichlorobenzene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,2-Dichloroethane	<0.81		0.81	ug/m3		24-DEC-19	R4953168
1,2-Dichloroethane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,2-Dichloropropane	<0.92		0.92	ug/m3		24-DEC-19	R4953168
1,2-Dichloropropane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene	<0.98		0.98	ug/m3		24-DEC-19 24-DEC-19	R4953168
1,3-Butadiene	<0.20 <0.44		0.20	ppb(V) ug/m3		24-DEC-19 24-DEC-19	R4953168 R4953168
1,3-Butadiene	<0.44 <0.20		0.44 0.20	ppb(V)		24-DEC-19 24-DEC-19	R4953168 R4953168
1,3-Dichlorobenzene	<1.2		1.2	ug/m3		24-DEC-19	R4953168
1,3-Dichlorobenzene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,0-Didiliolopenzelle	SU.2U		U.ZU	ppu(v)		24-0LU-13	174900 100

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393610 CONTD.... PAGE 7 of 17 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393610-2 VW-02							
Sampled By: MEGAN ROUSE on 04-DEC-19 @ 14:19							
Matrix: SG							
Canister EPA TO-15							
1,4-Dichlorobenzene	<1.2		1.2	ug/m3		24-DEC-19	R4953168
1,4-Dichlorobenzene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,4-Dioxane	<0.72		0.72	ug/m3		24-DEC-19	R4953168
1,4-Dioxane	<0.20		0.72	ppb(V)		24-DEC-19	R4953168
2-Hexanone	<4.1		4.1	ug/m3		24-DEC-19	R4953168
2-Hexanone	<1.0		1.0	ppb(V)		24-DEC-19	R4953168
4-Ethyltoluene	<0.98		0.98	ug/m3		24-DEC-19	R4953168
4-Ethyltoluene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Acetone	18.5	DLA	5.9	ug/m3		24-DEC-19	R4953168
Acetone	7.8	DLA	2.5	ppb(V)		24-DEC-19	R4953168
Allyl chloride	<0.63		0.63	ug/m3		24-DEC-19	R4953168
Allyl chloride	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Benzene	9.47		0.64	ug/m3		24-DEC-19	R4953168
Benzene	2.96		0.20	ppb(∀)		24-DEC-19	R4953168
Benzyl chloride	<1.0		1.0	ug/m3		24-DEC-19	R4953168
Benzyl chloride	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Bromodichloromethane	<1.3		1.3	ug/m3		24-DEC-19	R4953168
Bromodichloromethane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Bromoform	<2.1		2.1	ug/m3		24-DEC-19	R4953168
Bromoform	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Bromomethane	<0.78		0.78	ug/m3		24-DEC-19	R4953168
Bromomethane	<0.20		0.20	ppb(∀)		24-DEC-19	R4953168
Carbon Disulfide	<0.62		0.62	ug/m3		24-DEC-19	R4953168
Carbon Disulfide	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Carbon Tetrachloride	<1.3		1.3	ug/m3		24-DEC-19	R4953168
Carbon Tetrachloride	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Chlorobenzene	<0.92	1	0.92	ug/m3		24-DEC-19	R4953168
Chlorobenzene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Chloroethane	<0.53		0.53	ug/m3		24-DEC-19	R4953168
Chloroethane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Chloroform	<0.98		0.98	ug/m3		24-DEC-19	R4953168
Chloroform	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Chloromethane	1.78		0.41	ug/m3		24-DEC-19	R4953168
Chloromethane	0.86		0.20	ppb(V)		24-DEC-19	R4953168
cis-1,2-Dichloroethene cis-1,2-Dichloroethene	<0.79		0.79	ug/m3		24-DEC-19	R4953168 R4953168
cis-1,3-Dichloropropene	<0.20 <0.91		0.20 0.91	ppb(V) ug/m3		24-DEC-19 24-DEC-19	R4953168
cis-1,3-Dichloropropene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Cyclohexane	<0.69		0.69	ug/m3		24-DEC-19	R4953168
Cyclohexane	<0.20		0.00	ppb(V)		24-DEC-19	R4953168
Dibromochloromethane	<1.7		1.7	ug/m3		24-DEC-19	R4953168
Dibromochloromethane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Dichlorodifluoromethane	1.86		0.99	ug/m3		24-DEC-19	R4953168
Dichlorodifluoromethane	0.38		0.20	ppb(V)		24-DEC-19	R4953168
Ethyl acetate	<0.72		0.72	ug/m3		24-DEC-19	R4953168
Ethyl acetate	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Ethylbenzene	<0.87		0.87	ug/m3		24-DEC-19	R4953168
Ethylbenzene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Freon 113	<1.5		1.5	ug/m3		24-DEC-19	R4953168
Freon 113	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Freon 114	<1.4		1.4	ug/m3		24-DEC-19	R4953168

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

PAGE 8 of 17 Version: FINAL

Sample Details/	/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393610-2	VW-02							
Sampled By:	MEGAN ROUSE on 04-DEC-19 @ 14:19							
Matrix:	SG							
Canister EP								
Freon 114		<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Hexachlorobi	utadiene	<2.1		2.1	ug/m3		24-DEC-19	R4953168
Hexachlorobi	utadiene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Isooctane		< 0.93		0.93	ug/m3		24-DEC-19	R4953168
Isooctane		<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Isopropyl alc	ohol	<2.5		2.5	ug/m3		24-DEC-19	R4953168
Isopropyl alc		<1.0		1.0	ppb(V)		24-DEC-19	R4953168
Isopropylben	zene	< 0.98		0.98	ug/m3		24-DEC-19	R4953168
Isopropylben	zene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
m&p-Xylene		3.0		1.7	ug/m3		24-DEC-19	R4953168
m&p-Xylene		0.69		0.40	ppb(V)		24-DEC-19	R4953168
Methyl ethyl l	ketone	1.43		0.59	ug/m3		24-DEC-19	R4953168
Methyl ethyl l		0.48		0.20	ppb(V)		24-DEC-19	R4953168
Methyl isobut		<0.82		0.82	ug/m3		24-DEC-19	R4953168
Methyl isobut	-	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Methylene ch	- 1	<0.69		0.69	ug/m3		24-DEC-19	R4953168
Methylene ch	hloride	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
MTBE		< 0.72		0.72	ug/m3		24-DEC-19	R4953168
MTBE		<0.20		0.20	ppb(V)		24-DEC-19	R4953168
n-Heptane		< 0.82		0.82	ug/m3		24-DEC-19	R4953168
n-Heptane		<0.20		0.20	ppb(V)		24-DEC-19	R4953168
n-Hexane		0.98		0.70	ug/m3		24-DEC-19	R4953168
n-Hexane		0.28		0.20	ppb(V)		24-DEC-19	R4953168
o-Xylene		1.05		0.87	ug/m3		24-DEC-19	R4953168
o-Xylene		0.24		0.20	ppb(V)		24-DEC-19	R4953168
Propylene		< 0.34		0.34	ug/m3		24-DEC-19	R4953168
Propylene		<0.20	1 1	0.20	ppb(V)		24-DEC-19	R4953168
Styrene		< 0.85		0.85	ug/m3		24-DEC-19	R4953168
Styrene		<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Tetrachloroet	thylene	<1.4		1.4	ug/m3		24-DEC-19	R4953168
Tetrachloroet	thylene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Tetrahydrofu	ran	1.53		0.59	ug/m3		24-DEC-19	R4953168
Tetrahydrofu	ran	0.52		0.20	ppb(V)		24-DEC-19	R4953168
Toluene		2.04		0.75	ug/m3		24-DEC-19	R4953168
Toluene		0.54		0.20	ppb(V)		24-DEC-19	R4953168
trans-1,2-Dic	hloroethene	< 0.79		0.79	ug/m3		24-DEC-19	R4953168
trans-1,2-Dic	hloroethene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
trans-1,3-Dic	hloropropene	< 0.91		0.91	ug/m3		24-DEC-19	R4953168
trans-1,3-Dic	hloropropene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Trichloroethy	rlene	<1.1		1.1	ug/m3		24-DEC-19	R4953168
Trichloroethy	rlene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Trichlorofluor	romethane	<1.1		1.1	ug/m3		24-DEC-19	R4953168
Trichlorofluor	romethane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Vinyl acetate	.	<1.8		1.8	ug/m3		24-DEC-19	R4953168
Vinyl acetate	:	< 0.50		0.50	ppb(V)		24-DEC-19	R4953168
Vinyl bromide	e	<0.87		0.87	ug/m3		24-DEC-19	R4953168
Vinyl bromide	e	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Vinyl chloride	e	<0.51		0.51	ug/m3		24-DEC-19	R4953168
Vinyl chloride	e	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Surrogate: 4-	-Bromofluorobenzene	99.5		50-150	%		24-DEC-19	R4953168
	ene Isomer Concentrations		1					I

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393610 CONTD.... PAGE 9 of 17 Version: FINAL

Sample Details	/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393610-2	VW-02							
Sampled By:	MEGAN ROUSE on 04-DEC-19 @ 14:19							
Matrix:	SG							
	ene Isomer Concentrations							
Xylenes (Tot		0.93		0.45	ppb(V)		24-DEC-19	
Xylenes (Tot		4.0		2.0	ug/m3		24-DEC-19	
	of 7 C1-C5 hydrocarbon gases	1.5		2.0				
Methane		0.00040		0.00010	%		10-DEC-19	R4944650
Ethane		<0.00020		0.00020	%		10-DEC-19	R4944650
Ethene		<0.00020		0.00020	%		10-DEC-19	R4944650
Propane		<0.00020		0.00020	%		10-DEC-19	R4944650
Propene		<0.00020		0.00020	%		10-DEC-19	R4944650
Butane		<0.00020		0.00020	%		10-DEC-19	R4944650
Pentane		<0.00020		0.00020	%		10-DEC-19	R4944650
Canister In								
Pressure on	Receipt	-8.2		-30	in Hg	17-DEC-19	17-DEC-19	R4944737
Canister ID		01400-0108				17-DEC-19	17-DEC-19	R4944737
Regulator ID Batch Proof		G280 191119.106				17-DEC-19 17-DEC-19	17-DEC-19 17-DEC-19	R4944737 R4944737

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393610 CONTD.... PAGE 10 of 17 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393610-3 19DUP01							
Sampled By: MEGAN ROUSE on 04-DEC-19 @ 12:00							
Matrix: SG							
Total F1 and F2+ Sub Fractionation							
Aliphatic/Aromatic PHC Sub-Fractionation							
Aliphatic C6-C8	17		15	ug/m3		24-DEC-19	R4953507
Aliphatic C>8-C10	24		15	ug/m3		24-DEC-19	R4953507
Aliphatic C>10-C12	25		15	ug/m3		24-DEC-19	R4953507
Aliphatic C>12-C16	<30		30	ug/m3		24-DEC-19	R4953507
Aromatic C>8-C10	<15		15	ug/m3		24-DEC-19	R4953507
Aromatic C>10-C12	<15		15	ug/m3		24-DEC-19	R4953507
Aromatic C>12-C16	<30		30	ug/m3		24-DEC-19	R4953507
Total F1and F2 fractions (not corrected)							
F1 (C6-C10)	33		15	ug/m3		24-DEC-19	R4953507
F2 (C10-C16)	63		15	ug/m3		24-DEC-19	R4953507
Surrogate: 4-Bromofluorobenzene	96.1		50-150	%		24-DEC-19	R4953507
High Level Fixed Gases by TCD	75.0		4.0	%		13-DEC-19	P4044300
Nitrogen Oxygen	75.8 20.0		1.0 0.10	% %		13-DEC-19	R4944389 R4944389
Carbon Dioxide	1.43		0.050	% %		13-DEC-19	R4944389
Carbon Monoxide	<0.050		0.050	%		13-DEC-19	R4944389
Methane	<0.050		0.050	%		13-DEC-19	R4944389
BTEX and Naphthalene	-0.000		0.000	~		10-020-10	111011000
Naphthalene	<2.6		2.6	ug/m3		24-DEC-19	R4953168
Naphthalene	<0.50		0.50	ppb(V)		24-DEC-19	R4953168
Surrogate: 4-Bromofluorobenzene	96.6		50-150	%		24-DEC-19	R4953168
Canister EPA TO-15							
1,1,1-Trichloroethane	<1.1		1.1	ug/m3		24-DEC-19	R4953168
1,1,1-Trichloroethane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,1,2,2-Tetrachloroethane	<1.4		1.4	ug/m3		24-DEC-19	R4953168
1,1,2,2-Tetrachloroethane	<0.20		0.20	ppb(∀)		24-DEC-19	R4953168
1,1,2-Trichloroethane	<1.1		1.1	ug/m3		24-DEC-19	R4953168
1,1,2-Trichloroethane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,1-Dichloroethane	<0.81		0.81	ug/m3		24-DEC-19	R4953168
1,1-Dichloroethane	<0.20		0.20	ppb(V)		24-DEC-19 24-DEC-19	R4953168
1,1-Dichloroethene	<0.79		0.79	ug/m3			R4953168
1,1-Dichloroethene 1,2,4-Trichlorobenzene	<0.20 <1.5		0.20 1.5	ppb(V)		24-DEC-19 24-DEC-19	R4953168 R4953168
1,2,4-Trichlorobenzene	<0.20		0.20	ug/m3 ppb(V)		24-DEC-19 24-DEC-19	R4953168
1,2,4-Trimethylbenzene	<0.20		0.20	ug/m3		24-DEC-19	R4953168
1,2,4-Trimethylbenzene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,2-Dibromoethane	<1.5		1.5	ug/m3		24-DEC-19	R4953168
1,2-Dibromoethane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,2-Dichlorobenzene	<1.2		1.2	ug/m3		24-DEC-19	R4953168
1,2-Dichlorobenzene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,2-Dichloroethane	<0.81		0.81	ug/m3		24-DEC-19	R4953168
1,2-Dichloroethane	<0.20		0.20	ppb(∀)		24-DEC-19	R4953168
1,2-Dichloropropane	<0.92		0.92	ug/m3		24-DEC-19	R4953168
1,2-Dichloropropane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,3,5-Trimethylbenzene	<0.98		0.98	ug/m3		24-DEC-19	R4953168
1,3,5-Trimethylbenzene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,3-Butadiene	<0.44		0.44	ug/m3		24-DEC-19	R4953168
1,3-Butadiene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,3-Dichlorobenzene	<1.2		1.2	ug/m3		24-DEC-19	R4953168
1,3-Dichlorobenzene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393610 CONTD.... PAGE 11 of 17 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393610-3 19DUP01							
Sampled By: MEGAN ROUSE on 04-DEC-19 @ 12:00							
Matrix: SG	1	l					
Canister EPA TO-15							
1,4-Dichlorobenzene	<1.2		1.2	ug/m3		24-DEC-19	R4953168
1,4-Dichlorobenzene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
1,4-Dioxane	<0.72		0.72	ug/m3		24-DEC-19	R4953168
1,4-Dioxane	<0.20		0.72	ppb(V)		24-DEC-19	R4953168
2-Hexanone	<4.1		4.1	ug/m3		24-DEC-19	R4953168
2-Hexanone	<1.0		1.0	ppb(V)		24-DEC-19	R4953168
4-Ethyltoluene	<0.98		0.98	ug/m3		24-DEC-19	R4953168
4-Ethyltoluene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Acetone	2.7	AI	1.2	ug/m3		24-DEC-19	R4953168
Acetone	1.13	AI	0.50	ppb(V)		24-DEC-19	R4953168
Allyl chloride	<0.63		0.63	ug/m3		24-DEC-19	R4953168
Allyl chloride	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Benzene	<0.64		0.64	ug/m3		24-DEC-19	R4953168
Benzene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Benzyl chloride	<1.0		1.0	ug/m3		24-DEC-19	R4953168
Benzyl chloride	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Bromodichloromethane	<1.3		1.3	ug/m3		24-DEC-19	R4953168
Bromodichloromethane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Bromoform	<2.1		2.1	ug/m3		24-DEC-19	R4953168
Bromoform	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Bromomethane	<0.78		0.78	ug/m3		24-DEC-19	R4953168
Bromomethane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Carbon Disulfide	<1.81	RRR	1.8	ug/m3		24-DEC-19	R4953168
Carbon Disulfide	<0.60	RRR	0.60	ppb(V)		24-DEC-19	R4953168
Carbon Tetrachloride	<1.3		1.3	ug/m3		24-DEC-19	R4953168
Carbon Tetrachloride	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Chlorobenzene	<0.92		0.92	ug/m3		24-DEC-19	R4953168
Chlorobenzene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Chloroethane	<0.53		0.53	ug/m3		24-DEC-19	R4953168
Chloroethane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Chloroform	1.52		0.98	ug/m3		24-DEC-19	R4953168
Chloroform	0.31		0.20	ppb(V)		24-DEC-19	R4953168
Chloromethane	<0.41		0.41	ug/m3		24-DEC-19	R4953168
Chloromethane	<0.20		0.20	ppb(∀)		24-DEC-19	R4953168
cis-1,2-Dichloroethene	<0.79		0.79	ug/m3		24-DEC-19	R4953168
cis-1,2-Dichloroethene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
cis-1,3-Dichloropropene	<0.91		0.91	ug/m3		24-DEC-19	R4953168
cis-1,3-Dichloropropene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Cyclohexane	<0.69		0.69	ug/m3		24-DEC-19	R4953168
Cyclohexane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Dibromochloromethane	<1.7		1.7	ug/m3		24-DEC-19	R4953168
Dibromochloromethane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Dichlorodifluoromethane	1.88		0.99	ug/m3		24-DEC-19	R4953168
Dichlorodifluoromethane	0.38		0.20	ppb(V)		24-DEC-19	R4953168
Ethyl acetate	<0.72		0.72	ug/m3		24-DEC-19	R4953168
Ethyl acetate	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Ethylbenzene	<0.87		0.87	ug/m3		24-DEC-19	R4953168
Ethylbenzene	<0.20	ı I	0.20	ppb(V)		24-DEC-19	R4953168
	I					04 000 15	DARCOLOG
Freon 113	<1.5		1.5	ug/m3		24-DEC-19	R4953168
Freon 113 Freon 114	I		1.5 0.20 1.4	ug/m3 ppb(V) ug/m3		24-DEC-19 24-DEC-19 24-DEC-19	R4953168 R4953168 R4953168

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393610 CONTD.... PAGE 12 of 17 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393610-3 19DUP01							
Sampled By: MEGAN ROUSE on 04-DEC-19 @ 12:00							
Matrix: SG							
Canister EPA TO-15							
Freon 114	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Hexachlorobutadiene	<2.1		2.1	ug/m3		24-DEC-19	R4953168
Hexachlorobutadiene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Isooctane	< 0.93		0.93	ug/m3		24-DEC-19	R4953168
Isooctane	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Isopropyl alcohol	<2.5		2.5	ug/m3		24-DEC-19	R4953168
Isopropyl alcohol	<1.0		1.0	ppb(V)		24-DEC-19	R4953168
Isopropylbenzene	<0.98		0.98	ug/m3		24-DEC-19	R4953168
Isopropylbenzene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
m&p-Xylene	<1.7		1.7	ug/m3		24-DEC-19	R4953168
m&p-Xylene	<0.40		0.40	ppb(V)		24-DEC-19	R4953168
Methyl ethyl ketone	<0.59		0.59	ug/m3		24-DEC-19	R4953168
Methyl ethyl ketone	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Methyl isobutyl ketone	<0.82		0.82	ug/m3		24-DEC-19	R4953168
Methyl isobutyl ketone	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Methylene chloride	< 0.69		0.69	ug/m3		24-DEC-19	R4953168
Methylene chloride	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
MTBE	<0.72		0.72	ug/m3		24-DEC-19	R4953168
MTBE	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
n-Heptane	1.25		0.82	ug/m3		24-DEC-19	R4953168
n-Heptane	0.30		0.20	ppb(V)		24-DEC-19	R4953168
n-Hexane	2.50		0.70	ug/m3		24-DEC-19	R4953168
n-Hexane	0.71		0.20	ppb(V)		24-DEC-19	R4953168
o-Xylene	<0.87		0.87	ug/m3		24-DEC-19	R4953168
o-Xylene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Propylene	< 0.34		0.34	ug/m3		24-DEC-19	R4953168
Propylene	<0.20	1 1	0.20	ppb(V)	1	24-DEC-19	R4953168
Styrene	<0.85		0.85	ug/m3		24-DEC-19	R4953168
Styrene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Tetrachloroethylene	<1.4		1.4	ug/m3		24-DEC-19	R4953168
Tetrachloroethylene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Tetrahydrofuran	< 0.59		0.59	ug/m3		24-DEC-19	R4953168
Tetrahydrofuran	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Toluene	<0.75		0.75	ug/m3		24-DEC-19	R4953168
Toluene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
trans-1,2-Dichloroethene	<0.79		0.79	ug/m3		24-DEC-19	R4953168
trans-1,2-Dichloroethene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
trans-1,3-Dichloropropene	<0.91		0.91	ug/m3		24-DEC-19	R4953168
trans-1,3-Dichloropropene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Trichloroethylene	<1.1		1.1	ug/m3		24-DEC-19	R4953168
Trichloroethylene	<0.20		0.20	ppb(V)		24-DEC-19	R4953168
Trichlorofluoromethane	<1.1		1.1	ug/m3		24-DEC-19	R4953168
Trichlorofluoromethane	<0.20		0.20	ppb(∀)		24-DEC-19	R4953168
Vinyl acetate	<1.8		1.8	ug/m3		24-DEC-19	R4953168
Vinyl acetate	<0.50		0.50	ppb(V)		24-DEC-19	R4953168
Vinyl bromide	<0.87		0.87	ug/m3		24-DEC-19	R4953168
Vinyl bromide	<0.20		0.20	ppb(∀)		24-DEC-19	R4953168
Vinyl chloride	<0.51		0.51	ug/m3		24-DEC-19	R4953168
Vinyl chloride	<0.20		0.20	ppb(∀)		24-DEC-19	R4953168
Surrogate: 4-Bromofluorobenzene	96.6		50-150	%		24-DEC-19	R4953168
Note: RRR: LOR raised due to background in canister proof.							

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393610 CONTD.... PAGE 13 of 17 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393610-3 19DUP01							
Sampled By: MEGAN ROUSE on 04-DEC-19 @ 12:00							
Matrix: SG							
Sum of Xylene Isomer Concentrations							
Xylenes (Total)	<0.45		0.45	ppb(V)		24-DEC-19	
Xylenes (Total)	<2.0		2.0	ug/m3		24-DEC-19	
Select list of 7 C1-C5 hydrocarbon gases							
Methane Ethane	<0.00010		0.00010	%		10-DEC-19	R4944650
Ethene	<0.00020 <0.00020		0.00020 0.00020	% %		10-DEC-19 10-DEC-19	R4944650 R4944650
Propane	<0.00020		0.00020	%		10-DEC-19	R4944650
Propene	<0.00020		0.00020	%		10-DEC-19	R4944650
Butane	< 0.00020		0.00020	%		10-DEC-19	R4944650
Pentane	<0.00020		0.00020	%		10-DEC-19	R4944650
Canister Information							
Pressure on Receipt	-4.9		-30	in Hg	17-DEC-19	17-DEC-19	R4944737
Canister ID	01400-0135				17-DEC-19	17-DEC-19	R4944737
Regulator ID Batch Proof ID	G39 191119.120				17-DEC-19 17-DEC-19	17-DEC-19 17-DEC-19	R4944737 R4944737

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393610 CONTD.... PAGE 14 of 17 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Linear & Cyclic Methyl Siloxanes D3(CVMS) C10 170 ug/m3 18-DEC-19 R49452 D4(CVMS) C10 110 ng 18-DEC-19 R49452 D4(CVMS) C10 110 ng 18-DEC-19 R49452 D4(CVMS) C10 110 ng 18-DEC-19 R49452 D5(CVMS) C10 110 ng 18-DEC-19 R49452 D5(CVMS) C10 110 ng 18-DEC-19 R49452 D5(CVMS) C10 110 ng 18-DEC-19 R49452 D6(CVMS) C10 110 ng 18-DEC-19 R49452 D6(CVMS) C10 110 ng 18-DEC-19 R49452 D6(CVMS) C10 110 ng 18-DEC-19 R49452 MM(LVMS) C10 110 ng 18-DEC-19 R49452 MM(LVMS) C10 110 ng 18-DEC-19 R49452 MDM(LVMS) C10 110 ng 18-DEC-19 R49452 MDM(LVMS) C10 110 ng 18-DEC-19 R49452 MDM(LVMS) C10 110 ng 18-DEC-19 R49452 MD2M(LVMS) C10 110 ng 18-DEC-19 R49452 MD2M(LVMS) C10 110 ng 18-DEC-19 R49452 MD3M(LVMS) C10 110 ng MD2M(LVMS) C10 MD2M(LVMS) MD2M(LVMS) MD2	Sampled By: Matrix: Miscellaneou Air volume Linear & Cyc D3(CVMS) D3(CVMS) D4(CVMS) D4(CVMS) D5(CVMS) D5(CVMS) D5(CVMS)	MEGAN ROUSE on 04-DEC-19 @ 16:50 SG							
Sampled By: MEGAN ROUSE on 04-DEC-19 @ 16:50 Matrix: SG Miscellaneous Parameters Air volume .06 L 19-DEC-19 R49392	Sampled By: Matrix: Miscellaneou Air volume Linear & Cyc D3(CVMS) D3(CVMS) D4(CVMS) D4(CVMS) D5(CVMS) D5(CVMS) D6(CVMS)	MEGAN ROUSE on 04-DEC-19 @ 16:50 SG					I	I	
Matrix: SG Miscellaneous Parameters .06 L 19-DEC-19 R49392 Linear & Cyclic Methyl Siloxanes .07 170 ug/m3 18-DEC-19 R49452 D3(CVMS) <10 10 ng 18-DEC-19 R49452 D4(CVMS) <10 10 ng 18-DEC-19 R49452 D4(CVMS) <170 170 ug/m3 18-DEC-19 R49452 D5(CVMS) <10 10 ng 18-DEC-19 R49452 D5(CVMS) <170 170 ug/m3 18-DEC-19 R49452 D5(CVMS) <10 10 ng 18-DEC-19 R49452 D6(CVMS) <170 170 ug/m3 18-DEC-19 R49452 D6(CVMS) <170 170 ug/m3 18-DEC-19 R49452 MM(LVMS) <170 170 ug/m3 18-DEC-19 R49452 MM(LVMS) <170 170 ug/m3 18-DEC-19 R49452 MD2M(LVMS)	Matrix: Miscellaneo Air volume Linear & Cyc D3(CVMS) D3(CVMS) D4(CVMS) D4(CVMS) D5(CVMS) D5(CVMS) D6(CVMS)	SG							
Miscellaneous Parameters Air volume .06 L 19-DEC-19 R49392 Linear & Cyclic Methyl Siloxanes 503(CVMS) <170	Miscellaneou Air volume Linear & Cyc D3(CVMS) D3(CVMS) D4(CVMS) D4(CVMS) D5(CVMS) D5(CVMS) D6(CVMS)								
Air volume .06 L 19-DEC-19 R49392 Linear & Cyclic Methyl Siloxanes 170 170 ug/m3 18-DEC-19 R49452 D3(CVMS) <10	Air volume Linear & Cyc D3(CVMS) D3(CVMS) D4(CVMS) D4(CVMS) D5(CVMS) D5(CVMS) D6(CVMS)								
Linear & Cyclic Methyl Siloxanes D3(CVMS) C170 170 ug/m3 18-DEC-19 R49452 R49	D3(CVMS) D3(CVMS) D4(CVMS) D4(CVMS) D5(CVMS) D5(CVMS) D6(CVMS)		.06			L		19-DEC-19	R4939247
D3(CVMS) <170	D3(CVMS) D3(CVMS) D4(CVMS) D4(CVMS) D5(CVMS) D5(CVMS) D6(CVMS)	clic Methyl Siloxanes							
D3(CVMS)	D4(CVMS) D4(CVMS) D5(CVMS) D5(CVMS) D6(CVMS)		<170		170	ug/m3		18-DEC-19	R4945277
D4(CVMS) <10	D4(CVMS) D5(CVMS) D5(CVMS) D6(CVMS)							18-DEC-19	R4945277
D5(CVMS)	D5(CVMS) D5(CVMS) D6(CVMS)		<170		170	ug/m3		18-DEC-19	R4945277
D5(CVMS)	D5(CVMS) D6(CVMS)		<10		10	ng		18-DEC-19	R4945277
D6(CVMS) <170	D6(CVMS)		<170		170	ug/m3		18-DEC-19	R4945277
D6(CVMS) <10			<10		10	ng		18-DEC-19	R4945277
MM(LVMS) <170	DC/C\/MC\		<170			ug/m3		ı	R4945277
MM(LVMS) <10						_		ı	R4945277
MDM(LVMS) <170	-					_		I	R4945277
MDM(LVMS) <10		<u> </u>						ı	R4945277
MD2M(LVMS) <170								ı	R4945277
MD2M(LVMS) <10						_		ı	R4945277
MD3M(LVMS) <170	-	· .				_		l	
MD3M(LVMS) <10		-				_		I	
Surrogate: 4-Bromofluorobenzene 98.2 50-150 % 18-DEC-19 R49452 Tube Information G0150323SVI 13-DEC-19 R49427 Batch Proof ID 19-Nov-19 13-DEC-19 R49427 Tube Usage Number N/A 13-DEC-19 R49427						_		I	
Tube Information G0150323SVI 13-DEC-19 R49427 Batch Proof ID 19-Nov-19 13-DEC-19 R49427 Tube Usage Number N/A 13-DEC-19 R49427								l	
Tube ID G0150323SVI 13-DEC-19 R49427 Batch Proof ID 19-Nov-19 13-DEC-19 R49427 Tube Usage Number N/A 13-DEC-19 R49427			90.2		30-130	70		10-DEC-19	K4945211
Batch Proof ID 19-Nov-19 13-DEC-19 R49427 Tube Usage Number N/A 13-DEC-19 R49427		iation	G0150323SVI					13-DEC-19	R4942791
Tube Usage Number N/A 13-DEC-19 R49427		ID ID						l	R4942791
								l	R4942791
								l	R4942791

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393610 CONTD.... PAGE 15 of 17 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Linear & Cyclic Methyl Siloxanes D3(CVMS) C10 170 ug/m3 18-DEC-19 R49 R49 D4(CVMS) C170 170 ug/m3 18-DEC-19 R49 D4(CVMS) C170 170 ug/m3 18-DEC-19 R49 D4(CVMS) C10 10 ng 18-DEC-19 R49 D5(CVMS) C170 170 ug/m3 18-DEC-19 R49 D5(CVMS) C170 170 ug/m3 18-DEC-19 R49 D5(CVMS) C10 10 ng 18-DEC-19 R49 D6(CVMS) C20 10 ng 18-DEC-19 R49 D6(CVMS) C20 10 ng 18-DEC-19 R49 MM(LVMS) C170 170 ug/m3 18-DEC-19 R49 MM(LVMS) C170 170 ug/m3 18-DEC-19 R49 MM(LVMS) C170 170 ug/m3 18-DEC-19 R49 MDM(LVMS) C170 170 ug/m3 18-DEC-19 R49 MDM(LVMS) C170 170 ug/m3 18-DEC-19 R49 MD2M(LVMS) C10 10 ng 18-DEC-19 R49 MD3M(LVMS) C10 10 ng 18-DEC-19 R49 MD3M(LVMS) C10 10 ng 18-DEC-19 R49 MD3M(LVMS) C22 10 ng 18-DEC-19 R49 MD3M(LVMS) C22 10 ng 18-DEC-19 R49 MD3M(LVMS) C22 C30 C30	Sample Details/	/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
Sampled By: MEGAN ROUSE on 04-DEC-19 @ 15:20 Matrix: SG Miscellaneous Parameters .06 L 19-DEC-19 R49:	L2393610-5	VW-02							
Matrix: SG Miscellaneous Parameters Jean of the properties of t									
Miscellaneous Parameters Air volume .06 L 19-DEC-19 R49 Linear & Cyclic Methyl Siloxanes 503(CVMS) <170				l I					
Air volume .06 L 19-DEC-19 R49 Linear & Cyclic Methyl Siloxanes 170 ug/m3 18-DEC-19 R49 D3(CVMS) <10 10 ng 18-DEC-19 R49 D4(CVMS) <170 170 ug/m3 18-DEC-19 R49 D4(CVMS) <10 10 ng 18-DEC-19 R49 D5(CVMS) <10 10 ng 18-DEC-19 R49 D5(CVMS) <170 170 ug/m3 18-DEC-19 R49 D6(CVMS) 330 170 ug/m3 18-DEC-19 R49 D6(CVMS) 20 10 ng 18-DEC-19 R49 MM(LVMS) <170 170 ug/m3 18-DEC-19 R49 MM(LVMS) <170 170 ug/m3 18-DEC-19 R49 MDM(LVMS) <170 170 ug/m3 18-DEC-19 R49 MDM(LVMS) <170 170 ug/m3 18-DEC-19 </td <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Linear & Cyclic Methyl Siloxanes D3(CVMS) C170 170 ug/m3 18-DEC-19 R49 R49 D4(CVMS) C170 170 ug/m3 18-DEC-19 R49 D4(CVMS) C170 170 ug/m3 18-DEC-19 R49 D4(CVMS) C170 170 ug/m3 18-DEC-19 R49 D5(CVMS) C170 170 ug/m3 18-DEC-19 R49 D5(CVMS) C170 170 ug/m3 18-DEC-19 R49 D5(CVMS) C10 10 ng 18-DEC-19 R49 D6(CVMS) C10 10 ng 18-DEC-19 R49 D6(CVMS) C20 10 ng 18-DEC-19 R49 D6(CVMS) C170 170 ug/m3 18-DEC-19 R49 MM(LVMS) C170 170 ug/m3 18-DEC-19 R49 MM(LVMS) C170 170 ug/m3 18-DEC-19 R49 MDM(LVMS) C170 170 ug/m3 18-DEC-19 R49 MDM(LVMS) C170 170 ug/m3 18-DEC-19 R49 MD2M(LVMS) C10 10 ng 18-DEC-19 R49 MD3M(LVMS) C10 10 ng 18-DEC-19 R49 MD3M(LVMS) C10 10 ng 18-DEC-19 R49 MD3M(LVMS) C10			.06			L		19-DEC-19	R4939247
D3(CVMS) D3(CVMS) D3(CVMS) D3(CVMS) D3(CVMS) D4(CVMS) D4(CVMS) D4(CVMS) D5(CVMS) D6(CVMS) D6(CVMS) D6(CVMS) D70 D6(CVMS) D70	Linear & Cv	clic Methyl Siloxanes							
D4(CVMS) <170		,	<170		170	ug/m3		18-DEC-19	R4945277
D4(CVMS) <10	D3(CVMS)		<10		10	ng		18-DEC-19	R4945277
D5(CVMS)	D4(CVMS)		<170		170	ug/m3		18-DEC-19	R4945277
D5(CVMS)			<10		10	ng		18-DEC-19	R4945277
D6(CVMS) 330 170 ug/m3 18-DEC-19 R49-DEC-19 R			<170		170	ug/m3		ı	R4945277
D6(CVMS) 20 10 ng 18-DEC-19 R49-MM(LVMS) MM(LVMS) <170						_		1	R4945277
MM(LVMS) <170								ı	R4945277
MM(LVMS) <10						_		1	R4945277
MDM(LVMS) <170	-					-			R4945277
MDM(LVMS) <10		, Ι						1	R4945277
MD2M(LVMS) <170								ı	R4945277 R4945277
MD2M(LVMS) <10						_		ı	R4945277
MD3M(LVMS) 370 170 ug/m3 18-DEC-19 R49-M503M(LVMS) MD3M(LVMS) 22 10 ng 18-DEC-19 R49-M505M Surrogate: 4-Bromofluorobenzene 100.5 50-150 % 18-DEC-19 R49-M505M Tube Information Tube ID G0150384SVI 13-DEC-19 R49-M505M Batch Proof ID 19-Nov-19 13-DEC-19 R49-M505M Tube Usage Number N/A 13-DEC-19 R49-M505M						_		I	R4945277
MD3M(LVMS) 22 10 ng 18-DEC-19 R49- Surrogate: 4-Bromofluorobenzene 100.5 50-150 % 18-DEC-19 R49- Tube Information Tube ID G0150384SVI 13-DEC-19 R49- Batch Proof ID 19-Nov-19 13-DEC-19 R49- Tube Usage Number N/A 13-DEC-19 R49-						_		1	R4945277
Surrogate: 4-Bromofluorobenzene 100.5 50-150 % 18-DEC-19 R49- Tube Information G0150384SVI 13-DEC-19 R49- Batch Proof ID 19-Nov-19 13-DEC-19 R49- Tube Usage Number N/A 13-DEC-19 R49-						_		I	R4945277
Tube Information G0150384SVI 13-DEC-19 R49- Batch Proof ID 19-Nov-19 13-DEC-19 R49- Tube Usage Number N/A 13-DEC-19 R49-								I	R4945277
Batch Proof ID 19-Nov-19 13-DEC-19 R49- Tube Usage Number N/A 13-DEC-19 R49-									
Tube Usage Number N/A 13-DEC-19 R49	Tube ID		G0150384SVI					13-DEC-19	R4942791
	Batch Proof I	ID	19-Nov-19					13-DEC-19	R4942791
Tube Manufacturer Date N/A 13-DEC-19 R49			N/A					13-DEC-19	R4942791
	Tube Manufa	acturer Date	N/A					13-DEC-19	R4942791

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Reference Information

L2393610 CONTD....
PAGE 16 of 17
Version: FINAL

Sample Parameter Qualifier Key:

Qualifier	Description
AI	Analytical interferences may be present. Result may be biased high.
DLA	Detection Limit adjusted for required dilution
RRR	Refer to Report Remarks for issues regarding this analysis

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
AIR VOLUME-WT	Misc.	Air volume (L)	DATA ENTRY
ALIPH/AROM-GCMS-WT	Canister	Aliphatic/Aromatic PHC Sub-Fractionation	EPA TO-15, Atlantic RBCA

This analysis is performed using procedures adapted from EPA TO-15 & Atlantic RBCA. A volume of air is removed from a canister & injected into a GCMS with preconcentrator for analysis. The concentrations of the hydrocarbon aliphatic & aromatic sub-fractions are calculated using gas standards. The canister samples will be retained for 7 calendar days after final report.

BTEX+NAPH-GCMS-WT Canister BTEX and Naphthalene EPA TO-15

This analysis is performed using procedures adapted from EPA Method TO-15. Air samples are collected into cleaned evacuated canisters. A volume of air sample is transferred from the canister to a preconcentrator system where the analytes are trapped & focused. The analytes are then thermally desorbed into a GC-MSD for analysis. Test results are not blank corrected unless indicated by a qualifier.

Canister samples will be retained for 7 calendar days after final report. If you require a longer canister storage time, please contact your account manager.

C1-C5-FID-WT Canister Select list of 7 C1-C5 hydrocarbon gases EPA Method 3C & ASTM D1946

This analysis is performed using procedures adapted from ASTM D1946/EPA Method 3C. Air samples are collected into cleaned evaculated canisters. A volume of air is removed from the canister & injected into a GC-FID for analysis. Hydrocarbon gas concentrations are calculated against a gas standard. Test results are not blank corrected unless indicated by a qualifier.

Canister samples will be retained for 7 calendar days after final report. If you require longer canister storage time, please contact your account manager.

CAN-DATA-WT Canister Canister Information EPA TO-15

Batch Proof ID, Canister ID, Pressure on Receipt, Regulator ID.

F1-F2-GCMS-WT Canister Total F1 and F2 fractions (not corrected) EPATO-15

This analysis is performed using procedures adapted from EPA Method TO-15. Air samples are collected into cleaned evacuated canisters. A volume of air sample is transferred from the canister to a preconcentrator system where the analytes are trapped & focused. The analytes are then thermally desorbed into a GC-MSD for analysis. Test results are not blank corrected unless indicated by a qualifier.

Canister samples will be retained for 7 calendar days after final report. If you require a longer canister storage time, please contact your account manager.

FIXED GASES-TCD-WT Canister High Level Fixed Gases by TCD EPA Method 3C & ASTM D1946

This analysis is performed using procedures adapted from EPA Method 3C & ASTM D1946. Air samples are collected into cleaned evacuated canisters. A volume of air is removed from the canister and injected by means of a gas-sampling/backflush valve onto a series of packed GC columns and measured using a thermal conductivity detector (TCD).

Oxygen is not separated from Argon.

Canister samples will be retained for 7 calendar days after final report. If you require a longer canister storage time, please contact your account manager.

SILOXANES-GCMS-WT Tube Linear & Cyclic Methyl Siloxanes EPA TO-1

This analysis is performed using procedures adapted from EPA Method TO-17, ISO Method 16017 & NIOSH Method 2549. Air samples actively collected on PE VI TD tubes are thermally stripped & the analytes are re-collected on trapping material of a focusing trap in the thermal desorber. The analytes are then thermally desorbed into a GC-MSD for analysis. Test results are not blank corrected unless indicated by a qualifier.

This analysis was performed under AIHA-IHLAP Scope of Accreditation, GC/MS Field of Testing which is compliant with AIHA-LAP, LLC Accreditation Policy Modules & ISO/IEC 17025:2005 Standard.

TD tube samples will be retained for 7 calendar days after final report. If you require a longer TD tube storage time, please contact your account manager.

TO15-GCMS-WT Canister Canister EPA TO-15 EPA TO-15

This analysis is performed using procedures adapted from EPA Method TO-15. Air samples are collected into cleaned evacuated canisters. A volume of air sample is transferred from the canister to a preconcentrator system where the analytes are trapped & focused. The analytes are then thermally desorbed into a GC-MSD for analysis. Test results are not blank corrected unless indicated by a qualifier.

Reference Information

L2393610 CONTD.... PAGE 17 of 17 Version: FINAL

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

Canister samples will be retained for 7 calendar days after final report. If you require a longer canister storage time, please contact your account

manayer.

XYLENES-SUM-CALC-WT Canister

Sum of Xylene Isomer Concentrations

CALCULATION

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Routine Water Chemistry Report

Lab ID	Sample ID		Lab ID	Sample ID		

ALS LABORATORY GROUP SOIL SALINITY CONVERSION

L2393610

Lab ID	Sample I	ID				Lab ID	Sam	ple ID		
"Calculatio Methods of Homer D. (University August, 19	ns are as	per:								
Methods of	f Analysis Chanman	for Soil	is, Plants	and Wat	ers					
University	of Californ	ia, Rive	erside, C	l.						
August, 19)61."									

Report Date: 24-DEC-19 Workorder: L2393610 Page 1 of 15

TETRA TECH CANADA INC. Client:

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Contact: Darby Madalena

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALIPH/AROM-GCMS-WT	Canister							
Batch R4953507								
WG3249117-4 DUP		L2393610-1 22	20		unim2	0.2	50	04.050.40
Aliphatic C6-C8					ug/m3	9.3	50	24-DEC-19
Aliphatic C>8-C10		33	19	J	ug/m3	14	30	24-DEC-19
Aliphatic C>10-C12		27	30		ug/m3	11	50	24-DEC-19
Aliphatic C>12-C16		<30	<30	RPD-NA	ug/m3	N/A	50	24-DEC-19
Aromatic C>8-C10		<15	<15	RPD-NA	ug/m3	N/A	50	24-DEC-19
Aromatic C>10-C12		<15	<15	RPD-NA	ug/m3	N/A	50	24-DEC-19
Aromatic C>12-C16		<30	<30	RPD-NA	ug/m3	N/A	50	24-DEC-19
WG3249117-2 LCS			440.0		n/		FD 455	04.050.45
Aliphatic C6-C8			119.6		%		50-150	24-DEC-19
Aliphatic C>8-C10			102.6		%		50-150	24-DEC-19
Aliphatic C>10-C12			119.0		%		50-150	24-DEC-19
Aliphatic C>12-C16			134.7		%		50-150	24-DEC-19
Aromatic C>8-C10			106.5		%		50-150	24-DEC-19
Aromatic C>10-C12			103.2		%		50-150	24-DEC-19
Aromatic C>12-C16			87.9		%		50-150	24-DEC-19
WG3249117-3 LCSD Aliphatic C6-C8		WG3249117-2 119.6	129.2		%	7.8	50	24-DEC-19
Aliphatic C>8-C10		102.6	110.5		%	7.4	50	24-DEC-19
Aliphatic C>10-C12		119.0	123.4		%	3.7	50	24-DEC-19
Aliphatic C>12-C16		134.7	140.6		%	4.3	50	24-DEC-19
Aromatic C>8-C10		106.5	112.3		%	5.3	50	24-DEC-19
Aromatic C>10-C12		103.2	108.0		%	4.6	50	24-DEC-19
Aromatic C>12-C16		87.9	97.7		%	11	50	24-DEC-19
WG3249117-1 MB								
Aliphatic C6-C8			<15		ug/m3		15	24-DEC-19
Aliphatic C>8-C10			<15		ug/m3		15	24-DEC-19
Aliphatic C>10-C12			<15		ug/m3		15	24-DEC-19
Aliphatic C>12-C16			<30		ug/m3		30	24-DEC-19
Aromatic C>8-C10			<15		ug/m3		15	24-DEC-19
Aromatic C>10-C12			<15		ug/m3		15	24-DEC-19
							30	

BTEX+NAPH-GCMS-WT Canister

Workorder: L2393610 Report Date: 24-DEC-19 Page 2 of 15

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BTEX+NAPH-GCM	IS-WT	Canister							
Batch R4	953168								
WG3247636-4 Naphthalene	DUP		L2393586-1 <0.50	<0.50	RPD-NA	ppb(V)	N/A	30	23-DEC-19
WG3247636-2 Naphthalene	LC\$			111.7		%		70-130	23-DEC-19
WG3247636-3 Naphthalene	LCSD		WG3247636-2 111.7	96.1		%	15	50	23-DEC-19
WG3247636-1 Naphthalene	МВ			<0.50		ppb(V)		0.5	23-DEC-19
Surrogate: 4-Br	omofluor	obenzene		94.2		%		50-150	23-DEC-19
C1-C5-FID-WT		Canister							
Batch R4	944650								
WG3239341-4 Methane	DUP		L2393570-1 0.00029	0.00027		%	7.3	20	10-DEC-19
Ethane			< 0.00020	<0.00020	RPD-NA	%	N/A	20	10-DEC-19
Ethene			<0.00020	<0.00020	RPD-NA	%	N/A	20	10-DEC-19
Propane			<0.00020	<0.00020	RPD-NA	%	N/A	20	10-DEC-19
Propene			<0.00020	<0.00020	RPD-NA	%	N/A	20	10-DEC-19
Butane			<0.00020	<0.00020	RPD-NA	%	N/A	20	10-DEC-19
Pentane			<0.00020	<0.00020	RPD-NA	%	N/A	20	10-DEC-19
WG3239341-8 Methane	DUP		L2393610-2 0.00040	0.00030	J	%	0.00010	0.0002	10-DEC-19
Ethane			<0.00020	<0.00020	RPD-NA	%	N/A	20	10-DEC-19
Ethene			<0.00020	<0.00020	RPD-NA	%	N/A	20	10-DEC-19
Propane			<0.00020	<0.00020	RPD-NA	%	N/A	20	10-DEC-19
Propene			<0.00020	<0.00020	RPD-NA	%	N/A	20	10-DEC-19
Butane			<0.00020	<0.00020	RPD-NA	%	N/A	20	10-DEC-19
Pentane			<0.00020	<0.00020	RPD-NA	%	N/A	20	10-DEC-19
WG3239341-1 Methane	LC\$			78.8		%		70-130	10-DEC-19
Ethane				88.3		%		70-130	10-DEC-19
Ethene				84.4		%		70-130	10-DEC-19
Propane				88.8		%		70-130	10-DEC-19
Propene				96.7		%		70-130	10-DEC-19
Pentane				92.4		%		70-130	10-DEC-19
WG3239341-5	LCS								

Workorder: L2393610 Report Date: 24-DEC-19 Page 3 of 15

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
C1-C5-FID-WT		Canister							
Batch R4	1944650								
WG3239341-5 Methane	LCS			80.6		%		70-130	10-DEC-19
Ethane				90.2		%		70-130	10-DEC-19
Ethene				86.2		%		70-130	10-DEC-19
Propane				90.0		%		70-130	10-DEC-19
Propene				98.8		%		70-130	10-DEC-19
Butane				90.8		%		70-130	10-DEC-19
Pentane				93.7		%		70-130	10-DEC-19
WG3239341-2 Methane	LCSD		WG3239341-1 78.8	82.3		%	4.4	50	10-DEC-19
Ethane			88.3	89.4		%	1.2	50	10-DEC-19
Ethene			84.4	84.6		%	0.1	50	10-DEC-19
Propane			88.8	88.5		%	0.4	50	10-DEC-19
Propene			96.7	96.9		%	0.2	50	10-DEC-19
Pentane			92.4	92.2		%	0.2	50	10-DEC-19
WG3239341-6	LCSD		WG3239341-5						
Methane			80.6	80.4		%	0.3	50	10-DEC-19
Ethane			90.2	90.3		%	0.1	50	10-DEC-19
Ethene			86.2	85.8		%	0.5	50	10-DEC-19
Propane			90.0	89.5		%	0.5	50	10-DEC-19
Propene			98.8	98.2		%	0.6	50	10-DEC-19
Butane			90.8	90.5		%	0.3	50	10-DEC-19
Pentane			93.7	93.1		%	0.6	50	10-DEC-19
WG3239341-3 Methane	МВ			<0.00010		%		0.0001	10-DEC-19
Ethane				<0.00020		%		0.0002	10-DEC-19
Ethene				<0.00020		%		0.0002	10-DEC-19
Propane				<0.00020		%		0.0002	10-DEC-19
Propene				<0.00020		%		0.0002	10-DEC-19
Butane				<0.00020		%		0.0002	10-DEC-19
Pentane				<0.00020		%		0.0002	10-DEC-19
WG3239341-7 Methane	МВ			<0.00010		%		0.0001	10-DEC-19
Ethane				<0.00020		%		0.0002	10-DEC-19
Ethene				<0.00020		%		0.0002	10-DEC-19
Luioile				-0.00020		n)		3.0002	10-020-13

Workorder: L2393610 Report Date: 24-DEC-19 Page 4 of 15

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
C1-C5-FID-WT	Canister							
Batch R4944650 WG3239341-7 MB Propane			<0.00020		%		0.0002	40 DEC 40
Propene			<0.00020		%		0.0002	10-DEC-19 10-DEC-19
Butane			<0.00020		%		0.0002	10-DEC-19 10-DEC-19
Pentane			<0.00020		%		0.0002	10-DEC-19 10-DEC-19
CAN-DATA-WT	Canister		-0.00020					10-020-19
Batch R4944737	Camatei							
WG3244055-1 MB								
Pressure on Receipt			-29.8		in Hg			17-DEC-19
F1-F2-GCMS-WT	Canister							
Batch R4953507		1,000,000						
WG3249117-4 DUP F1 (C6-C10)		L2393610-1 53	47		ug/m3	11	50	24-DEC-19
F2 (C10-C16)		61	69		ug/m3	13	50	24-DEC-19
WG3249117-2 LCS					_			
F1 (C6-C10)			107.6		%		50-150	24-DEC-19
WG3249117-3 LCSD F1 (C6-C10)		WG3249117-2 107.6	107.7		%	0.1	50	24-DEC-19
WG3249117-1 MB F1 (C6-C10)			<15		ug/m3		15	24-DEC-19
F2 (C10-C16)			<15		ug/m3		15	24-DEC-19
Surrogate: 4-Bromofluor	obenzene		94.3		%		50-150	24-DEC-19
FIXED GASES-TCD-WT	Canister							
Batch R4944389								
WG3236065-8 DUP		L2393575-4	70.0		0/			
Nitrogen		75.8	76.0		%	0.3	30	13-DEC-19
Oxygen		19.6	19.6		%	0.3	30	13-DEC-19
Carbon Dioxide		2.84	2.76	DDD ***	%	2.7	30	13-DEC-19
Carbon Monoxide		<0.050	<0.050	RPD-NA	%	N/A	30	13-DEC-19
Methane		<0.050	<0.050	RPD-NA	%	N/A	30	13-DEC-19
WG3236065-5 LCS Nitrogen			98.5		%		70-130	13-DEC-19
Oxygen			97.5		%		70-130	13-DEC-19
Carbon Dioxide			95.4		%		70-130	13-DEC-19
Carbon Monoxide			95.7		%		70-130	13-DEC-19

Qualifier

Workorder: L2393610 Report Date: 24-DEC-19 Page 5 of 15

RPD

Limit

Analyzed

Units

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Matrix

Reference

Result

Calgary AB T2C 3G3

Contact: Darby Madalena

Test

	TOTOIS		ii quamiii	Omto	5		ruiuijzou
FIXED GASES-TCD-WT	Canister						
Batch R4944389							
WG3236065-5 LCS Methane		98.3		%		70.400	42.050.40
WG3236065-6 LCSD	WC2	236065-5		76		70-130	13-DEC-19
Nitrogen	98.5	98.6		%	0.1	25	13-DEC-19
Oxygen	97.5	97.6		%	0.2	25	13-DEC-19
Carbon Dioxide	95.4	96.1		%	0.8	25	13-DEC-19
Carbon Monoxide	95.7	95.9		%	0.2	25	13-DEC-19
Methane	98.3	98.3		%	0.0	25	13-DEC-19
WG3236065-7 MB							
Nitrogen		<1.0		%		1	13-DEC-19
Oxygen		<0.10)	%		0.1	13-DEC-19
Carbon Dioxide		<0.05	50	%		0.05	13-DEC-19
Carbon Monoxide		<0.05	50	%		0.05	13-DEC-19
Methane		<0.05	50	%		0.05	13-DEC-19
TO15-GCMS-WT	Canister						
Batch R4953168							
WG3247636-4 DUP	L239 3 <0.20	3 586-1 <0.20		nnh() ()			
1,1,1-Trichloroethane	<0.20			ppb(V)	N/A	30	23-DEC-19
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	<0.20			ppb(V)	N/A	30	23-DEC-19
	<0.20			ppb(V)	N/A	30	23-DEC-19
1,1-Dichloroethane	<0.20			ppb(V)	N/A	30	23-DEC-19
1,1-Dichloroethene 1,2,4-Trichlorobenzene	<0.20			ppb(V)	N/A	30	23-DEC-19
	<0.20			ppb(V)	N/A	30	23-DEC-19
1,2,4-Trimethylbenzene 1,2-Dibromoethane	<0.20			ppb(V)	N/A	30	23-DEC-19
,				ppb(V)	N/A	30	23-DEC-19
1,2-Dichlorobenzene	<0.20		=	ppb(V)	N/A	30	23-DEC-19
1,2-Dichloroethane 1,2-Dichloropropane	<0.20			ppb(V)	N/A	30	23-DEC-19
1,3,5-Trimethylbenzene	<0.20			ppb(V)	N/A	30	23-DEC-19
1,3,5-11metnyibenzene	<0.20			ppb(V)	N/A	30	23-DEC-19
1,3-buladierie 1,3-Dichlorobenzene	<0.20			ppb(V)	N/A	30	23-DEC-19
1,4-Dichlorobenzene	<0.20 <0.20			ppb(V)	N/A	30	23-DEC-19
•				ppb(V)	N/A	30	23-DEC-19
1,4-Dioxane	<0.20			ppb(V)	N/A	30	23-DEC-19
2-Hexanone	<1.0	<1.0	RPD-NA	ppb(V)	N/A	30	23-DEC-19

Workorder: L2393610 Report Date: 24-DEC-19 Page 6 of 15

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result (Qualifier	Units	RPD	Limit	Analyzed
TO15-GCMS-WT	Canister							
Batch R4953168								
WG3247636-4 DUP 4-Ethyltoluene		L2393586-1 <0.20	<0.20	DDD NA	ppb(V)	N/A	30	22 DEC 40
Acetone		1.97	1.94	RPD-NA	ppb(V)	1.5	30	23-DEC-19 23-DEC-19
Allyl chloride		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	
Benzene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19 23-DEC-19
Benzyl chloride		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19 23-DEC-19
Bromodichloromethane		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19 23-DEC-19
Bromoform		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Bromomethane		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Carbon Disulfide		1.30	1.28		ppb(V)	1.2	30	23-DEC-19
Carbon Tetrachloride		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Chlorobenzene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Chloroethane		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Chloroform		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Chloromethane		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
cis-1,2-Dichloroethene		0.78	0.72		ppb(V)	8.0	30	23-DEC-19
cis-1,3-Dichloropropene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Cyclohexane		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Dibromochloromethane		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Dichlorodifluoromethane	;	0.69	0.68		ppb(V)	2.6	30	23-DEC-19
Ethyl acetate		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Ethylbenzene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Freon 113		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Freon 114		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Hexachlorobutadiene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Isooctane		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Isopropyl alcohol		<1.0	<1.0	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Isopropylbenzene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	50	23-DEC-19
m&p-Xylene		0.72	0.70		ppb(V)	3.4	30	23-DEC-19
Methyl ethyl ketone		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Methyl isobutyl ketone		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Methylene chloride		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
MTBE		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
n-Heptane		<0.20	<0.20		ppb(V)			23-DEC-19

Workorder: L2393610 Report Date: 24-DEC-19 Page 7 of 15

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TO15-GCMS-WT	Canister							
Batch R4953168								
WG3247636-4 DUP n-Heptane		L2393586-1 <0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
n-Hexane		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
o-Xylene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Propylene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Styrene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Tetrachloroethylene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Tetrahydrofuran		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Toluene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
trans-1,2-Dichloroethene	е	0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
trans-1,3-Dichloroproper	ne	<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Trichloroethylene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Trichlorofluoromethane		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Vinyl acetate		<0.50	<0.50	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Vinyl bromide		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Vinyl chloride		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
WG3247636-2 LCS 1,1,1-Trichloroethane			88.6		%		70-130	23-DEC-19
1,1,2,2-Tetrachloroethar	ne		91.9		%		70-130	23-DEC-19
1,1,2-Trichloroethane			86.6		%		70-130	23-DEC-19
1,1-Dichloroethane			92.4		%		70-130	23-DEC-19
1,1-Dichloroethene			90.6		%		70-130	23-DEC-19
1,2,4-Trichlorobenzene			108.3		%		70-130	23-DEC-19
1,2,4-Trimethylbenzene			92.4		%		70-130	23-DEC-19
1,2-Dibromoethane			90.8		%		70-130	23-DEC-19
1,2-Dichlorobenzene			92.5		%		70-130	23-DEC-19
1,2-Dichloroethane			90.4		%		70-130	23-DEC-19
1,2-Dichloropropane			90.0		%		70-130	23-DEC-19
1,3,5-Trimethylbenzene			90.6		%		70-130	23-DEC-19
1,3-Butadiene			89.8		%		70-130	23-DEC-19
1,3-Dichlorobenzene			91.1		%		70-130	23-DEC-19
1,4-Dichlorobenzene			94.2		%		70-130	23-DEC-19
1,4-Dioxane			92.9		%		70-130	23-DEC-19
2-Hexanone			92.2		%		70-130	23-DEC-19

Report Date: 24-DEC-19 Workorder: L2393610 Page 8 of 15

TETRA TECH CANADA INC. Client:

110, 140 Quarry Park Blvd SE Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TO15-GCMS-WT	Canister							
Batch R4953168								
WG3247636-2 LCS			00 E		9/		70.455	00.050.15
4-Ethyltoluene Acetone			90.5		%		70-130	23-DEC-19
			91.2				70-130	23-DEC-19
Allyl chloride			88.3		%		70-130	23-DEC-19
Benzene			92.1		%		70-130	23-DEC-19
Benzyl chloride			87.4		%		70-130	23-DEC-19
Bromodichloromethane			88.1		%		70-130	23-DEC-19
Bromoform			88.4		%		70-130	23-DEC-19
Bromomethane			92.9		%		70-130	23-DEC-19
Carbon Disulfide			84.8		%		70-130	23-DEC-19
Carbon Tetrachloride			87.6		%		70-130	23-DEC-19
Chlorobenzene			90.8		%		70-130	23-DEC-19
Chloroethane			90.9		%		70-130	23-DEC-19
Chloroform			94.1		%		70-130	23-DEC-19
Chloromethane			93.2		%		70-130	23-DEC-19
cis-1,2-Dichloroethene			89.8		%		70-130	23-DEC-19
cis-1,3-Dichloropropene			89.0		%		70-130	23-DEC-19
Cyclohexane			92.0		%		70-130	23-DEC-19
Dibromochloromethane			86.9		%		70-130	23-DEC-19
Dichlorodifluoromethane	:		89.3		%		70-130	23-DEC-19
Ethyl acetate			89.3		%		70-130	23-DEC-19
Ethylbenzene			89.4		%		70-130	23-DEC-19
Freon 113			89.0		%		70-130	23-DEC-19
Freon 114			95.4		%		70-130	23-DEC-19
Hexachlorobutadiene			103.3		%		70-130	23-DEC-19
Isooctane			90.2		%		70-130	23-DEC-19
Isopropyl alcohol			83.3		%		70-130	23-DEC-19
Isopropylbenzene			87.4		%		50-150	23-DEC-19
m&p-Xylene			91.2		%		70-130	23-DEC-19
Methyl ethyl ketone			89.5		%		70-130	23-DEC-19
Methyl isobutyl ketone			89.1		%		70-130	23-DEC-19
Methylene chloride			95.2		%		70-130	23-DEC-19
MTBE			90.7		%		70-130	23-DEC-19
n-Heptane			89.9		%		70-130	23-DEC-19

Workorder: L2393610 Report Date: 24-DEC-19 Page 9 of 15

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TO15-GCMS-WT	Canister							
Batch R4953168								
WG3247636-2 LCS n-Hexane			90.8		%		70-130	23-DEC-19
o-Xylene			90.5		%		70-130	23-DEC-19
Propylene			88.6		%		70-130	23-DEC-19
Styrene			89.1		%		70-130	23-DEC-19
Tetrachloroethylene			90.2		%		70-130	23-DEC-19
Tetrahydrofuran			92.0		%		70-130	23-DEC-19
Toluene			91.9		%		70-130	23-DEC-19
trans-1,2-Dichloroethene			91.7		%		70-130	23-DEC-19
trans-1,3-Dichloropropen	e		87.5		%		70-130	23-DEC-19
Trichloroethylene			91.3		%		70-130	23-DEC-19
Trichlorofluoromethane			89.8		%		70-130	23-DEC-19
Vinyl acetate			89.2		%		70-130	23-DEC-19
Vinyl bromide			92.1		%		70-130	23-DEC-19
Vinyl chloride			89.8		%		70-130	23-DEC-19
WG3247636-3 LCSD		WG3247636-2						
1,1,1-Trichloroethane		88.6	77.4		%	13	25	23-DEC-19
1,1,2,2-Tetrachloroethan	е	91.9	80.2		%	14	25	23-DEC-19
1,1,2-Trichloroethane		86.6	74.9		%	14	25	23-DEC-19
1,1-Dichloroethane		92.4	77.3		%	18	25	23-DEC-19
1,1-Dichloroethene		90.6	75.4		%	18	25	23-DEC-19
1,2,4-Trichlorobenzene		108.3	91.8		%	16	25	23-DEC-19
1,2,4-Trimethylbenzene		92.4	79.2		%	15	25	23-DEC-19
1,2-Dibromoethane		90.8	77.8		%	15	25	23-DEC-19
1,2-Dichlorobenzene		92.5	79.7		%	15	25	23-DEC-19
1,2-Dichloroethane		90.4	78.5		%	14	25	23-DEC-19
1,2-Dichloropropane		90.0	78.6		%	13	25	23-DEC-19
1,3,5-Trimethylbenzene		90.6	77.2		%	16	25	23-DEC-19
1,3-Butadiene		89.8	79.7		%	12	25	23-DEC-19
1,3-Dichlorobenzene		91.1	78.3		%	15	25	23-DEC-19
1,4-Dichlorobenzene		94.2	81.2		%	15	25	23-DEC-19
1,4-Dioxane		92.9	82.0		%	12	25	23-DEC-19
2-Hexanone		92.2	81.0		%	13	25	23-DEC-19
4-Ethyltoluene		90.5	78.4		%	14	25	23-DEC-19

Report Date: 24-DEC-19 Workorder: L2393610 Page 10 of 15

TETRA TECH CANADA INC. Client: 110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TO15-GCMS-WT	Canister							
Batch R4953168								
WG3247636-3 LCSD Acetone		WG3247636-2 91.2	77.4		%	16	25	22 DEO 40
Allyl chloride		88.3	77.2		%	13	25 25	23-DEC-19
Benzene		92.1	78.2		%	16	25	23-DEC-19
Benzyl chloride		87.4	76.4		%	13	25	23-DEC-19 23-DEC-19
Bromodichloromethane		88.1	77.3		%	13	25	23-DEC-19 23-DEC-19
Bromoform		88.4	74.5		%	17	25	23-DEC-19 23-DEC-19
Bromomethane		92.9	79.7		%	15	25	23-DEC-19 23-DEC-19
Carbon Disulfide		84.8	73.4		%	15	25	23-DEC-19 23-DEC-19
Carbon Tetrachloride		87.6	77.2		%	13	25	23-DEC-19 23-DEC-19
Chlorobenzene		90.8	78.1		%	15	25	23-DEC-19 23-DEC-19
Chloroethane		90.9	79.4		%	13	25	23-DEC-19 23-DEC-19
Chloroform		94.1	80.5		%	16	25	23-DEC-19
Chloromethane		93.2	79.5		%	16	25	23-DEC-19
cis-1,2-Dichloroethene		89.8	79.2		%	12	25	23-DEC-19
cis-1,3-Dichloropropene		89.0	76.0		%	16	25	23-DEC-19
Cyclohexane		92.0	77.5		%	17	25	23-DEC-19
Dibromochloromethane		86.9	76.1		%	13	25	23-DEC-19
Dichlorodifluoromethane	:	89.3	77.0		%	15	25	23-DEC-19
Ethyl acetate		89.3	75.4		%	17	25	23-DEC-19
Ethylbenzene		89.4	78.0		%	14	25	23-DEC-19
Freon 113		89.0	75.4		%	17	25	23-DEC-19
Freon 114		95.4	82.0		%	15	25	23-DEC-19
Hexachlorobutadiene		103.3	88.9		%	15	25	23-DEC-19
Isooctane		90.2	79.3		%	13	25	23-DEC-19
Isopropyl alcohol		83.3	72.3		%	14	25	23-DEC-19
Isopropylbenzene		87.4	76.3		%	14	50	23-DEC-19
m&p-Xylene		91.2	80.3		%	13	25	23-DEC-19
Methyl ethyl ketone		89.5	78.2		%	13	25	23-DEC-19
Methyl isobutyl ketone		89.1	75.6		%	16	25	23-DEC-19
Methylene chloride		95.2	76.9		%	21	25	23-DEC-19
MTBE		90.7	77.2		%	16	25	23-DEC-19
n-Heptane		89.9	77.9		%	14	25	23-DEC-19
n-Hexane		90.8	78.3		%			23-DEC-19

Report Date: 24-DEC-19 Workorder: L2393610 Page 11 of 15

TETRA TECH CANADA INC. Client:

110, 140 Quarry Park Blvd SE Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TO15-GCMS-WT	Canister							
Batch R4953168								
WG3247636-3 LCSD n-Hexane		WG3247636-2 90.8	78.3		%	15	25	23-DEC-19
o-Xylene		90.5	78.6		%	14	25	23-DEC-19
Propylene		88.6	74.1		%	18	25	23-DEC-19
Styrene		89.1	76.4		%	15	25	23-DEC-19
Tetrachloroethylene		90.2	76.6		%	16	25	23-DEC-19
Tetrahydrofuran		92.0	79.5		%	15	25	23-DEC-19
Toluene		91.9	79.4		%	15	25	23-DEC-19
trans-1,2-Dichloroethene	1	91.7	77.5		%	17	25	23-DEC-19
trans-1,3-Dichloropropen	e	87.5	76.1		%	14	25	23-DEC-19
Trichloroethylene		91.3	77.8		%	16	25	23-DEC-19
Trichlorofluoromethane		89.8	77.5		%	15	25	23-DEC-19
Vinyl acetate		89.2	99.98		%	11	25	23-DEC-19
Vinyl bromide		92.1	78.8		%	16	25	23-DEC-19
Vinyl chloride		89.8	78.0		%	14	25	23-DEC-19
WG3247636-1 MB								
1,1,1-Trichloroethane			<0.20		ppb(V)		0.2	23-DEC-19
1,1,2,2-Tetrachloroethan	е		<0.20		ppb(V)		0.2	23-DEC-19
1,1,2-Trichloroethane			<0.20		ppb(V)		0.2	23-DEC-19
1,1-Dichloroethane			<0.20		ppb(V)		0.2	23-DEC-19
1,1-Dichloroethene			<0.20		ppb(V)		0.2	23-DEC-19
1,2,4-Trichlorobenzene			<0.20		ppb(V)		0.2	23-DEC-19
1,2,4-Trimethylbenzene			<0.20		ppb(V)		0.2	23-DEC-19
1,2-Dibromoethane			<0.20		ppb(V)		0.2	23-DEC-19
1,2-Dichlorobenzene			<0.20		ppb(V)		0.2	23-DEC-19
1,2-Dichloroethane 1,2-Dichloropropane			<0.20 <0.20		ppb(V)		0.2	23-DEC-19
1,3,5-Trimethylbenzene			<0.20		ppb(V)			23-DEC-19
1,3-Butadiene			<0.20		ppb(V) ppb(V)		0.2	23-DEC-19
1,3-Dichlorobenzene			<0.20		ppb(V)		0.2	23-DEC-19 23-DEC-19
1,4-Dichlorobenzene			<0.20		ppb(V)		0.2	
1,4-Dioxane			<0.20		ppb(V)		0.2	23-DEC-19 23-DEC-19
2-Hexanone			<1.0		ppb(V)		1	23-DEC-19 23-DEC-19
4-Ethyltoluene			<0.20		ppb(V)		0.2	23-DEC-19 23-DEC-19
- Larywood one			-0.20		Pho(*)		J.L	23-000-18

Workorder: L2393610 Report Date: 24-DEC-19 Page 12 of 15

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TO15-GCMS-WT	Canister							
Batch R4953168								
WG3247636-1 MB Acetone			<0.50		pph()/)		0.5	00 050 40
Allyl chloride			<0.20		ppb(V)		0.5	23-DEC-19
Benzene			<0.20		ppb(V)			23-DEC-19
					ppb(V)		0.2 0.2	23-DEC-19
Benzyl chloride Bromodichloromethane			<0.20 <0.20		ppb(V)			23-DEC-19
					ppb(V)		0.2	23-DEC-19
Bromoform			<0.20		ppb(V)		0.2	23-DEC-19
Bromomethane			<0.20		ppb(V)		0.2	23-DEC-19
Carbon Disulfide			<0.20		ppb(V)		0.2	23-DEC-19
Carbon Tetrachloride			<0.20		ppb(V)		0.2	23-DEC-19
Chlorobenzene			<0.20		ppb(V)		0.2	23-DEC-19
Chloroethane			<0.20		ppb(V)		0.2	23-DEC-19
Chloroform			<0.20		ppb(V)		0.2	23-DEC-19
Chloromethane			<0.20		ppb(V)		0.2	23-DEC-19
cis-1,2-Dichloroethene			<0.20		ppb(V)		0.2	23-DEC-19
cis-1,3-Dichloropropene			<0.20		ppb(V)		0.2	23-DEC-19
Cyclohexane			<0.20		ppb(V)		0.2	23-DEC-19
Dibromochloromethane			<0.20		ppb(V)		0.2	23-DEC-19
Dichlorodifluoromethane	:		<0.20		ppb(V)		0.2	23-DEC-19
Ethyl acetate			<0.20		ppb(V)		0.2	23-DEC-19
Ethylbenzene			<0.20		ppb(V)		0.2	23-DEC-19
Freon 113			<0.20		ppb(V)		0.2	23-DEC-19
Freon 114			<0.20		ppb(V)		0.2	23-DEC-19
Hexachlorobutadiene			<0.20		ppb(V)		0.2	23-DEC-19
Isooctane			<0.20		ppb(V)		0.2	23-DEC-19
Isopropyl alcohol			<1.0		ppb(V)		1	23-DEC-19
Isopropylbenzene			<0.20		ppb(V)		0.2	23-DEC-19
m&p-Xylene			<0.40		ppb(V)		0.4	23-DEC-19
Methyl ethyl ketone			<0.20		ppb(V)		0.2	23-DEC-19
Methyl isobutyl ketone			<0.20		ppb(V)		0.2	23-DEC-19
Methylene chloride			<0.20		ppb(V)		0.2	23-DEC-19
MTBE			<0.20		ppb(V)		0.2	23-DEC-19
n-Heptane			<0.20		ppb(V)		0.2	23-DEC-19
n-Hexane			<0.20		ppb(V)		0.2	23-DEC-19

Qualifier

Workorder: L2393610 Report Date: 24-DEC-19 Page 13 of 15

RPD

Limit

Analyzed

Units

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Matrix

Reference

Result

Calgary AB T2C 3G3

Contact: Darby Madalena

Test

Test	Mauix	Reference	Kesuit	Qualifici	UIIIIS	KFD	Lillill	Allalyzeu
TO15-GCMS-WT	Canister							
Batch R4953168								
WG3247636-1 MB o-Xylene			<0.20		ppb(V)		0.2	00 050 40
Propylene							0.2	23-DEC-19
			<0.20		ppb(V)			23-DEC-19
Styrene			<0.20		ppb(V)		0.2	23-DEC-19
Tetrachloroethylene			<0.20		ppb(V)		0.2	23-DEC-19
Tetrahydrofuran			<0.20		ppb(V)		0.2	23-DEC-19
Toluene			<0.20		ppb(V)		0.2	23-DEC-19
trans-1,2-Dichloroether			<0.20		ppb(V)		0.2	23-DEC-19
trans-1,3-Dichloroprope	ene		<0.20		ppb(V)		0.2	23-DEC-19
Trichloroethylene			<0.20		ppb(V)		0.2	23-DEC-19
Trichlorofluoromethane			<0.20		ppb(V)		0.2	23-DEC-19
Vinyl acetate			<0.50		ppb(V)		0.5	23-DEC-19
Vinyl bromide			<0.20		ppb(V)		0.2	23-DEC-19
Vinyl chloride			<0.20		ppb(V)		0.2	23-DEC-19
Surrogate: 4-Bromofluo	robenzene		94.2		%		50-150	23-DEC-19
SILOXANES-GCMS-WT	Tube							
Batch R4945277								
WG3242059-2 LCS D3(CVMS)			116.0		%		70-130	18-DEC-19
D4(CVMS)			117.6		%		70-130	18-DEC-19
D5(CVMS)			127.7		%		70-130	18-DEC-19
D6(CVMS)			121.6		%		70-130	18-DEC-19
MM(LVMS)			122.0		%		70-130	18-DEC-19
MDM(LVMS)			124.9		%		70-130	18-DEC-19
MD2M(LVMS)			118.9		%		70-130	18-DEC-19
MD3M(LVMS)			114.1		%		70-130	18-DEC-19
WG3242059-3 LCSD		WG3242059-2						10-020-10
D3(CVMS)		116.0	118.1		%	1.7	50	18-DEC-19
D4(CVMS)		117.6	121.2		%	3.0	50	18-DEC-19
D5(CVMS)		127.7	131.7		%	3.1	50	18-DEC-19
D6(CVMS)		121.6	125.5		%	3.2	50	18-DEC-19
MM(L∨MS)		122.0	94.5		%	25	50	18-DEC-19
MDM(LVMS)		124.9	123.7		%	0.9	50	18-DEC-19
MD2M(LVMS)		118.9	116.5		%	2.0	50	18-DEC-19
MD3M(LVMS)		114.1	106.2		%	7.2	50	18-DEC-19
,								

Workorder: L2393610

Report Date: 24-DEC-19

Page 14 of 15

Client:

TETRA TECH CANADA INC. 110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SILOXANES-GCMS-WT	Tube							
Batch R4945277 WG3242059-1 MB								
D3(CVMS)			<10		ng		10	18-DEC-19
D4(CVMS)			<10		ng		10	18-DEC-19
D5(CVMS)			<10		ng		10	18-DEC-19
D6(CVMS)			<10		ng		10	18-DEC-19
MM(LVMS)			<10		ng		10	18-DEC-19
MDM(LVMS)			<10		ng		10	18-DEC-19
MD2M(LVMS)			<10		ng		10	18-DEC-19
MD3M(LVMS)			<10		ng		10	18-DEC-19
Surrogate: 4-Bromofluoro	obenzene		100.4		%		50-150	18-DEC-19

Workorder: L2393610 Report Date: 24-DEC-19

Client: TETRA TECH CANADA INC. Page 15 of 15

110, 140 Quarry Park Blvd SE Calgary AB T2C 3G3

Contact: Darby Madalena

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Batch Proof Report

		Datem 1 1 0 0 1 1	cport			
Batch ID	Canister ID	Parameters	Value	Units	Date	Analyst
	01400-0480	1.1.1-Trichloroethane	< 0.02			
B191119.112		, ,		ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	1,1,1,2-Tetrachloroethane	< 0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	1,1,2,2-Tetrachloroethane	< 0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	1,1,2-Trichloroethane	<0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	1,1-Dichloroethane	< 0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	1,1-Dichloroethene	< 0.02			DT1
				ppb(V)	21-Nov-19	
B191119.112	01400-0480	1,2,4-Trichlorobenzene	< 0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	1,2,4-Trimethylbenzene	< 0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	1,2-Dibromoethane	< 0.01	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	1,2-Dichlorobenzene	< 0.02	ppb(V)	21-Nov-19	DT1
		,				
B191119.112	01400-0480	1,2-Dichloroethane	< 0.01	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	1,2-Dichloropropane	< 0.02	ppb(V)	21-Nov-19	DT1
			<0.20			
B191119.112	01400-0480	1,3,5-Trimethylbenzene		ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	1,3-Butadiene	<0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	1,3-Dichlorobenzene	< 0.02	ppb(V)	21-Nov-19	DT1
		· ·				
B191119.112	01400-0480	1,4-Dichlorobenzene	<0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	1,4-Dioxane	< 0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	2-Chlorophenol	<0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	2-Hexanone	<1.0	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	4-Ethyltoluene	<0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Acetone	< 0.50	ppb(V)	21-Nov-19	DT1
	01400-0480	Allyl Chloride	<0.20	ppb(V)	21-Nov-19	DT1
B191119.112		•				
B191119.112	01400-0480	Benzene	<0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Benzyl Chloride	< 0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Bromodichloromethane	< 0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Bromobenzene	< 0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Bromoform	< 0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Bromomethane	< 0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Carbon Disulfide	< 0.20		21-Nov-19	DT1
				ppb(V)		
B191119.112	01400-0480	Carbon Tetrachloride	< 0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Chlorobenzene	< 0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Chloroethane	< 0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Chloroform	< 0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Chloromethane	<0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	cis-1,2-Dichloroethene	< 0.02	ppb(V)	21-Nov-19	DT1
		The state of the s				DT1
B191119.112	01400-0480	cis-1,3-Dichloropropene	< 0.02	ppb(V)	21-Nov-19	
B191119.112	01400-0480	Cyclohexane	<0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Dibromochloromethane	< 0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Dichlorodifluoromethane	<0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Ethyl Acetate	< 0.20	ppb(V)	21-Nov-19	DT1
		•				
B191119.112	01400-0480	Ethyl Benzene	<0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Freon 113	<0.20	ppb(V)	21-Nov-19	DT1
	01400-0480	Freon 114	< 0.20		21-Nov-19	DT1
B191119.112				ppb(V)		
B191119.112	01400-0480	Hexachlorobutadiene	< 0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Isooctane	< 0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Isopropyl Alcohol	<1.0	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Isopropylbenzene	< 0.20	ppb(V)	21-Nov-19	DT1
		,				
B191119.112	01400-0480	m&p-Xylene	< 0.04	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Methyl Ethyl Ketone	< 0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Methylcyclohexane	< 0.20	ppb(V)	21-Nov-19	DT1
				ppb(v)		
B191119.112	01400-0480	Methyl Isobutyl Ketone	< 0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Methylene Chloride	< 0.02	ppb(V)	21-Nov-19	DT1
		,				
B191119.112	01400-0480	MTBE	<0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Naphthalene	< 0.05	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	n-Decane	<0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	n-Heptane	<0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	n-Hexane	< 0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	o-Xylene	<0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Propylene	< 0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Styrene	<0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Tetrachloroethylene	< 0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Tetrahydrofuran	<0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Toluene	< 0.02	ppb(V)	21-Nov-19	DT1
	01400-0480				21-Nov-19	DTI
B191119.112		trans-1,2-Dichloroethene	<0.02	ppb(V)		
B191119.112	01400-0480	trans-1,3-Dichloropropene	< 0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Trichloroethylene	< 0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Trichlorofluoromethane	<0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Vinyl Acetate	< 0.50	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Vinyl Bromide	<0.20	ppb(V)	21-Nov-19	DT1

ADDRESS 60 Northland Rd, Unit 1 Waterloo, ON, N2V 2B8 Canada PHONE +1 519 886-6910 FAX +1 519 886-9047

ALS CANADA LTD. Part of the ALS Group A Campbell Brothers Limited Company

01400-0480 01400-0480

Vinyl Chloride 4-Bromofluorobenzene

<0.02 ppb(V) 103.1 %

21-Nov-19 21-Nov-19

DT1 DT1

L2393610-COFC

60 NORTHLAN

AIR QUALITY CHAIN OF CUSTODY FORM · Canister/Tube/Gas Bag

Page__1_of_1__

WATERLOO, OK					All Content con costos						,		-9	_		
Phone: (519) 886-691	0	(Al Enuiron			Note: all TAT Quoted material is in business days	which exclu	ıde		ecify d		Servi	ce Re	ques	ed	Rush 3 day (100%)	
Fax: (519) 886-9047		2,,,,,,,,			statutory holidays and weekends. TAT of samples	received pa		_ r	equire	d	10 day (regular)			V	Rush 2 day (200%)	
Toll Free: 1-800-668-	9878				3:00 pm or Saturday / Sunday begin the next da	у.					Rush 5 day (50%)				Rush 1 day (300%)- Enquire	
COMPANY NAME		Tetra Tech Canad	ia Inc.		SAMPLE TYPE/REGULATION)		ANALYSIS		SIS RE	REQUEST				All rush work requires la		
OFFICE	110, 14	O Quarry Park Blvd SE, C	algary, AB T2C	3G3	Reg 419/05 Soll Vapor Intrusion					4					before sample subm	ission
PROJECT MANAGER		Darby Madale	па		OTHER Please List —]				4		1 2	, ;		SUBMISSION #:	
PROJECT #		SWM.SWOP04071-0 (Great West Adventu			OTHER Please List ————				ķ	MS		1,0	Įį			
PHONE 403-723-6867	FAX 403-203-3301			REPORT FORMAT/DISTRIBUTION		 	-CS-FID-WT CASES-TCD-WT	+NAP	S C		ampli	Sampling ("Ho)		ENTERED BY:		
ACCOUNT #		·			EAV BOTH	الكرا [CS-FID-WT	ĮΫ	F.	7		1 2	5.	Ι,	DATE/TIME ENTERED:	
QUOTATION # Q71650		PO # SWM.SWOP04071-0	01.001		EMAILFAXBOTH SELECT: PDFDIGITALBOTH		C) C3	Š	TO I S, FI F2SFRA+NAP-WT	S		4	- Post	≂		
S	AM PLINC	INFORMATION			EMAIL 1	W		FIXED	015	4			PRESSURE	TIME	BIN #	
Sample Date/Tin	ne		Regulator	T.		Į Š			F	X		8	Ä	NOL		
Date (dd-mmm-yy)	Time (24hr) (hh:mm)	Canister or Tube ID# (e.g. 060000-XXXX or G0XXXXXX SVI)	Serial # CS1200-XXXX or GXX	Matrix Type	SAMPLE DESCRIPTION TO APPEAR ON REPORT	TUBE AIR VOLUME				3510		(HH) pullumeS-and - BEICKEING DREAMS	ENDING P		Field Conditions (Rain/Wind/Dust/Odour) Field PID Reading	(ZABID)
04-Dec-19	1342	1092	G37	56	VW-01	1,4	х	х	х			-3	3-10	a		41 / 2 / A
1	1419	2960	ලුබුහි ම	35	VW-0 2	1,4	х	х	х			-a	<u>3-6</u>	1		350000
	سيد	355	D53	39	19DUP01	1.4	K	×	X			-2	1-10	a		
	1650	G01203332VI		36	VW-01					X		7	7	$\overline{}$		
1	1 '	G01503845VI		36	VW-02					X		7	7	1		THE REAL PROPERTY.
				Π									Т	Г		2000
	-					1							Τ	Π		
														Т		
	-								Т			T	\top			
-				1			1		Г			\top	\top	T		41, 20, 70, 70
PARCONS CHARGE COMPANY & SPEC	IAL INSTR	UCTIONS/COMMENTS WEED	n particular service	*******	This Chain of Custody Form i	s only to be	used f	or Air	Qualit	y Sam	ies razas	12, 14 s	og v	125 (82.4)		
				Matrix Type	Soil Gas Vapour = SG Ambient Air = AA	Indoor A			: = IH						FROZEN COLD COOLING INITIATED AMBIENT	
SAMPLED BY: ME	30 Y	Rouse		DATE #	TIME CO 6/19 RECEIVED BY:	10					DATE & T	IME }	7		OBSERVATIONS Ves No	INIT
RELINQUISHED BY:				DATE &	TIME (GCC) RECEIVED AT LAB BY:		<u> </u>			1977 1978	DATE & T	IME	12	10	If yes add SIF	
Notes					1/6	0	-				100)	$^{\prime }\mathcal{O}$		X	lan .	

3. Any known or suspected hazards relating to a sample must be noted on the chain of custody in comments section. REV4-2012

^{1.} Quote number must be provided to ensure proper pricing

^{2.} TAT may vary dependent on complexity of analysis and lab workload at time of submission. Please contact the lab to confirm TATs.

APPENDIX E

HISTORICAL ANALYTICAL RESULTS

Table 1
Soil Vapour and Groundwater Monitoring Well Elevations

Test	Well		Eleva			Screen
Location	Depth	Ground	Top of Pipe		Interval	Length
	(m)	(m)	(m)	Bottom	Тор	(m)
					-	, ,
MW-01	4.3	853.806	854.668	849.506	852.506	3.0
MW-02	4.3	852.765	852.682	848.465	851.465	3.0
MW-03	3.7	852.750	853.740	849.050	851.750	2.7
MW-04	4.4	852.755	853.482	848.355	851.355	3.0
MW-05	5.5	854.307	855.132	848.807	851.807	3.0
VW-01	2.7	853.847	854.605	851.147	851.447	0.3
VW-02	2.4	854.338	855.419	851.938	852.238	0.3
TH-01	853.676					
TH-02	854.308					
TH-08	854.207					
TH-09	854.244					
TH-10	854.056					
TH-11	854.706					
TH-12	854.413					
TH-14	853.661					
TH-15	853.898					
TH-16	854.048					
TH-17	854.140					
TH-18	853.369					
TH-19	856.137					
TH-20	856.201					
TH-21	853.119					
TH-23	853.749					

- 1) Geodetic elevations are referenced to multiple ASCMs located within The City of Red Deer.
- 2) Datum is ASCM #17988 and #294421.
- 3) MW Monitoring Well.
- 4) VW Soil Vapour Well.
- 5) TH Testhole no well instrumentation.
- 6) NA Not Applicable.

Table 2
Site Monitoring Results

Test	Elev	ations	Groundwate	r Elevation		Headspa	ce Vapour	
Location	Ground	Top of Pipe		(m)	09/08/1	13		
	(m)	(m)	09/08/13		Combustible	Volatile	Combustible	Volatile
MW-01	853.806	854.668	851.819		155	ND		
MW-02	852.765	852.682	850.762		590	ND		
MW-03	852.750	853.740	851.235		530	ND		
MW-04	852.755	853.482	850.142		135	ND		
MW-05	854.307	855.132	850.965		10	ND		
VW-01	853.847	854.605			95	ND		
VW-02	854.338	855.419			45	ND		

- 1) Measurement of combustible and volatile vapours by RKI Eagle 2. Combustible vapour sensor calibrated to hexane and photoionization detector calibrated to isobutylene.
- 2) ND Not Detected, less than the limit of instrument detection.
- 3) - No value established.

Table 3A
Analytical Results - Soil - Drill Cuttings (Soil Bag)

Analytical Results - Soil - Drill Cuttings (Soil Bag)									
Parameter	Detection	Soil Bag	Class II Landfill						
	Limit	1 of 1	Acceptance Criteria						
рН	0.10	8.47	2-12.5						
Flash Point (°C)	30.0	>75	>61						
Paint Filter Test	-	PASS	PASS						
Total Organic Carbon	0.10	0.69							
TCLP Hydrocarbons									
Benzene	0.0050	ND	0.5						
Toluene	0.0050	ND	0.5						
Ethylbenzene	0.0050	ND	0.5						
Xylenes	0.0050	ND	0.5						
TCLP Metals									
Antimony (Sb)	5.0	ND	500						
Arsenic (As)	0.20	ND	5						
Barium (Ba)	5.0	ND	100						
Beryllium (Be)	0.50	ND	5						
Boron (B)	5.0	ND	500						
Bolon (B)	3.0	ND	300						
Cadmium (Cd)	0.050	ND	1						
Chromium (Cr)	0.50	ND	5						
Cobalt (Co)	5.0	ND	100						
Copper (Cu)	5.0	ND	100						
Iron (Fe)	5.0	ND	1,000						
Lead (Pb)	0.50	ND	5						
Mercury (Hg)	0.010	ND	0.2						
Nickel (Ni)	0.50	ND	5						
Selenium (Se)	0.20	ND	1						
Silver (Ag)	0.50	ND	5						
	0.50	112	J						
Thallium (Tl)	0.50	ND	5						
Uranium (U)	1.0	ND	2						
Vanadium (V)	5.0	ND	100						
Zinc (Zn)	5.0	ND	500						
Zirconium (Zr)	5.0	ND	500						

- 1) Applicable Waste Screens process for The City of Red Deer Class II waste management facility.
- 2) Class II Landfill Acceptance Criteria per Table 2, Part 4 Schedule to the Alberta User Guide for Waste Managers 3/95.
- 3) All units are mg/L unless otherwise stated.
- 4) ND Not Detected
- 5) Soil Bags were sampled on June 26, 2013.
- 6) For further laboratory information, refer to the specific laboratory report in Appendix A.

Table 3B
Analytical Results - Soil - General Indices & Heavy Metals

Parameters Units Detection TH 17 TH 20 TH 21 Tion 1									
Parameters	Units	Detection	TH-17	TH-20	TH-21	Tier 1			
		Limit	@ 3.5 m	@ 3.9 - 4.6 m	@ 2.0 m	Guideline			
			09/07/13	07/15/2013	07/18/2013				
Chloride (Cl)	mg/kg	6.7 - 10	115	10.6	101				
Nitrate-N	mg/kg	0.33 - 0.51	ND	ND	ND				
Nitrite-N	mg/kg	0.33 - 0.51	ND	ND	ND				
<u>Metals</u>									
Antimony (Sb)	mg/kg	0.20	3.16	0.33	0.39	20			
Arsenic (As)	mg/kg	0.20	7.04	4.63	5.92	17			
Barium (Ba)	mg/kg	5.0	292	200	262	500			
Beryllium (Be)	mg/kg	1.0	ND	ND	ND	5			
Cadmium (Cd)	mg/kg	0.50	ND	ND	ND	10			
- 1111111111111111111111111111111111111			2,2						
Chromium (Cr)	mg/kg	0.50	16.4	9.55	14.0	64			
Cobalt (Co)	mg/kg	1.0	6.3	4.3	6.0	20			
Copper (Cu)	mg/kg	2.0	15.2	8.0	14.6	63			
Lead (Pb)	mg/kg	5.0	398	6.4	8.1	140			
Mercury (Hg)	mg/kg	0.050	ND	ND	ND	6.6			
Molybdenum (Mo)	mg/kg	1.0	1.2	ND	ND	4			
Nickel (Ni)	mg/kg	2.0	19.3	13.5	19.4	50			
Selenium (Se)	mg/kg	0.50	ND	ND	ND	1.0			
Silver (Ag)	mg/kg	1.0	ND	ND	ND	20			
Thallium (Tl)	mg/kg	0.50	ND	ND	ND	1.0			
Tin (Sn)	mg/kg	2.0	ND	ND	ND	5			
Uranium (U)	mg/kg	2.0	ND	ND	ND	23			
Vanadium (V)	mg/kg	1.0	23.5	17.2	24.2	130			
Zinc (Zn)	mg/kg	10	80	78	56	200			
Hexavalent Chromium	mg/kg	0.10	ND	ND	ND	0.4			
Boron (B), Hot Water Ext.		0.10	1.37	1.24	0.34	2			

- 1) Tier 1 Guideline Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for residential/parkland land use.
- 2) ND Not Detected, less than the limit of method detection.
- 3) -- No value established in the reference criteria.
- 4) Bold & Shaded Exceeds the referenced Alberta Tier 1 and CCME guidelines.
- 5) For further laboratory information, refer to the specific laboratory report in Appendix A.

Table 3C

	Ana	ılytical Resu	lts - Soil - V	OCs		
Parameters	Units	Detection	TH-17	TH-20	TH-21	Tier 1
		Limit	@ 3.5 m	@ 3.9 - 4.6 m	@ 2.0 m	Guideline
			09/07/13	07/15/2013	07/18/2013	
Hydrocarbons E1 (C, C,)		10	NID	NID	ND	24
F1 (C ₆ -C ₁₀)	mg/kg	10	ND	ND	ND	
F2 (C ₁₀ -C ₁₆)	mg/kg	25	ND	ND	ND	130
F3 (C ₁₆ -C ₃₄)	mg/kg	50	ND	ND	ND	300
F4 (C ₃₄ -C ₅₀)	mg/kg	50	ND	ND	ND	2,800
Total Hydrocarbons (C ₆ -C ₅₀)	mg/kg	50	ND	ND	ND	
Volatile Organic Compounds Benzene		0.010	NID	NID	ND	0.072
Bromobenzene	mg/kg	0.010 0.010	ND ND	ND ND	ND ND	0.073
Bromochloromethane	mg/kg mg/kg	0.010	ND ND	ND ND	ND ND	
Bromodichloromethane	mg/kg	0.010	ND	ND	ND	
Bromoform	mg/kg	0.010	ND	ND	ND	
Bromomethane	mg/kg	0.10	ND	ND	ND	
n-Butylbenzene	mg/kg	0.010 - 0.070	ND	ND	ND	
sec-Butylbenzene	mg/kg	0.010	ND	ND	ND	
tert-Butylbenzene	mg/kg	0.010	ND	ND	ND	
Carbon tetrachloride	mg/kg	0.010	ND	ND	ND	0.00056
Chlorobenzene	mg/kg	0.010	ND	ND	ND	0.018
Dibromochloromethane	mg/kg	0.010	ND	ND	ND	0.27
Chloroethane	mg/kg	0.10	ND	ND	ND	
Chloroform	mg/kg	0.010	ND	ND	ND	0.001
Chloromethane	mg/kg	0.10	ND	ND	ND	
2 (11)	_	0.010	NE	177	NE	
2-Chlorotoluene	mg/kg	0.010	ND	ND	ND	
4-Chlorotoluene	mg/kg	0.010	ND	ND	ND	
1,2-Dibromo-3-chloropropane	mg/kg	0.010	ND	ND	ND	
1,2-Dibromoethane	mg/kg	0.010	ND	ND	ND	
Dibromomethane	mg/kg	0.010	ND	ND	ND	
1,2-Dichlorobenzene	mg/kg	0.010	ND	ND	ND	0.18
1,3-Dichlorobenzene	mg/kg	0.010	ND	ND	ND	0.16
1,4-Dichlorobenzene	mg/kg	0.010	ND	ND	ND	0.098
Dichlorodifluoromethane	mg/kg	0.010	ND	ND	ND	0.078
1,1-Dichloroethane	mg/kg	0.010	ND	ND	ND	
1,1 Diemoroculane	mg/kg	0.010	ND	TAD .	ND	
1,2-Dichloroethane	mg/kg	0.010	ND	ND	ND	0.0027
1,1-Dichloroethene	mg/kg	0.010	ND	ND	ND	0.021
cis-1,2-Dichloroethene	mg/kg	0.010	ND	ND	ND	
trans-1,2-Dichloroethene	mg/kg	0.010	ND	ND	ND	
Methylene chloride	mg/kg	0.010	ND	0.013	ND	0.095
1,2-Dichloropropane	mg/kg	0.010	ND	ND	ND	
1,3-Dichloropropane	mg/kg	0.010	ND	ND	ND	
2,2-Dichloropropane	mg/kg	0.010	ND	ND	ND	
1,1-Dichloropropene	mg/kg	0.010	ND	ND	ND	
cis-1,3-Dichloropropene	mg/kg	0.010	ND	ND	ND	
120:11	_	0.010	NE		NE	
trans-1,3-Dichloropropene	mg/kg	0.010	ND	ND	ND	0.21
Ethylbenzene	mg/kg	0.010	ND	ND	ND	0.21
Hexachlorobutadiene	mg/kg	0.010	ND	ND	ND	0.0067
Isopropylbenzene	mg/kg	0.010	ND	ND	ND	
p-Isopropyltoluene	mg/kg	0.010	ND	0.019	ND	
n-Propylbenzene	mg/kg	0.010	ND	ND	ND	
Styrene	mg/kg	0.010	ND ND	ND ND	ND ND	0.8
1,1,1,2-Tetrachloroethane	mg/kg	0.010	ND ND	ND ND	ND ND	0.8
1,1,2-Tetrachloroethane	mg/kg	0.010	ND ND	ND ND	ND ND	
Tetrachloroethene	mg/kg	0.030	ND ND	ND ND	ND ND	0.16
Toluene	mg/kg	0.010	0.021	ND	ND	0.49
1,2,3-Trichlorobenzene	mg/kg	0.010	ND	ND	ND	0.26
1,2,4-Trichlorobenzene	mg/kg	0.010 - 0.020	ND	ND	ND	0.23
1,1,1-Trichloroethane	mg/kg	0.010	ND	ND	ND	
1,1,2-Trichloroethane	mg/kg	0.010	ND	ND	ND	
Trichloroethene	mg/kg	0.010	ND	ND	ND	0.012
Trichlorofluoromethane	mg/kg	0.010	ND	ND	ND	
1,2,3-Trichloropropane	mg/kg	0.020	ND	ND	ND	
1,2,4-Trimethylbenzene	mg/kg	0.010	ND	0.083	ND	
1,3,5-Trimethylbenzene	mg/kg	0.010	ND	0.027	ND	
	_	0				0.05
Vinyl chloride	mg/kg	0.20	ND	ND	ND	0.00034
Xylenes	mg/kg	0.1	ND	ND	ND	12
]			l		

¹⁾ Tier 1 Guideline - Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010

and amendments. Coarse-grained criteria for residential/parkland land use.

2) ND - Not Detected, less than the limit of method detection.

3) -- No value established in the reference criteria.

4) Bold & Shaded - Exceeds the referenced Alberta Tier 1 and CCME guidelines.

5) For further laboratory information, refer to the specific laboratory report in Appendix A.

12-435 Phase II ESA - Great West Adventure Park Site Historic Waste Disposal Sites, The City of Red Deer

Table 4A
Groundwater Indices at Time of Sampling

Monitoring Well	pН	Electrical Conductivity (µg/cm)	Temperature (°C)	Dissolved Oxygen (mg/L)	Total Dissolved Solid (mg/L)	Redox (±mV)
MW-01	6.84	894	11.4	2.29	786.50	-17.3
MW-02	6.94	672	11.8	1.57	585.00	-65.2
MW-03	6.85	1,206	9.6	0.87	1,111.50	-46.6
MW-04	6.90	1,028	9.2	1.80	955.50	+57.2
MW-05	7.13	1,047	6.8	0.62	1,040.00	-52.2

- 1) Samples collected on August 9, 2013
- 2) Groundwater indies measured by YSI Pro Plus multi-meter.

Table 4B
Analytical Results - Groundwater - General Water Quality

Parameter	Unit	Detection	MW-01	MW-02	MW-03	MW-04	MW-05	Tier 1
		Limit			08/09/2013			Guideline
General Water Quality								
Biochemical Oxygen Demand	mg/L	2.0	3.4	ND	ND	2.9	ND	
Chemical Oxygen Demand	mg/L	5.0	260	70	26	190	58	
Conductivity	μS/cm	1.0	1,200	910	1,800	1,500	1,600	
рН	Unitless	0.1	7.72	7.84	7.66	7.81	7.85	6.5 - 8.5
Total Organic Carbon (C)		0.50	9.4	7.5	4.5	8.4	4.1	0.5 - 6.5
Total Organic Carbon (C)	mg/L	0.50	9.4	7.3	4.5	0.4	4.1	
Dissolved Cadmium (Cd)	μg/L	0.005	NT	NT	0.057	0.058	0.029	
Total Cadmium (Cd)	μg/L	0.0050	1.1	0.39	0.055	1.5	0.19	0.060*
Alkalinity (CaCO ₃)	mg/L	0.50	460	370	580	500	460	
Bicarbonate (HCO ₃)	mg/L	0.50	560	450	710	600	560	
Carbonate (CO ₃)	mg/L	0.50	ND	ND	ND	ND	ND	
Hydroxide (OH)	mg/L	0.50	ND	ND	ND	ND	ND	
Sulphates (SO ₄)	mg/L	1.0	140	54	89	130	60	
Chlorides (Cl)	mg/L	2.0	40	37	190	130	210	
Total Ammonia (NH ₃ -N)	mg/L	0.050	0.26	0.23	0.19	0.11	0.060	1.37*
Total Phosphorus (P)	mg/L	0.030	2.6	0.26	ND	2.2	0.21	
Total Nitrogen (N)	mg/L	0.050	17	1.6	0.51	18	0.49	
Total Kjeldahl Nitrogen (TKN)	mg/L	0.50	17	1.6	0.38	17	0.47	
Nitrite (NO ₂)	mg/L	0.0030	0.0050	ND	0.0070	0.0060	ND	
Nitrate (NO ₃)	mg/L	0.0030	0.033	ND	0.12	0.58	0.017	
Nitrate plus Nitrite (N)	mg/L	0.0030	0.038	ND	0.13	0.59	0.017	
Trace Organics								
Acetic Acid	mg/L	50	NT	NT	ND	ND	ND	
Formic Acid	mg/L	50	NT	NT	ND	ND	ND	
Propionic Acid	mg/L	50	NT	NT	ND	ND	ND	
Adsorbable Organic Halogen	mg/L	0.004	NT	NT	0.090	0.087	0.427	

- 1) Tier 1 Guideline Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for residential land use.
- 2) * Surface Water Quality Guidelines for Use in Alberta (AENV, 1999) on aquatic life pathway. Canadian Council of Ministers of the Environment (CCME) guidelines are referenced.
- 3) ND Not Detected, less than the limit of method detection.
- 4) NT Not Tested.
- 5) -- No value established in the reference criteria.
- 6) Bold & Shaded Exceeds the referenced Alberta Tier 1 and CCME guidelines.
- 7) For further laboratory information, refer to the specific laboratory report in Appendix A.

Table 4C
Analytical Results - Groundwater - Metals

Analytical Results - Groundwater - Metals									
Parameter	Unit	Detection	MW-01	MW-02	MW-03	MW-04	MW-05	Tier 1	
		Limit			08/09/2013			Guideline	
Total Metals									
Aluminum (Al)	mg/L	0.0030	6.4	5.0	0.037	24	3.4	0.1*	
Antimony (Sb)	mg/L	0.00060	0.0011	0.00072	ND	0.0011	0.00064	0.006	
Arsenic (As)	mg/L	0.00020	0.014	0.011	0.0067	0.039	0.0047	0.005	
Barium (Ba)	mg/L	0.010	0.43	0.39	0.25	1.2	0.26	1	
Beryllium (Be)	mg/L	0.0010	ND	ND	ND	0.0024	ND		
Boron (B)		0.020	0.079	0.052	0.20	0.27	0.056	1.5	
Calcium (Ca)	mg/L mg/L	0.30	260	120	220	440	190	1.3	
Chromium (Cr)	mg/L mg/L	0.0010	0.020	0.0082	ND	0.097	0.010	0.001*	
Cobalt (Co)	mg/L	0.00030	0.017	0.0053	0.0019	0.028	0.0045	0.001	
Copper (Cu)	mg/L	0.00020	0.038	0.012	0.0013	0.074	0.0098	0.003*	
copper (cu)		0.00020	0.000	0.012	0.0011	0.07.	0.0000	0.005	
Iron (Fe)	mg/L	0.060	23	12	7.5	83	8.2	0.3	
Lead (Pb)	mg/L	0.00020	0.024	0.011	ND	0.044	0.0043	0.004*	
Lithium (Li)	mg/L	0.020	0.021	0.021	0.024	0.069	0.031		
Magnesium (Mg)	mg/L	0.20	46	32	44	110	47		
Manganese (Mn)	mg/L	0.0040	3.2	1.6	0.66	2.9	0.48	0.05	
	_								
Molybdenum (Mo)	mg/L	0.00020	0.0045	0.0038	0.0012	0.0071	0.0030	0.11*	
Nickel (Ni)	mg/L	0.00050	0.040	0.013	0.0057	0.084	0.013	0.11*	
Phosphorus (P)	mg/L	0.10	0.93 4.8	0.32 4.3	ND	2.6	0.29		
Potassium (K)	mg/L	0.30			4.3	10	5.9		
Selenium (Se)	mg/L	0.00020	0.0013	0.00062	ND	0.0053	0.00080	0.001	
Silicon (Si)	mg/L	0.10	19	18	7.0	58	13		
Silver (Ag)	mg/L	0.00010	0.00028	ND	ND	0.00071	0.00012	0.0001*	
Sodium (Na)	mg/L	0.50	55	54	110	69	110		
Strontium (Sr)	mg/L	0.020	0.61	0.81	0.94	1.2	0.85		
Sulphur (S)	mg/L	0.20	39	18	29	42	20		
(-)									
Thallium (Tl)	mg/L	0.00020	ND	ND	ND	0.00036	ND		
Tin (Sn)	mg/L	0.0010	ND	0.0011	ND	0.0021	ND		
Titanium (Ti)	mg/L	0.0010	0.076	0.10	0.0020	0.21	0.10		
Uranium (U)	mg/L	0.00010	0.0045	0.0020	0.0030	0.0077	0.0043	0.02	
Vanadium (V)	mg/L	0.0010	0.023	0.011	0.0011	0.083	0.011		
g: (g.)	77	0.0020	0.11	0.063	0.0072	0.25	0.020	0.02	
Zinc (Zn)	mg/L	0.0030	0.11	0.062	0.0072	0.25	0.039	0.03	
Dissolved Metals									
Aluminum (Al)	mg/L	0.0030	NT	NT	ND	0.0035	ND		
Antimony (Sb)	mg/L	0.00060	NT	NT	ND	ND	ND		
Arsenic (As)	mg/L	0.00020	NT	NT	0.0060	0.00022	0.00055		
Barium (Ba)	mg/L	0.010	NT	NT	0.25	0.13	0.15		
Beryllium (Be)	mg/L	0.0010	NT	NT	ND	ND	ND		
Boron (B)	mg/L	0.020	NT	NT	0.18	0.23	0.041		
Calcium (Ca)	mg/L	0.30	NT	NT	220	200	170		
Chromium (Cr)	mg/L	0.0010	NT	NT	ND	ND	ND		
Cobalt (Co)	mg/L	0.00030	NT	NT	0.0015	0.00062	0.0015		
Copper (Cu)	mg/L	0.00020	NT	NT	0.0018	0.0023	0.0012		
		0.000							
Iron (Fe)	mg/L	0.060	NT	NT	7.3	ND	0.32		
Lead (Pb)	mg/L	0.00020	NT	NT	ND 0.022	ND 0.027	ND 0.026		
Lithium (Li)	mg/L	0.020 0.20	NT NT	NT NT	0.023 41	0.027 44	0.026 43		
Magnesium (Mg) Manganese (Mn)	mg/L mg/I	0.20	NT NT	NT NT	0.59	0.11	0.31		
ivianganese (iviii)	mg/L	0.0040	11/1	1 1 1	0.39	0.11	0.31		
Molybdenum (Mo)	mg/L	0.00020	NT	NT	0.0013	0.00099	0.0023		
Nickel (Ni)	mg/L	0.00050	NT	NT	0.0049	0.0043	0.0031		
Phosphorus (P)	mg/L	0.10	NT	NT	ND	ND	ND		
Potassium (K)	mg/L	0.30	NT	NT	4.2	5.4	5.2		
Selenium (Se)	mg/L	0.00020	NT	NT	ND	0.0025	0.00031		
Silicon (Si)	mg/L	0.10	NT	NT	6.2	4.9	4.9		
Silver (Ag)	mg/L	0.00010	NT	NT	ND	ND	ND		
Sodium (Na)	mg/L	0.50	NT	NT	100	68	110		
Strontium (Sr)	mg/L	0.020	NT	NT	0.91	0.91	0.81		
Sulphur (S)	mg/L	0.20	NT	NT	26	40	19		
Th 11: (Th)	07	0.00000	N.T.	N/m	ND	NE	NIP		
Thallium (Tl)	mg/L	0.00020	NT	NT	ND	ND	ND		
Tin (Sn)	mg/L	0.0010	NT	NT	ND	ND ND	ND ND		
Titanium (Ti)	mg/L	0.0010	NT	NT	ND 0.0027	ND 0.0042	ND 0.0036		
Uranium (U)	mg/L	0.00010	NT	NT	0.0027	0.0042	0.0036		
Vanadium (V)	mg/L	0.0010	NT	NT	ND	ND	ND		
Zinc (Zn)	mg/L	0.0030	NT	NT	0.0099	0.0041	0.0060		
,	0-								

- 1) Tier 1 Guideline Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for residential land use.

 2) * Surface Water Quality Guidelines for Use in Alberta (AENV, 1999) on aquatic life pathway.
- 2) * Surface Water Quality Guidelines for Use in Alberta (AENV, 1999) on aquatic life parameters of the Environment (CCME) guidelines are referenced.

 3) ND Not Detected, less than the limit of method detection.

 4) NT Not Tested.

 5) -- No value established in the reference criteria.

 6) Bold & Shaded Exceeds the referenced Alberta Tier 1 and CCME guidelines.

 7) For further laboratory information, refer to specific laboratory report in Appendix A.

Table 4D Analytical Results - Groundwater - VOCs

	Analytical Results - Groundwater - VOCs								
Parameter	Detection	MW-01	MW-02	MW-03	MW-04	MW-05	Tier 1		
	Limit		ı	08/09/2013		ı	Guideline		
Volatiles D	0.00040	NID	NID	NID	NID.	NID	0.005		
Benzene	0.00040	ND	ND	ND	ND	ND	0.005		
Toluene	0.00040	ND	ND	ND	ND	ND	0.024		
Ethylbenzene	0.00040	ND	ND	ND	ND	ND	0.0024		
Xylenes (Total)	0.00080	ND	ND	ND	ND	ND	0.3		
F1 (C ₆ -C ₁₀)	0.10	ND	ND	ND	ND	ND	0.81		
F2 (C ₁₀ -C ₁₆)	0.10	ND	ND	ND	ND	ND	1.1		
12 (C ₁₀ -C ₁₆)	0.10	ND	ND	ND	ND	ND	1.1		
Total Trihalomethanes	0.0020	ND	ND	ND	ND	ND	0.1		
Bromodichloromethane	0.00050	ND	ND	ND	ND	ND			
Bromoform	0.00050	ND	ND	ND	ND	ND			
Bromomethane	0.0020	ND	ND	ND	ND	ND			
Carbon tetrachloride	0.00050	ND	ND	ND	ND	ND	0.00056		
Chlorobenzene	0.00050	ND	ND	ND	ND	ND	0.0013		
Chlorodibromomethane	0.0010	ND	ND	ND	ND	ND			
Chloroethane	0.0010	ND	ND	ND	ND	ND			
Chloroform	0.00050	ND	ND	ND	ND	ND	0.0018		
Chloromethane	0.0020	ND	ND	ND	ND	ND			
1,2-dibromoethane	0.00050	ND	ND	ND	ND	ND			
1,2-dichlorobenzene	0.00050	ND	ND	ND	ND	ND	0.0007		
1.3-dichlorobenzene	0.00050	ND ND	ND ND	ND ND	ND	ND ND	0.0007		
1,4-dichlorobenzene	0.00050								
1		ND	ND	ND	ND	ND	0.001		
1,1-dichloroethane	0.00050	ND	ND	ND	ND	ND			
1,2-dichloroethane	0.00050	ND	ND	ND	ND	ND	0.005		
1,1-dichloroethene	0.00050	ND	ND	ND	ND	ND	0.014		
cis-1,2-dichloroethene	0.00050	ND	ND	ND	ND	ND			
trans-1,2-dichloroethene	0.00050	ND	ND	ND	ND	ND			
Dichloromethane	0.0020	ND	ND	ND	ND	ND	0.05		
1,2-dichloropropane	0.00050	ND	ND	ND	ND	ND			
cis-1,3-dichloropropene	0.00050	ND	ND	ND	ND	ND			
trans-1,3-dichloropropene	0.00050	ND	ND	ND	ND	ND			
Methyl methacrylate	0.00050	ND	ND	ND	ND	ND	0.47		
Methyl-tert-butylether (MTBE)	0.00050	ND	ND	ND	ND	ND	0.015		
Styrene	0.00050	ND	ND	ND	ND	ND	0.072		
1,1,1,2-tetrachloroethane	0.0020	ND	ND	ND	ND	ND	0.072		
1,1,2,2-tetrachloroethane	0.0020	ND	ND	ND	ND	ND			
Tetrachloroethene	0.0020	ND ND	ND	ND ND	ND	ND ND	0.03		
	0.0030								
1,2,3-trichlorobenzene	0.0010	ND	ND	ND	ND	ND	0.008		
1,2,4-trichlorobenzene	0.0010	ND	ND	ND	ND	ND	0.015		
1,3,5-trichlorobenzene	0.00050	ND	ND	ND	ND	ND	0.014		
1,1,1-trichloroethane	0.00050	ND	ND	ND	ND	ND			
1,1,2-trichloroethane	0.00050	ND	ND	ND	ND	ND			
Trichloroethene	0.00050	ND	ND	ND	ND	ND	0.005		
m: 11	0.00050	175		NE	NE	NE			
Trichlorofluoromethane	0.00050	ND	ND	ND	ND	ND			
1,2,4-trimethylbenzene	0.00050	ND	ND	ND	ND	ND			
1,3,5-trimethylbenzene	0.00050	ND	ND	ND	ND	ND			
Vinyl chloride	0.00050	ND	ND	ND	ND	ND	0.0011		
	<u> </u>					1			

- 1) Tier 1 Guideline- Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for residential/parkland land use.
- 2) ND Not Detected, less than the limit of method detection.
- 3) Unless specified all units are mg/L
- 4) -- No value established in the reference criteria.
- 5) Bold & Shaded Exceeds the referenced Alberta Tier 1 and CCME guidelines.
- 6) For further laboratory information, refer to the specific laboratory report in Appendix A.

Table 5A
Summary of Parameters Measured During Sampling of Soil Vapour

Parameter	Well Diameter	Well Depth	Headspace Volume	Purge Rate	Purge Time	Pressure	
Unit	(mm)	(m)	(cm ³)	(cm ³ /min)	(min)	Ambient (psi)	Vapour Well (psi)
VW-01 VW-02	25 25	3.7 2.7	1,816 1,325	943.30 943.30	6 5.3	15.26 15.17	15.26 15.19

- 1) Measurement of pressure by digital Cole-Parmer absolute pressure gauge.
- 2) Purge time is minimum elapsed time prior to the collection of a soil vapour sample.
- 3) Screen set at base of well.
- 4) Soil vapour sampling was completed Friday, August 9, 2013.

Table 5B Analytical Results - Soil Vapour - General Indices

Parameter Unit Detection Limit VW-01 VW-02										
T all affected	Cint	Detection Limit	08/09/2013							
Gauge Pressure Pressure after sampling Pressure on receipt	psi		-5.0	-5.0						
	psig		-2.9	-3.6						
Fixed Gases Oxygen Nitrogen Carbon Monoxide Methane Carbon Dioxide	% v/v	0.2	13.4	19.9						
	% v/v	0.2	84.6	78.5						
	% v/v	0.2	ND	ND						
	% v/v	0.2	ND	ND						
	% v/v	0.2	2.1	1.7						

- 1) Results are from sampling performed on Friday, August 09, 2013.
- 2) ND Not Detected, less than the limit of method detection.
- 3) - No value established in the detection limit.
- 4) For further information, the reader should refer to the laboratory report in Appendix A.

Table 5C

Table 5C Analytical Results - Soil Vapour - VOCs										
Parameter Parameter	Unit	Detection Limit	VW-01	VW-02						
			08/09	0/2013						
Hydrocarbon Fractions	_									
Aliphatic >C ₅ -C ₆	μg/m ³	5.0	6.1	5.8						
Aliphatic >C ₆ -C ₈	μg/m ³ μg/m ³	5.0	18.9	20.1						
Aliphatic >C ₈ -C ₁₀ Aliphatic >C ₁₀ -C ₁₂	μg/m μg/m ³	5.0 5.0	34.2 62.9	57.8 122						
Aliphatic >C ₁₂ -C ₁₆	μg/m ³	5.0	10.1	28.0						
Aromatic > C_7 - C_8 (TEX Excluded) Aromatic > C_8 - C_{10}	μg/m ³ μg/m ³	5.0 5.0	ND 13.6	ND 31.7						
Aromatic $>C_{10}$ - C_{12}	μg/m ³	5.0	17.0	36.0						
Aromatic >C ₁₀ C ₁₂	μg/m ³	5.0	ND	ND						
Select Volatile Gases										
Acetylene	ppm	0.21 - 0.22	ND	ND						
Ethane Ethylene	ppm ppm	0.21 - 0.22 0.21 - 0.22	ND ND	0.33 ND						
Methane	ppm	4.2 - 4.5	32	8.8						
n-Butane	ppm	0.42 - 0.45	ND	ND						
n-Pentane	ppm	0.21 - 0.22	ND	ND						
Propane Propene	ppm ppm	0.21 - 0.22 0.21 - 0.22	ND ND	ND ND						
Propyne	ppm	0.42 - 0.45	ND	ND						
Volatile Organic Compounds										
Dichlorodifluoromethane (FREON 12) 1,2-Dichlorotetrafluoroethane	ppbv ppbv	0.2 0.2	0.86 ND	0.73 ND						
Chloromethane	ppbv	0.3	0.56	0.52						
Vinyl Chloride Chloroethane	ppbv	0.2	ND ND	ND ND						
	ppbv	0.3								
1,3-Butadiene Trichlorofluoromethane (FREON 11)	ppbv ppbv	0.5 0.2	ND 0.32	ND 0.38						
Ethanol (ethyl alcohol)	ppbv	4.6 - 9.2	177	331						
Trichlorotrifluoroethane 2-propanol	ppbv	0.2 3.0	ND ND	ND ND						
	ppbv									
2-Propanone Methyl Ethyl Ketone (2-Butanone)	ppbv ppbv	0.8 3.0	11.6 ND	15.9 ND						
Methyl Isobutyl Ketone	ppbv	3.2	ND	ND						
Methyl Butyl Ketone (2-Hexanone) Methyl t-butyl ether (MTBE)	ppbv ppbv	2.0 0.2	ND ND	ND 0.33						
Ethyl Acetate 1,1-Dichloroethylene	ppbv ppbv	2.2 0.3	ND ND	ND ND						
cis-1,2-Dichloroethylene	ppbv	0.2	ND	ND						
trans-1,2-Dichloroethylene Methylene Chloride(Dichloromethane)	ppbv ppbv	0.2 0.8	ND ND	ND ND						
Chloroform Carbon Tetrachloride	ppbv ppbv	0.3 0.3	0.87 ND	0.42 ND						
1,1-Dichloroethane	ppbv	0.2	ND	ND						
1,2-Dichloroethane Ethylene Dibromide	ppbv ppbv	0.2 0.2	ND ND	ND ND						
1.1.1-Trichloroethane	ppbv	0.3	ND	ND						
1,1,2-Trichloroethane	ppbv	0.2	ND	ND						
1,1,2,2-Tetrachloroethane cis-1,3-Dichloropropene	ppbv ppbv	0.2 0.2	ND ND	ND ND						
trans-1,3-Dichloropropene	ppbv	0.2	ND	ND						
1,2-Dichloropropane	ppbv	0.4	ND	ND						
Bromomethane	ppbv	0.2	ND	ND						
Bromoform Bromodichloromethane	ppbv ppbv	0.2 0.2	ND ND	ND ND						
Dibromochloromethane	ppbv	0.2	ND	ND						
Trichloroethylene	ppbv	3.0	ND	ND						
Tetrachloroethylene Benzene	ppbv ppbv	0.2 0.2	3.65 0.71	3.17 0.59						
Toluene	ppbv	0.2	3.08	3.34						
Ethylbenzene	ppbv	0.2	0.44	0.73						
p+m-Xylene	ppbv	0.4	1.73	3.28						
o-Xylene Styrene	ppbv ppbv	0.2 0.2	0.74 ND	1.33 ND						
4-ethyltoluene	ppbv	2.2	ND	ND						
1,3,5-Trimethylbenzene	ppbv	0.5	ND	0.60						
1,2,4-Trimethylbenzene Chlorobenzene	ppbv	0.5	0.52 ND	0.88 ND						
Chlorobenzene Benzyl chloride	ppbv ppbv	0.2 1.0	ND ND	ND ND						
1,3-Dichlorobenzene	ppbv	0.4	ND	ND						
1,4-Dichlorobenzene	ppbv	0.4	ND	ND						
1,2-Dichlorobenzene 1,2,4-Trichlorobenzene	ppbv ppbv	0.4 2.0	ND ND	ND ND						
Hexachlorobutadiene	ppbv	3.0	ND	ND						
Hexane Heptane	ppbv ppbv	0.3 0.3	0.72 ND	0.57 0.43						
-										
Cyclohexane Tetrahydrofuran	ppbv ppbv	0.2 0.4	0.89 3.51	ND 6.04						
1,4-Dioxane	ppbv	2.0	ND	ND						
Xylene (Total) Vinyl Bromide	ppbv ppbv	0.6 0.2	2.47 ND	4.61 ND						
Propene	ppbv	0.3	ND	ND						
2,2,4-Trimethylpentane	ppbv	0.2	0.21	ND ND						
Carbon Disulfide	ppbv	0.5 0.2	2.81 ND	1.65 ND						
Vinyl Acetate	ppbv	0.2	ND	ND						

- Results are from sampling performed on Friday, August 09, 2013.
 ND Not Detected, less than the limit of method detection.
 For further information, the reader should refer to the laboratory report in Appendix A.

Tiamat Environmental Consultants Ltd. Electronic Version 02

12-435 Phase II ESA - Great West Adventure Park Site Historic Waste Disposal Sites, The City of Red Deer

Table 5D Analytics Results - Soil Vapour - Siloxanes

Analytics Results - Son vapour - Snoxanes										
	Detection Limit		VW-01		VW-02					
Parameter			08/09/2013							
	mg/m³	ppm	mg/m³	ppm	mg/m³	ppm				
Trimethylsilyl Fluoride			ND	ND	ND	ND				
Tetramethylsilane	0.0001	0.0002	ND	ND	ND	ND				
Methoxytrimethylsilane	0.0033 - 0.0043	0.0008 - 0.0010	ND	ND	ND	ND				
Ethoxytrimethylsilane	0.0032 - 0.0042	0.0007 - 0.0009	ND	ND	ND	ND				
Trimethylsilanol			0.0284	0.0077	0.0077	0.0021				
Isopropoxytrimethylsilane	0.0013 - 0.0018	0.0002 - 0.0003	ND	ND	ND	ND				
Trimethoxymethyl Silane #			ND	ND	ND	ND				
Hexamethyl Disiloxane - L2	0.0001 - 000002	0.0001	ND	ND	ND	ND				
Propoxytrimethylsilane	0.0036 - 0.0048	0.0007 - 0.0009	ND	ND	ND	ND				
1-Methylbutoxytrimethylsilane *			ND	ND	ND	ND				
Butoxytrimethylsilane *			ND	ND	ND	ND				
Trimethoxyvinyl Silane #			ND	ND	ND	ND				
Hexamethyl Cyclotrisiloxane - D3			0.0172	0.0019	0.0119	0.0013				
Octamethyl Trisiloxane - L3	0.0002 - 0.0003	0.0001	ND	ND	ND	ND				
Triethoxyvinyl Silane #			ND	ND	ND	ND				
Triethoxyethyl Silane #			ND	ND	ND	ND				
Octamethyl Cyclotetrasiloxane - D4			0.0118	0.0010	0.0098	0.0008				
Decamethyl Tetrasiloxane - L4	0.0003 - 0.0004	0.0001	ND	ND	ND	ND				
Tetraethylsilicate #			ND	ND	ND	ND				
Decamethyl Cyclopentasiloxane - D5			0.0201	0.0013	0.0644	0.0042				
Dodecamethyl Pentasiloxane - L5	0.0031 - 0.0040	0.0002 - 0.0003	ND	ND	ND	ND				
Dodecamethyl Cyclohexasiloxane - D6			0.0422	0.0023	0.0718	0.0040				
Sum			0.1349	0.0169	0.1856	0.0159				

- 1) Soil vapour samples collected on Friday, August 09, 2013.
- 2) ND Not Detected, less than the limit of method detection.
- 3) - No value established in the detection limit.
- 4) V=200 mL, where V is volume of air/gas sampled.
- 5) * Semiquanititative (response factor set at 5).
- 6) # Unstable, poor detectability, commercial standards tested.
- 7) For further information, the reader should refer to the laboratory report in Appendix A.