

2021 and 2022 Groundwater and Soil Vapour Monitoring Report_REV_01 Lindsay Thurber Comprehensive High School Portion of NE and SE 21-038-27 W4M

PRESENTED TO

The City of Red Deer

NOVEMBER 16, 2022 ISSUED FOR USE

FILE: 704-SWM.SWOP04071-02.002

This page intentionally left blank.

EXECUTIVE SUMMARY

The City of Red Deer (The City) retained Tetra Tech Canada Inc. (Tetra Tech) to conduct the 2021 and 2022 groundwater and vapour monitoring program at the former landfill located north and east of Lindsay Thurber Comprehensive High School (LTCHS). The site includes portions of Lot 1MR Plan 852 0510, Lot 4ER Plan 912 0819, and Lot S Plan 4154S, which contains LTCHS (4204 58 Street). The site lies within the northeast and southeast portions of Section 21-038-27 W4M, in Red Deer, Alberta, hereafter referred to as the site. The objective of the monitoring program is to identify potential environmental concerns related to former operations at the former landfill site.

Tetra Tech's scope of work for the 2021 and 2022 monitoring and sampling program at the LTCHS site included conducting three events of groundwater monitoring, semi-annual vapour monitoring, annual groundwater sampling, installing an additional groundwater monitoring well near Gaetz Lake (22MW05), surveying a fixed point to monitor the water level in Gaetz Lake, reviewing and updating previous recommendations for the site, and preparing an annual report.

Several groundwater monitoring wells and vapour wells have been installed at the site and at the northeast portion of LTCHS. In February 2022, monitoring well 22MW05 was installed within the northeast corner of the site near Gaetz Lake. The 2021 and 2022 monitoring and sampling program included four vapour wells (VW-02 to VW-05) and nine groundwater monitoring wells (MW-02, MW-03, MW-04, 22MW05, BH8, MW04A, MW05A, MW14A, and MW15A). The water level of Gaetz Lake was monitored relative to a fixed point on the observation deck near monitoring well BH8.

The groundwater results are summarized as follows:

- The groundwater elevations measured in November 2021 and June 2022 infer a groundwater flow direction to the northwest, towards the Red Deer River. Stabilized water levels at 22MW05, as measured in June 2022, confirmed a flow direction away from Gaetz Lake during this event. The average horizontal hydraulic gradients at the site were estimated as approximately 0.003 m/m. Groundwater elevations in 2021 and 2022 were overall slightly higher than the previously measured groundwater elevations in 2019.
- Routine groundwater quality parameters and dissolved metals concentrations that exceeded the Tier 1 Guidelines at one or more monitoring wells in 2021 and 2022 included total dissolved solids (TDS), and the dissolved metals arsenic, barium, iron, manganese, and mercury. The measured concentrations of these parameters were generally consistent with historical results; however, dissolved mercury marginally exceeded the Tier 1 Guideline for the first time at the site in February 2022, at 22MW05. It is recommended to confirm the measured concentration in the next sampling event.
- Concentrations of benzene, toluene, ethylbenzene, xylenes (BTEX) and petroleum hydrocarbon (PHC) fractions F1 to F2 were less than the analytical detection limits at all monitoring wells in 2021 and 2022. In 2021 and 2022, most volatile organic compound (VOC) concentrations measured less than the analytical detection limits and less than the Tier 1 Guidelines, where established, at all groundwater monitoring wells. VOC parameter 1,2-dichloroethene (cis) was detected in low concentrations at monitoring wells MW-02, MW-03, and BH8; this VOC does not have an established Tier 1 Guideline. Additionally, vinyl chloride was detected at monitoring well BH8 (0.0010 mg/L); however, the concentration was less than the Tier 1 Guideline (0.0011 mg/L). Trace concentrations of 1,2-dichloroethene (cis) were previously measured at MW-02 and MW-03.
- Overall, the on-site monitoring wells showed relatively minor concentrations of leachate indicator parameters in 2021 and 2022.

The 2021 and 2022 vapour monitoring program results are summarized as follows:

- Concentrations of methane in the vapour probes were less than the instrument's detection limit during all
 monitoring events in 2021 and 2022 and the highest methane concentration in the headspace of groundwater
 wells was 60 parts per million (ppm) at 22MW05 in June 2022.
- Overall, the soil vapour monitoring conducted in 2021 and 2022 suggests that there is little indication that vapour
 migration poses a hazard to receptors. Historical testing indicates the presence of landfill gas (LFG)
 (characterized by methane concentrations at and greater than the explosive range) in the landfill area; however,
 an interceptor trench is present between the waste mass and LTCHS. Tetra Tech understands that ongoing
 monitoring is completed by another consultant on behalf of LTCHS.

Based upon the results of the groundwater and vapour monitoring program in 2021 and 2022 and previous years, Tetra Tech recommends ongoing risk management, including: additional assessment; ongoing monitoring; and administrative actions. The following recommendations are made according to these risk management elements:

Additional Assessment:

Tetra Tech recommends installing dataloggers capable of measuring pressure and temperature in monitoring well 22MW05 and at a suitable location along the shore of Gaetz Lake. This will facilitate detailed monitoring of groundwater and surface water levels and allow for obtaining further insights in groundwater flow patterns near 22MW05 along the east flank of the waste disposal area and help determine whether there is a (seasonal) groundwater flow component towards Gaetz Lake. It should be noted that the datalogger within the lake will need to be properly protected and, due to anticipated ice buildup, may have to be removed during the winter months.

Ongoing Monitoring:

- Conduct additional groundwater monitoring events in the spring of 2023 and the fall of 2023 to confirm the groundwater flow pattern. In conjunction with these two events, collect semi-annual groundwater samples from BH8 and 22MW05 to confirm the results collected in November 2021 and February 2022. The monitoring wells located next to LTCHS (MW04A, MW05A, MW14A, and MW15A) were dry during all events in 2021 and 2022 and further monitoring is not recommended.
- After the proposed additional monitoring and sampling events have been conducted, and datalogger data is collected during the spring 2023 runoff season of the Red Deer River, evaluate all surface water and groundwater elevation data, along with the additional groundwater quality information and assess the potential risk to the water quality of Gaetz Lake and whether continuing the monitoring program is warranted.
- Based on vapour monitoring results collected to date there are no obvious vapour concerns at the locations monitored and Tetra Tech recommends discontinuing headspace monitoring in the soil vapour and groundwater wells as part of The City program.

Administrative Actions:

- The interceptor trench adjacent to LTCHS is operated and monitored by LTCHS and we understand that LTCHS is required to provide periodic updates of the program status to The City. We recommend that The City obtain and review the collected data on an annual basis in support of management activities at this site. Further, we suggest that The City request as-built details of the inceptor trench from LTCHS for their records, and further that any records of manual or automated indoor monitoring be requested.
- Utilize the revised generic mitigative measures when evaluating applications for development within the setback.

 Ensure that the site is clearly identified within The City's Land Use Bylaw and appropriate administrative requirements are met for the site in accordance with City policies.

Further to the above recommendations, as noted the site remains an historical landfill. It presently appears to be well maintained and capped. The City should review this status on an ongoing basis to ensure that the cover remains intact and drainage remains positive; repairs or maintenance should be undertaken as required to maintain the site. We note that the design and operation of the interceptor trench adjacent to LTCHS was developed based on surface conditions similar to existing, and if changes or improvements to the surface of the landfill are contemplated (e.g., paving or installation of an impermeable cap), such work should be undertaken in conjunction with a review of the interceptor trench design and performance.

TABLE OF CONTENTS

EXE	CUTI	VE SUN	MMARY	
1.0			CTION	
	1.1 1.2		Report – Key Findings and Recommendationse of Work	
		•		
2.0			OUND INFORMATION	
	2.1		ral Information	
	2.2		Conceptual Site Model Summary	
	2.3	Monito	oring Well Network	5
3.0	MON	NITORII	NG AND SAMPLING PROGRAM	5
	3.1		oring Well Installation	
	3.2		dwater Monitoring and Sampling Program	6
		3.2.1	Analytical Program	
	3.3	Vapou	ur Monitoring Program	
		3.3.1	Vapour Monitoring Methodology	7
4.0	RES	ULTS A	AND DISCUSSION	8
	4.1		dwater Well Headspace Monitoring	
	4.2	Groun	dwater Elevations	8
	4.3	Groun	dwater Field Parameters	9
	4.4	Groun	dwater Analytical Results	9
		4.4.1	Background Groundwater Characteristics	
		4.4.2	Routine Water Chemistry Parameters	
		4.4.3	Dissolved Metals	
		4.4.4	Organic Parameters	
	4.5		apour Monitoring Results	
	4.6	•	y Assurance/Quality Control	
		4.6.1	Methods	
		4.6.2	Results	12
5.0	EVA	LUATIO	ON OF SITE CONDITIONS	12
	5.1	Summ	nary of Site Conditions	12
6.0	CON	ICLUSI	IONS AND RECOMMENDATIONS	13
7.0	CLO	SURE.		16
REF	EREN	ICES		17

APPENDIX SECTIONS

TABLES

Table 1	Groundwater Elevations
Table 2	Groundwater Analytical Results
Table 3	Groundwater Quality Assurance/Quality Control Analytical Results
Table 4	Soil Vapour Monitoring Results

FIGURES

Figure 1	Site Location Plan
Figure 2	Site Plan and Surrounding Land Use
Figure 3	Historical Groundwater Elevations (Groundwater Monitoring Wells)
Figure 4	Groundwater Elevation Contours – November 2021
Figure 5	Groundwater Elevation Contours – February 2022
Figure 6	Groundwater Elevation Contours – June 2022

APPENDICES

Appendix A Appendix B Appendix C Appendix D Appendix E	Tetra Tech's Limitations on the Use of this Document Site History, Historical Information, and Site Setting Cross-Sections (Tiamat 2014) Laboratory Analytical Reports Historical Analytical Results
Appendix F	Borehole Logs

LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of The City of Red Deer and their agents. Tetra Tech Canada Inc. (Tetra Tech) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than The City of Red Deer, or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this document is subject to the Limitations on the Use of this Document attached in Appendix A or Contractual Terms and Conditions executed by both parties.

1.0 INTRODUCTION

The City of Red Deer (The City) retained Tetra Tech Canada Inc. (Tetra Tech) to conduct the 2021 and 2022 groundwater and vapour monitoring program at the former landfill located north and east of Lindsay Thurber Comprehensive High School (LTCHS). The site includes portions of Lot 1MR Plan 852 0510, Lot 4ER Plan 912 0819, and Lot S Plan 4154S, which contains LTCHS (4204 58 Street). The site lies within the northeast and southeast portions of Section 21-038-27 W4M, in Red Deer, Alberta, hereafter referred to as the site. The objective of the monitoring program is to identify potential environmental concerns related to former operations at the site.

The scope for 2021 and 2022 was based on Tetra Tech's 2019 groundwater and soil vapour monitoring and sampling program conducted at the site. Those results were presented and discussed in the 2019 Groundwater and Soil Vapour Monitoring Report – Lindsey Thurber Comprehensive High School (Tetra Tech 2020), and key findings and recommendations of that program are summarized in Section 1.1. The objectives and scope for the 2021 and 2022 monitoring program are presented in Section 1.2.

The field components of the monitoring program were completed under Tetra Tech's detailed work plans encompassing the scope of work outlined in Section 1.2 below. The current report was completed under Tetra Tech's Limitations on the Use of this Document for conducting environmental work. A copy of these conditions is provided in Appendix A.

1.1 2019 Report – Key Findings and Recommendations

The report identified residual impacts to groundwater and vapours. Buried landfill waste remains in place beneath the site; therefore, ongoing risk management is required. Key findings included the following:

- The groundwater elevations in 2019 indicated that the inferred groundwater flow direction was to the northwest towards the Red Deer River. The average horizontal hydraulic gradients at the site were estimated as approximately 0.003 m/m.
- Routine groundwater quality parameters and dissolved metals concentrations that exceeded the Alberta Tier 1
 Soil and Groundwater Remediation Guidelines (Tier 1 Guidelines; Alberta Environment and Parks [AEP] 2019)
 at one or more monitoring wells in 2019 included total dissolved solids (TDS), aluminum, arsenic, barium,
 cadmium, iron, and manganese. The measured concentrations of these parameters were generally consistent
 with previous results.
- Concentrations of benzene, toluene, ethylbenzene and xylenes (BTEX), petroleum hydrocarbon (PHC) fractions F1 to F2, and volatile organic compounds (VOCs) were less than Tier 1 Guidelines at all groundwater monitoring wells in 2019. Two chlorinated VOCs (1,2-dichloroethene; cis and trans isomers) that do not have established Tier 1 Guidelines values were detected in low concentrations in the groundwater at MW-02 and MW-03.
- Volatile fatty/carboxylic acids do not have established Tier 1 Guidelines values; however, the measured concentrations were all less than the analytical detection limits.
- Overall, monitoring wells outside of the waste footprint showed relatively minor concentrations of leachate indicator parameters at MW-02, MW-03, and MW-04.
- Concentrations of BTEX, PHCs, and VOCs in soil vapour samples were less than the soil vapour screening criteria.

- Concentrations of siloxanes were detected in samples VW-02 and VW-03 greater than the analytical detection limit; however, these compounds do not have human toxicity reference values (TRVs) and the measured concentrations were not identified as a concern.
- The estimated individual and cumulative risks and hazards associated with the soil vapour samples collected in December 2019 did not exceed the corresponding target risk and hazard levels.
- Overall, soil vapour sampling suggested that there was little indication that the measured VOCs will pose a hazard to receptors. The soil vapour concentrations were more than an order of magnitude less than levels of concern and groundwater concentrations of volatile chemicals were also less than the screening levels. Historical testing indicates the presence of landfill gas (LFG) (characterized by methane concentrations at and greater than the explosive range) in the landfill area; however, an interceptor trench is present between the waste mass and LTCHS, and ongoing monitoring is completed by another consultant on behalf of LTCHS.

Based on these findings, recommendations for the 2021 and 2022 monitoring program included the following:

- Historical assessments indicate that the eastern extents of the landfill are relatively close to Gaetz Lake (within 10 m to 20 m). Additional assessment was recommended in this area to confirm the groundwater characteristics adjacent to the lake. We recommended installation of one additional groundwater monitoring well between the waste area and the lake on the northeast side, if a suitable location could be identified, and inclusion into the monitoring program. We also recommended assessing the integrity of monitoring well BH8, located on the east side of the waste area near the southern portion of Gaetz Lake, and if its condition was adequate, inclusion of the monitoring well into the program as described below.
- Monitoring well MW-01 is presumably destroyed. The well was located hydraulically cross-gradient of the site, and far enough away that the groundwater likely represents background concentrations for the site. A review of water quality data from 2013 did not suggest that the water quality at MW-01 in 2013 was affected by leachate. Not having a background monitoring well does not appear to be detrimental to assessing the overall groundwater quality at the site and replacing MW-01 is not proposed at this time.
- Based on the results of the 2019 groundwater sampling program, semi-annual monitoring and annual sampling for routine water chemistry, dissolved metals parameters, and VOCs at MW-02, MW-03, and MW-04 should be conducted to confirm the trends for an additional year. Historical well BH8 and the new well recommended to be installed adjacent to Gaetz Lake should also be included in this program. Further, we understand there may be additional monitoring wells immediately adjacent to LTCHS. We recommended assessing the integrity of the existing wells, and we suggested that up to two of these wells be considered for inclusion in the recommended groundwater monitoring if the well construction details are suitable. If the wells are not suitable, or cannot be located, expanding the monitoring network near LTCHS buildings may need to be considered. Based on previous monitoring information and the well locations relative to the waste area and building footprint, it was suggested to select MW-04A (alternate MW-05A) and MW-15A (alternate MW-14A). It was noted that the wells and the property where they are located are not owned by The City. Tetra Tech would access the proposed wells and include them in the monitoring and sampling program, if possible.
- Based on the vapour monitoring and sampling results, continued sampling of soil vapour by The City may not be warranted and can be discontinued at the site. However, due to the ongoing presence of the source waste and its proximity to LTCHS, an additional year of monitoring of methane and pressures was considered warranted to confirm conditions. The suggested monitoring would include manual measurements of headspace pressures and methane concentrations, measured semi-annually (in conjunction with groundwater monitoring) in both groundwater and vapour wells.

1.2 Scope of Work

Based on the 2019 findings and recommendations (Tetra Tech 2020), the 2021 and 2022 monitoring program scope of work was outlined in the proposal titled 2021 Work Scope and Cost Estimate dated March 2, 2021 (Tetra Tech 2021). The work conducted in 2021 and 2022 included the following activities:

- Installing a new monitoring well (22MW05) in between the waste area and Gaetz Lake on the northeast side to confirm the groundwater characteristics adjacent to the lake.
- Conducting semi-annual vapour monitoring events at soil vapour probes VW-02, VW-03, VW-04, and VW-05 including, measuring headspace vapours and groundwater levels within each vapour monitoring well, and observing monitoring well integrity.
- Conducting semi-annual groundwater monitoring events at monitoring wells MW-02, MW-03, MW-04, BH8, 22MW05, MW-04A, and MW15A, including, measuring methane concentrations in headspace vapours and groundwater levels within each groundwater monitoring well and observing monitoring well integrity.
- Conducting one groundwater sampling event:
 - Purging shallow monitoring wells and deep monitoring wells until practically dry or until a minimum of three
 well volumes had been removed and allowing the water levels in the wells to recover.
 - Measuring field parameters (pH, electrical conductivity [EC], and water temperature) at the time of sampling.
 - Collecting groundwater samples from each well and submitting the samples for laboratory chemical analyses.
 - Collecting one duplicate groundwater sample for quality assurance/quality control (QA/QC) purposes.
- Conducting monitoring well repairs, as required.
- Preparing an annual report summarizing the field activities undertaken for the year and interpreting the soil vapour monitoring and groundwater analytical results.

In the proposal (Tetra Tech 2021), Tetra Tech recommended semi-annual monitoring of groundwater well headspaces for methane as a useful screening tool in the absence of vapour wells in other areas of the site. Subsequently, while headspace methane monitoring was conducted, headspace monitoring for VOCs and combustible vapour concentrations (CVCs) was not conducted in 2021 and 2022.

2.0 BACKGROUND INFORMATION

2.1 General Information

The site is located within three parcels within NE and SE 21-038-27 W4M:

- Portion of Lot S, Plan 4154S.
- Portion of Lot 1MR, Plan 852 0510.
- Portion of Lot 4ER, Plan 912 0819.

Figure 1 shows the general site location. Historical waste disposal reportedly occurred between June 1965 and July 1967, indicating that the age of the waste would be approximately 55 to 57 years old. The original LTCHS facility existed prior to historical placement of waste. Since then, LTCHS has been expanded to its current configuration, and the historical disposal area lies within approximately 30 m of the existing LTCHS. Nearby developments include other public institutions, and residential and commercial land use.

Historical waste placement reportedly occurred with acknowledgement from the Provincial Health Region and the local School District. No buildings are located on the area of the historical waste disposal. A paved pedestrian/bike path is located across the historical waste area. The path connects the south side of the LTCHS Legion Track to Gaetz Lake to the east, the Parkland School (west of the site) and the Kerry Wood Nature Centre (northwest of the site). Part of the Legion Track is located within the south end of the historical waste disposal area, and an environmental reserve area with oxbow lakes (Gaetz Lakes) is located to the northeast. The west and north margins of the waste area are open undeveloped field with two baseball diamonds adjacent to the west side. MW-02, MW-03, and VW-02 are located outside the site boundary. Figure 2 shows the site location and surrounding land use. Additional information on the site history, historical groundwater monitoring investigations, geology, and hydrogeology can be found in Appendix B. Cross-sections that were prepared using the wells previously installed at the site in 2013 are included in Appendix C (from Tiamat Environmental Consultants Ltd. [Tiamat] 2014).

2.2 2019 Conceptual Site Model Summary

The selection of comparative guidelines is based on the conceptual site model (CSM), which outlines the rationale for the selection of applicable exposure pathways and receptors at the site. This evaluation is based on guidance presented in the Alberta Tier 1 Guidelines (AEP 2019). The CSM that was developed for the site in the 2019 groundwater and soil vapour monitoring report (Tetra Tech 2020) included the following items:

- Description of identified environmental issues including a description of processes or activities undertaken at or near the site and a listing of chemicals of potential concern (COPCs) identified in earlier investigations.
- Description of known and reported historical releases, including locations and status of any subsequent environmental site assessments (ESAs) and remediation.
- Identification of applicable exposure pathways and receptors.

The CSM is summarized in the table, below.

Summary of Exposure Pathways and Receptors for Soil and Groundwater

Release Mechanism	COPC	Migration Pathway	Potential Receptor	
Leachate infiltration into foundation or through cover.	Inorganic parameters and nutrients, metals, PHCs, VOCs, and other indicator parameters	Direct soil contact.	Human users of the parkland; ecological plants and soil invertebrates.	
	(i.e., biochemical oxygen demand [BOD] and chemical oxygen demand [COD]).	Groundwater ingestion (drinking water).	Domestic use aquifer (DUA) drinking water; freshwater aquatic life in Gaetz Lakes.	
		Nutrient and energy cycling.	Microbial functioning of the soil.	
LFG emissions.	VOCs, methane, BTEX and PHC fractions, and siloxanes.	Vapour inhalation.	Human users of the parkland; users of LTCHS.	

As recommended by AEP, the soil vapour results obtained during the 2019 investigation were compared to the Canadian Council of Minister of the Environment's (CCME's) document A Protocol for the Derivation of Soil Vapour

Quality Guidelines for Protection of Human Exposures Via Inhalation of Vapours (CCME 2014). To determine the appropriate guidelines to compare the vapour sampling results to, indoor air risk calculations and methane explosive risks were calculated.

The CSM determined that the most applicable guidelines for groundwater and vapour results for the site were as follows:

- Groundwater concentrations at the site were compared to the Alberta Tier 1 Guidelines (AEP 2019) under residential land uses for coarse-grained soils.
- Soil vapour analytical results were compared to A Protocol for the Derivation of Soil Vapour Quality Guidelines
 for Protection of Human Exposures Via Inhalation of Vapours (CCME 2014) under residential land use for both
 slab-on-grade and basement for coarse-grained soils.

2.3 Monitoring Well Network

The 2021 and 2022 monitoring and sampling program included four vapour wells (VW-02 to VW-05) and nine groundwater monitoring wells (MW-02, MW-03, MW-04, MW04A, MW05A, MW14A, MW15A, BH8, and 22MW05). Monitoring well 22MW05 was installed in February 2022 and the details are provided in Section 3.1. Groundwater well MW-01 and soil vapour well VW-01 were not found in 2019 or 2021 and are interpreted to have been destroyed. The groundwater wells are all installed outside of the waste footprint. MW-02 and MW-04 are screened in sand and gravel fill material. MW-03 is reportedly installed 100 m to the northwest of the historical waste disposal area and is screened in sand fill. 22MW05 was installed on the northeast side of the site, approximately 20 m west of Gaetz Lake and is screened in sand and gravel. BH8 is located on the southeast side of the waste disposal area, approximately 50 m west of Gaetz Lake. Monitoring wells MW04A, MW05A, MW14A, and MW15A are located along the perimeter of the east side of LTCHS; Tetra Tech does not have the well completion details for MW14A, and MW15A.

The vapour wells are all screened within fill material: VW-01, VW-02, and VW-03 are screened within sand or sand and gravel fill; VW-04 is screened within silt fill; and VW-05 is screened within clayey loam fill. No obvious waste materials were encountered at these locations during drilling. Monitoring well completion details are summarized in Table 1.

Most monitoring wells were reported to be in good condition in 2021 and 2022 with the exception of VW-05 (flush-mount well) during the June 2022 monitoring event, which had the top of the casing and labcock torn off; this was most likely caused by snow removal equipment. VW-05 will need to be repaired during the next monitoring event at the site. In November 2021, a new bailer, j-plug, and lock were added to BH8.

Groundwater and vapour monitoring well locations are shown on Figure 2.

We understand that historically there have been a number of additional wells and gas probes installed as part of previous assessments, including wells installed as part of the gas mitigation described in Section 5.1. These were not located or monitored as part of this program.

3.0 MONITORING AND SAMPLING PROGRAM

A discussion of the methods used for the fieldwork, laboratory testing, and data evaluation is presented in the following sections.

3.1 Monitoring Well Installation

On February 1, 2022, one new groundwater monitoring well (22MW05) was installed using a tracked drill rig and solid stem auger along the northwest side of Gaetz Lake. The well location was selected to assess the groundwater conditions in between the waste footprint and Gaetz Lake. Additionally, during the June 2022 monitoring event a fixed marker was placed on the observation deck near BH8 to provide a reference point to record the water level of Gaetz Lake. The elevations of the fixed point, and all on-site monitoring and vapour wells were later surveyed by Tetra Tech. The locations of 22MW05 and the Gaetz Lake measurement location are shown on Figure 2.

Monitoring well 22MW05 was installed with 51 mm diameter polyvinyl chloride (PVC) pipe to a depth of 4.5 m below grade (mbg) and was screened with 51 mm slotted PVC pipe from 1.5 mbg to 4.5 mbg. Prior to sampling 22MW05, the monitoring well was developed by field staff purging 12 well volumes of water from the monitoring well. The borehole log for 22MW05 is presented in Appendix F.

3.2 Groundwater Monitoring and Sampling Program

A discussion of the methods used for groundwater monitoring and sampling fieldwork and laboratory testing is presented in the following section. In 2021 and 2022, Tetra Tech conducted groundwater monitoring on November 21, 2021, February 1, 2022, and June 7, 2022. Groundwater sampling at monitoring wells MW-02, MW-03, MW-04, and BH8 was conducted on November 21, 2021, and sampling at 22MW05 was conducted on February 1, 2022. The proposed groundwater sampling plan included sampling the five groundwater wells in November 2021; however, the drilling of 22MW05 was delayed until February 2022 to ensure the ground in the Gaetz Lake Migratory Bird Sanctuary was frozen. Due to a miscommunication, the four existing wells were already sampled in November 2021 and 22MW05 was sampled later, on the day it was installed in February 2022. The waste footprint at the site has not changed since 1967 and the hydrogeological and water quality situation is considered stable. Therefore, little change between November 2021 and February 2022 is to be expected and the monitoring and sampling results over that period of time should be comparable.

Monitoring at the groundwater monitoring wells (51 mm diameter) consisted of measuring methane in monitoring well headspace, and static groundwater levels in each monitoring well three times (November 2021, February 2022, and June 2022).

The methodology for groundwater monitoring and sampling included the following:

- Observing the integrity of each well and noting drainage and site conditions near the well that may have an
 effect on monitoring results or groundwater quality.
- Measuring the methane headspace concentrations in each well using an RKI Eagle Hydrocarbon Surveyor II (RKI Eagle) calibrated to methane.
- Measuring liquid levels in each monitoring well with an interface probe and recording total depths confirming absence of non-aqueous phase liquids (NAPL) and evaluating the water level relative to the screen to confirm the screen was not blinded.
- Recording of field data on standardized forms as documented in Tetra Tech standard operating practices.
- Purging each monitoring well requiring sampling using dedicated polyethylene bailers or Waterra tubing with inertial pump foot valves of at least three well volumes of water, or until the well was practically dry.

Following the completion of groundwater monitoring and purging, groundwater samples were collected from the required wells using the procedures identified below:

- Groundwater samples were collected from five monitoring wells (MW-02, MW-03, MW-04, BH8, and 22MW05)
 and placed into appropriate laboratory supplied, sterile glass and plastic vials and bottles for the required
 analytical package. If required, samples were filtered and/or preserved in the field.
- Field measurements were taken for pH, EC, and temperature at the time of sampling.
- Samples were submitted in coolers with ice to ALS Laboratory Group (ALS) in Calgary, Alberta for laboratory analysis under chain-of-custody (COC) documentation.

More information on the analytical program is provided in Section 3.2.1. The groundwater monitoring well locations are shown on Figure 2.

3.2.1 Analytical Program

The analytical program for the groundwater monitoring wells was developed based on the recommendations in Section 1.1 and is summarized below:

- Routine water chemistry and dissolved metals.
- Ammonia.
- Phosphorus.
- BTEX.
- VOCs.

3.3 Vapour Monitoring Program

A discussion of the methods used for the fieldwork is presented in the following sections. In 2021 and 2022, Tetra Tech conducted vapour monitoring on November 21, 2021, and June 7, 2022.

3.3.1 Vapour Monitoring Methodology

Monitoring at the four vapour monitoring probes (25 mm diameter) consisted of measuring and recording soil gas pressure, composition (methane, carbon dioxide, oxygen, hydrogen sulphide, and balance) on a percent volumetric basis and groundwater elevation, semi-annually (November and June).

Each soil vapour probe was inspected for visible signs of damage and the position of the sampling labcock was noted. Soil gas pressure was recorded using a digital manometer. Once the soil gas pressure measurement was recorded, the soil gas probe was purged of three well volumes of air, or until readings stabilized. The soil vapour probes were purged directly with the GEM 5000 LFG analyzer.

After purging, gas composition measurements for methane, carbon dioxide, oxygen, balance gas, and hydrogen sulphide were recorded using the GEM analyzer. After recording soil gas concentrations, the probe/well depths and water levels were measured and recorded to confirm the water level within the probe was beneath the screen portion of the soil gas probe (i.e., the probe was not blinded).

After monitoring, the soil vapour probes sampling ports were returned to the closed position and the well was securely locked.

The vapour monitoring well locations are shown on Figure 2.

4.0 RESULTS AND DISCUSSION

This section presents the results of the fieldwork conducted in 2021 and 2022 at LTCHS and discussions of these results.

4.1 Groundwater Well Headspace Monitoring

In 2021 and 2022, Tetra Tech monitored nine groundwater monitoring wells (MW-02, MW-03, MW-04, 22MW05, BH8, MW04A, MW05A, MW14A, and MW15A) during three monitoring events (MW05A and MW14A were only monitored during the November 2021 and June 2022 monitoring events) for measurements of methane in well headspace using an RKI Eagle, calibrated to methane. The RKI Eagle detection limit ranges from 5 parts per million (ppm) to >100% of the lower explosive limit (LEL). For methane, 500 ppm is equivalent to 1% LEL; 20% LEL is equivalent to 1% Gas.

At the groundwater monitoring wells, the water level was above the top of the monitoring well screen at 22MW05 during the June 2022 monitoring event, meaning the well was blinded and headspace vapour measurements are not representative for in-situ soil vapours; however, 22MW05 was not blinded during the February 2022 monitoring event. Monitoring wells MW-02, MW-03, MW-04, MW-05A, MW-05A, MW14A, and MW15A were not blinded during the 2021 and 2022 monitoring events. Monitoring well BH8 was blinded during the November 2021 and February 2022 monitoring events; however, BH8 was not blinded in June 2022.

In November 2021 and February 2022, methane concentrations at all monitoring wells were measured less than the instrument's detection limit. In June 2022, methane concentrations ranged from less than the instrument's detection limit at most wells to 60 ppm at 22MW05.

The methane headspace concentrations at the groundwater monitoring wells are presented in Table 1.

4.2 Groundwater Elevations

The measured groundwater levels and calculated groundwater elevations for 2021 are presented in Table 1.

Figure 3 presents the groundwater elevation trends (hydrographs) for the groundwater monitoring wells. These plots show the groundwater elevations in 2013, 2019, 2021, and 2022. Overall, the groundwater elevations increased at all monitoring wells from 2019 to 2021. Seasonal fluctuations were observed at the monitoring wells in 2021 and 2022.

In 2021, the average depth to groundwater in the monitoring wells was 3.01 mbg in November 2021, 2.89 mbg in February 2022, and 2.47 mbg in June 2022. The groundwater elevations and interpreted elevation contours are shown on Figure 4 to Figure 6. The interpreted contoured elevations for the monitoring wells suggest the groundwater flow is to the northwest. The groundwater elevations in November 2021 do not include 22MW05 or the surface water level recorded at the observation deck. The groundwater elevation at 22MW05 in February 2022 is interpreted to not be accurate as the water level had not fully recovered after installation. Gaetz Lake was frozen at that time and no surface water levels could be recorded. From the three monitoring events in 2021 and 2022, the June 2022 groundwater contours are interpreted to be the most representative of the local groundwater flow direction as it includes 22MW05 and the Gaetz Lake water level. It was noted that while field staff were on site surveying the monitoring wells on June 28, 2022, the lake level was considerably higher and 22MW05 was surrounded by standing water. The observation of the water level on June 28, 2022 is consistent with high water levels and flow rates in the Red Deer River during that period of time (AEP 2022), which likely also affects

Gaetz Lake. The Gaetz Lake water level during the June event (850.71 m) was higher than the adjacent water levels at both BH8 (850.35 m) and 22MW05 (850.66 m) confirming recharge conditions at this time.

The groundwater elevations measured in February 2022 suggested an easterly groundwater flow direction towards Gaetz Lake near the northern portion of the site; however, the inferred pattern is interpreted to be related to a non-stabilized groundwater elevation at newly installed monitoring well 22MW05 and the results have not been contoured. Groundwater elevations in 2021 and 2022 were overall slightly higher than the previously measured groundwater elevations in 2019. The interpreted groundwater flow direction in 2021 and 2022 was overall consistent with the inferred groundwater flow direction in 2013 (Tiamat 2014) and 2019.

The average horizontal gradient in 2021 and 2022 was 0.003 m/m towards the Red Deer River, located to the northwest of the site. The site gradient is steepest in the northwest towards the river valley. The horizontal gradient is consistent with the previous results from 2013.

4.3 Groundwater Field Parameters

Field measurements for temperature, pH, and EC in November 2021 and February 2022 are shown in Table 2. A discussion of the results of the field tests is summarized in this section.

Groundwater temperatures ranged from 3.20°C (22MW05) to 6.64°C (MW-03).

Field pH values ranged from 6.63 (BH8) to 7.51 (22MW05) in 2021 and 2022. The field pH measurements were generally less than the laboratory pH except at 22MW05. The difference between field recorded and laboratory pH values may be due to limitations of the field equipment and differences in sample temperature.

In 2021, field EC measurements ranged from 813 μ S/cm (MW-04) to 1,181 μ S/cm (BH8). The field EC results were less than the laboratory measured EC results; however, the field and laboratory results were relatively similar.

4.4 Groundwater Analytical Results

The groundwater analytical data for 2021 and 2022 is summarized in Table 2. The 2021 and 2022 laboratory analytical reports are included in Appendix D and historical tables are included in Appendix E.

4.4.1 Background Groundwater Characteristics

In 2013, the concentration of dissolved manganese (1.3 mg/L) at MW-01 was greater than the other manganese concentrations at the site measured in 2019 (ranging from 0.412 mg/L to 0.805 mg/L); however, dissolved iron concentrations were non-detect, nitrate was present in several milligrams per litre, and dissolved boron concentrations were low. These parameter concentrations, along with a relatively low ammonia concentration of 0.18 mg-N/L in 2013, do not suggest that the water quality at MW-01 in 2013 was affected by leachate. The concentration of chloride at MW-01 in 2013 was 110 mg/L, which is greater than the concentrations of chloride measured at other wells in 2019. It should be noted that MW-01 is the only monitoring well on site that is located near a roadway, suggesting the groundwater quality may be influenced by road salt.

Concentrations of BTEX, PHC fractions F1 and F2, and VOCs were less than the analytical detection limits at MW-01 in 2013.

Monitoring well MW-01 is assumed to be destroyed and background groundwater quality results are inferred from the 2013 analytical results from MW-01.

4.4.2 Routine Water Chemistry Parameters

In 2021 and 2022, TDS concentrations ranged from 524 mg/L (MW-04) to 876 mg/L (BH8). TDS concentrations at all monitoring wells were greater than the Tier 1 Guidelines (500 mg/L). TDS concentrations in 2021 and 2022 were similar to the 2019 results. Elevated TDS concentrations often occur in groundwater as a result of the dissolution of naturally occurring salts and minerals in Alberta, and do not necessarily indicate groundwater quality impact related to the former landfill.

Ammonia concentrations at the site in 2021 and 2022 ranged from 0.204 mg-N/L at MW-04 to 3.66 mg-N/L at 22MW05. The Tier 1 Guidelines for ammonia are a factor of pH and temperature and ranged from 0.392 mg-N/L to 5.372 mg-N/L at the site. Concentrations of ammonia were less than the Tier 1 Guidelines at all monitoring wells but the concentration at 22MW05 was clearly higher than at the other monitoring wells. Sulphate concentrations were negligible at MW-03, MW04, and 22MW05, suggesting possibly sulphate reduction due to anoxic conditions, which is common in groundwater within or near landfill wastes. Other than TDS, routine water chemistry parameter concentrations did not exceed the Tier 1 Guidelines in 2021 and 2022; however, the measured sulphate and ammonia concentrations at MW-03, MW-04, and 22MW05 suggests some groundwater quality impact by municipal solid waste landfill leachate.

4.4.3 Dissolved Metals

Concentrations of dissolved arsenic were greater than the Tier 1 Guidelines (0.005 mg/L) at most monitoring wells in 2021 and 2022 with the exception of BH8. Arsenic is known to be strongly adsorbed onto iron(hydr)oxides, and when iron and manganese dissolve, arsenic will also go into solution (Hem 1992). The concentrations of dissolved arsenic are likely correlated to the presence of dissolved iron. Dissolved arsenic concentrations in 2021 at MW-02, MW-03, and MW-04 marginally increased compared to the concentrations measured in 2019. The dissolved arsenic concentration at 22MW05 is one order of magnitude higher than the Tier 1 Guideline, possibly due to deeper anoxic conditions and consequently higher dissolved iron concentrations.

Dissolved barium was greater than the guideline of 1 mg/L at MW-03 (1.85 mg/L) and 22MW05 (1.25 mg/L). Tetra Tech interprets the dissolved barium concentrations at MW-03 and 22MW05 to be related to the low sulphate concentrations measured in the groundwater at these wells. As barium sulphate has a limited solubility, more barium will be released into solution when sulphate concentrations are low. The dissolved barium and sulphate concentrations at MW-03 were very similar in 2019 and 2021. As stated above, the low sulphate concentration at MW-03 and 22MW05 suggests deep anoxic (sulphate reducing) conditions, which are likely related to the former landfill.

Iron and manganese are redox-sensitive parameters that also occur in groundwater under aerobic conditions and can help determine whether the groundwater quality is affected by biodegradation reactions, for instance related to landfill leachate. The dissolved manganese concentrations were greater than the Tier 1 Guidelines (0.05 mg/L) at all monitoring wells during the sampling events in 2021 and 2022. The dissolved iron concentrations were also greater than the Tier 1 Guidelines at all monitoring wells in 2021 and 2022. Concentrations of dissolved iron and manganese in 2021 and 2022 were greater than concentrations measured in 2019 at most wells except dissolved manganese at MW-02. Manganese and iron also naturally occur in groundwater under anaerobic conditions and concentrations of these parameters do not necessarily indicate an adverse impact on groundwater quality. However, the measured dissolved iron concentrations at MW-03 (17.2 mg/L) and 22MW05 (16.1 mg/L), in combination with a low sulphate and an elevated ammonia concentration, suggests some leachate impact.

Dissolved mercury was measured less than the analytical detection limit at most wells in 2021 and 2022 with the exception of 22MW05, which marginally exceeded the Tier 1 Guideline. The dissolved mercury concentration measured at 22MW05 should be confirmed in 2022.

4.4.4 Organic Parameters

Concentrations of BTEX and PHC fractions F1 and F2 were less than the analytical detection limits at all locations in 2021 and 2022.

In 2021 and 2022, VOC concentrations were less than Tier 1 Guidelines at all wells in November 2021 and February 2022. MW-02, MW-03, and BH8 had detectable concentrations (0.0075 mg/L, 0.0019 mg/L, and 0.0021 mg/L respectively) of cis-1,2-dichloroethene, consistent with prior results (where sampled, MW-02 and MW-03). Tier 1 Guidelines for cis-1,2-dichloroethene have not been established. BH8 had a detectable concentration of vinyl chloride in November 2021 (0.0010 mg/L); however, the concentration measured slightly less than the Tier 1 Guideline. Cis-1,2-dichloroethene is known as a breakdown product of dry-cleaning liquids (i.e., tetrachloroethene [PCE]), and typically further degrades to form vinyl chloride. PCE was not detected at any of the monitoring wells in 2019 or 2021.

4.5 Soil Vapour Monitoring Results

The soil vapour monitoring results are presented in Table 4.

Wellhead pressures at VW-02 to VW-05 were negligible during most events in 2021 and 2022, with the exception of VW-04 in November 2021, which was frozen.

Methane concentrations (measured using the GEM) at vapour wells VW-02 to VW-05 were less than the instrument detection limit during both monitoring events in 2021 and 2022. The concentrations of carbon monoxide were less than the instrument detection limit during most 2021 and 2022 events with the exception of VW-05 in June 2022 (0.1% Gas). Concentrations of carbon dioxide, oxygen, and balance gas were consistent during both monitoring events. Most vapour wells were dry in 2021 and 2022 indicating the screens were not blinded, VW-04 in November 2021 was frozen and it could not be determined if the well was blinded or not.

Historical testing indicates the presence LFG (characterized by methane concentrations at and greater than the explosive range) in the landfill area. Details of the historical gas migration assessment work are included in Appendix B and Section 3.0.

4.6 Quality Assurance/Quality Control

4.6.1 Methods

Tetra Tech's groundwater QA/QC procedures include reviewing the data collected for precision and accuracy and following the appropriate field protocols.

The field procedures for QA/QC involved:

- Changing nitrile gloves between sample collections;
- Using sample containers provided by the laboratory;
- Cleaning monitoring and sampling tools between sample locations;
- Filling sample containers for PHC analysis with no headspace (air) when the containers were closed;
- Collecting a duplicate vapour sample during the vapour sampling event; and

Documenting field procedures and sampling activities.

4.6.2 Results

The groundwater QA/QC results are included in Table 3. The duplicate sample was submitted for analysis of the same parameters as the original samples.

The duplicate analysis is compared by relative percent difference (RPD). The RPD is calculated using the following equation:

$$RPD = \left[\frac{(V_1 - V_2)}{\frac{(V_1 + V_2)}{2}} \right] * 100\%$$

Where:

V₁ = Parent Sample

V₂ = Duplicate Sample

Chemical parameters were considered as having passed the QA/QC reproducibility procedure if the RPD was less than or equal to 20%, indicating a close correlation between the sample-duplicate pair.

RPD values were not calculated if one or both of the sample-duplicate concentrations were between the reportable detection limit (RDL) and five times the RDL. In these cases, chemical parameters were still considered as having passed the QA/QC reproducibility procedure if the sample duplicate concentration difference was less than one RDL value.

For the groundwater duplicate at MW-04 in November 2021, RPDs were less than 20% for all of the reportable concentrations. Based on the QA/QC results, the sample methods and results are considered acceptable.

5.0 EVALUATION OF SITE CONDITIONS

5.1 Summary of Site Conditions

Based on the 2021 and historical data for the site, there is no evidence that there are significant concerns related to the former landfill operations at LTCHS impacting Gaetz Lake. However, there is evidence of residual impacts and the site does contain buried landfill waste; therefore, some risk management measures are required. Further, there are several elements of the site assessment data requiring further confirmation as detailed below.

Historical assessment indicates that the eastern extents of the landfill are relatively close to Gaetz Lake (within 10 m to 20 m). The monitoring data in June 2022 suggest that the water level at Gaetz Lake interacts with the groundwater; however, the inferred groundwater flow direction was northwesterly away from Gaetz Lake during this event. Historical monitoring data supports the June 2022 monitoring results, that groundwater flow is predominantly northwest, towards the Red Deer River and not towards Gaetz Lake. However, additional monitoring is recommended to determine if there is risk of migration of groundwater from the former landfill area towards the lake when the river and lake levels fluctuate.

Tetra Tech recommends installing dataloggers capable of measuring pressure and temperature in monitoring well 22MW05 and at a suitable location along the shore of Gaetz Lake. This will facilitate detailed monitoring of groundwater and surface water levels and allow for obtaining further insights in the groundwater flow pattern near 22MW05 along the east flank of the former waste disposal area and help determine whether there is a (seasonal)

groundwater flow component towards Gaetz Lake. It should be noted that the datalogger within the lake will need to be properly protected and, due to anticipated ice build up, may have to be removed during the winter months.

In 2021, the groundwater results at MW-02, MW-03, and MW-04 showed similar results to 2019 and had relatively minor concentrations of leachate indicator parameters. Monitoring wells BH8 and 22MW05 were sampled for the first time in 2021 and 2022, respectively. The results from BH8 and 22MW05 show that the wells are anoxic and have leachate indicator parameters present.

One additional year of semi-annual groundwater monitoring that includes MW-02, MW-03, MW-04, BH8, 22MW05, and the surface water level at Gaetz Lake is recommended. In conjunction with the groundwater monitoring events, Tetra Tech recommends groundwater sampling of BH8 and 22MW05 in the fall of 2022 and spring of 2023 to confirm concentrations and potential trends. The monitoring wells located next to LTCHS (MW04A, MW05A, MW14A, and MW15A) were dry during all events in 2021 and 2022 and further monitoring is not recommended.

Testing of well headspace vapours for methane and VOCs did not identify concerns at the locations monitored. In 2021 and 2022, the methane concentrations at all vapour probes were less than the instrument's detection limit and the highest methane concentration measured from the groundwater wells was 60 ppm at 22MW05; all measurements at the wells located next to LTCHS were less than the instrument's detection limit. As there is little indication that measured concentrations pose a hazard to receptors, it is recommended to discontinue headspace vapour monitoring of the groundwater and vapour wells. However, historical testing indicates the presence LFG (characterized by methane concentrations at and greater than the explosive range) in the landfill area. An interceptor trench is present between the waste mass and LTCHS, and monitoring by LTCHS has documented that the inceptor trench was performing as intended. The current operation status for the interceptor trench is not known; however, we understand that LTCHS is required to provide periodic update of the program status to The City.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Based upon the results of the groundwater and soil vapour monitoring and sampling conducted in 2021 and previous years, Tetra Tech has developed the following conclusions:

- The groundwater elevations measured in November 2021 and June 2022 infer a groundwater flow direction to the northwest, towards the Red Deer River. Stabilized water levels at 22MW05, as measured in June 2022, confirmed a flow direction away from Gaetz Lake during this event. The average horizontal hydraulic gradients at the site were estimated as approximately 0.003 m/m. Groundwater elevations in 2021 and 2022 were overall slightly higher than the previously measured groundwater elevations in 2019.
- Routine groundwater quality parameters and dissolved metals concentrations that exceeded the Tier 1 Guidelines at one or more monitoring wells in 2021 and 2022 included TDS, and the dissolved metals arsenic, barium, iron, manganese, and mercury. The measured concentrations of these parameters were generally consistent with historical results; however, dissolved mercury marginally exceeded the Tier 1 Guideline for the first time at the site in February 2022 at 22MW05 and is recommended to be confirmed.
- Concentrations of BTEX and PHC fractions F1 to F2 were less than the analytical detection limits at all monitoring wells in 2021 and 2022. In 2021 and 2022, most VOC concentrations measured less than the analytical detection limits and less than the Tier 1 Guidelines, where established, at all groundwater monitoring wells. VOC parameter 1,2-dichloroethene (cis) was detected in low concentrations at monitoring wells MW-02, MW-03, and BH8; this VOC does not have an established Tier 1 Guideline. Additionally, vinyl chloride was detected at monitoring well BH8 (0.0010 mg/L); however, the concentration was less than the Tier 1 Guideline.

(0.0011 mg/L). Trace concentrations of 1,2-dichloroethene (cis) were previously measured at MW-02 and MW-03.

 Overall, the on-site monitoring wells showed relatively minor concentrations of leachate indicator parameters in 2021 and 2022.

The 2021 and 2022 vapour monitoring program results are summarized as follows:

- Concentrations of methane in the vapour probes were less than the instrument's detection limit during all
 monitoring events in 2021 and 2022 and the highest methane concentration in the headspace of groundwater
 wells was 60 parts per million (ppm) at 22MW05 in June 2022.
- Overall, the soil vapour monitoring conducted in 2021 and 2022 suggests that there is little indication that vapour
 migration poses a hazard to receptors. Historical testing indicates the presence of LFG (characterized by
 methane concentrations at and greater than the explosive range) in the landfill area; however, an interceptor
 trench is present between the waste mass and LTCHS. Tetra Tech understands that ongoing monitoring is
 completed by another consultant on behalf of LTCHS.

Based upon the results of the groundwater and vapour monitoring program in 2021 and 2022 and previous years, Tetra Tech recommends ongoing risk management, including: additional assessment; ongoing monitoring; and administrative actions. The following recommendations are made according to these risk management elements:

Additional Assessment:

Tetra Tech recommends installing dataloggers capable of measuring pressure and temperature in monitoring well 22MW05 and at a suitable location along the shore of Gaetz Lake. This will facilitate detailed monitoring of groundwater and surface water levels and allow for obtaining further insights in groundwater flow patterns near 22MW05 along the east flank of the waste disposal area and help determine whether there is a (seasonal) groundwater flow component towards Gaetz Lake. It should be noted that the datalogger within the lake will need to be properly protected and, due to anticipated ice buildup, may have to be removed during the winter months.

Ongoing Monitoring:

- Conduct additional groundwater monitoring events in the spring of 2023 and the fall of 2023 to confirm the groundwater flow pattern. In conjunction with these two events, collect semi-annual groundwater samples from BH8 and 22MW05 to confirm the results collected in November 2021 and February 2022. The monitoring wells located next to LTCHS (MW04A, MW05A, MW14A, and MW15A) were dry during all events in 2021 and 2022 and further monitoring is not recommended.
- After the proposed additional monitoring and sampling events have been conducted, and datalogger data is collected during the spring 2023 runoff season of the Red Deer River, evaluate all surface water and groundwater elevation data, along with the additional groundwater quality information and assess the potential risk to the water quality of Gaetz Lake and whether continuing the monitoring program is warranted.
- Based on vapour monitoring results collected to date there are no obvious vapour concerns at the locations monitored and Tetra Tech recommends discontinuing headspace monitoring in the soil vapour and groundwater wells as part of The City program.

Administrative Actions:

 The interceptor trench adjacent to LTCHS is operated and monitored by LTCHS and we understand that LTCHS is required to provide periodic updates of the program status to The City. We recommend that The

City obtain and review the collected data on an annual basis in support of management activities at this site. Further, we suggest that The City request as-built details of the inceptor trench from LTCHS for their records, and further that any records of manual or automated indoor monitoring be requested.

- Utilize the revised generic mitigative measures when evaluating applications for development within the setback.
- Ensure that the site is clearly identified within The City's Land Use Bylaw and appropriate administrative requirements are met for the site in accordance with City policies.

Further to the above recommendations, as noted the site remains an historical landfill. It presently appears to be well maintained and capped. The City should review this status on an ongoing basis to ensure that the cover remains intact and drainage remains positive; repairs or maintenance should be undertaken as required to maintain the site. We note that the design and operation of the interceptor trench adjacent to LTCHS was developed based on surface conditions similar to existing, and if changes or improvements to the surface of the landfill are contemplated (e.g., paving or installation of an impermeable cap), such work should be undertaken in conjunction with a review of the interceptor trench design and performance.

7.0 CLOSURE

We trust this report meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted, Tetra Tech Canada Inc.

> FILE: 704-SWM.SWOP04071-02.002 FILE: 704-SWM.SWOP04071-02.002 FILE: 704-SWM.SWOP04071-02.002 FILE: 704-SWM.SWOP04071-02.002

Prepared by: Ryan Miller, B.Sc. Project Scientist Solid Waste Management Practice Direct Line: 403.723.3268

Ryan.Miller@tetratech.com

FILE: 704-SWM.SWOP04071-02.002 FILE: 704-SWM.SWOP04071-02.002 FILE: 704-SWM.SWOP04071-02.002 FILE: 704-SWM.SWOP04071-02.002

Reviewed by: Frans Hettinga, B.Sc. Principal Specialist Solid Waste Management Practice Direct Line: 403.723.6860 Frans.Hettinga@tetratech.com

FILE: 704-SWM.SWOP04071-02.002 FILE: 704-SWM.SWOP04071-02.002 FILE: 704-SWM.SWOP04071-02.002 FILE: 704-SWM.SWOP04071-02.002

Reviewed by:
Sean Buckles, M.Sc., P.Eng.
Senior Project Engineer – Team Lead
Solid Waste Management Practice
Direct Line: 403.723.6876
Sean.Buckles@tetratech.com

/dm:as

PERMIT TO PRACTICE TETRA TECH CANADA INC.

RM SIGNATURE: .	
RM APEGA ID #: _	

DATE: _____

PERMIT NUMBER: P013774

The Association of Professional Engineers and Geoscientists of Alberta (APEGA)

REFERENCES

- Alberta Environment and Parks. 2019. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 198 pp.
- Alberta Environment and Parks. 2022. Alberta River Basins. Alberta Environment and Parks Alberta River Basins flood alerting, advisories, reporting and water management [Accessed July 19, 2022].
- Canadian Council of Ministers of the Environment. 2014. A Protocol for the Derivation of Soil Vapour Quality Guidelines for Exposure Protection of Human Exposures via Inhalation of Vapours. Available online: http://cegg-rcqe.ccme.ca/en/index.html.
- Hem, J.D. 1992. Study and Interpretation of the Chemical Characteristics of Natural Water U.S. Geological Survey, Water Supply Paper 2254.
- Tetra Tech Canada Inc. 2020. 2019 Groundwater and Soil Vapour Monitoring Report Lindsay Thurber Comprehensive High School. Prepared for The City of Red Deer. October 2020. Project Number: 704-SWM.SWOP04071-01.002
- Tetra Tech Canada Inc. 2021. 2021 Work Scope and Cost Estimate Red Deer Pre-1972 Landfills. Prepared for The City of Red Deer. March 2021. Project Number: 704-PSWM.SWOP04071-01.
- Tiamat Environmental Consultants Ltd. 2014. Phase II Environmental Site Assessment, Historic Waste Disposal Site, Lindsay Thurber High School, The City of Red Deer. Dated March 6, 2014.

TABLES

Table 1	Groundwater Elevations
Table 2	Groundwater Analytical Results
Table 3	Groundwater Quality Assurance/Quality Control Analytical Results
Table 4	Soil Vapour Monitoring Results

Table 1: Groundwater Elevations

Monitoring Well		MW-01	MW-02	MW-03	MW-04	22MW05	BH8	MW04A	MW05A	MW14A	MW15A	Gaetz Lake
Total Drilled Depth (m)		6.1	6.1	4.6	4.6	4.5	6.0	6.0	6.0	-	-	-
Top of Screened Interval (mbg)		1.5	3.1	1.6	1.6	1.5	3.0	4.5	4.5	-	-	-
Bottom of Screened Interval (mbg)		6.1	6.1	4.6	4.6	4.5	6.0	6.0	6.0	-	-	-
Stick up (m)		0.02	0.75	0.88	0.82	0.86	0.90	-0.24	-0.10	-0.11	-0.11	-
Ground Elevation (m)		853.77	853.86	853.58	852.10	850.88	853.39	854.76	854.71	854.53	854.29	-
TPC Elevation (m)		853.79	854.66	854.36	852.95	851.94	854.30	854.65	854.96	854.42	854.26	853.52
Depth to Groundwater (mBTPC)	Aug-13	3.04	3.03	3.54	1.61	-	-	3.60	3.70	3.60	3.40 -	
	May-19	CNL	4.07	4.48	2.52	-	-	-	-	-	-	-
	Jun-19	CNL	3.99	4.48	2.46	-	-	-	-	-	-	-
	Sep-19	CNL	4.04	4.60	2.74	-	-	-	-	-	-	-
	Dec-19	CNL	4.12	4.65	2.78	-	-	-	-	-	-	-
	Nov-21	CNL	4.15	4.69	2.84	-	3.70	Dry	Dry	Frozen	Dry	-
	Feb-22	CNL	4.26	4.76	2.97	2.91	3.76	Frozen	-	-	Dry	-
	Jun-22	CNL	4.11	4.65	2.56	1.28	3.95	Dry	Dry	Dry	Dry	2.81
Groundwater Elevation (m)	Aug-13	850.75	851.63	850.82	851.35	-	-	850.91	850.91	850.81	850.78	-
	May-19	Destroyed	850.60	849.88	850.43	-	-	-	-	-	-	-
	Jun-19	Destroyed	850.68	849.88	850.49	-	-	-	-	-	-	-
	Sep-19	Destroyed	850.62	849.77	850.21	-	-	-	-	-	-	1
	Dec-19	Destroyed	850.55	849.71	850.17	-	-	-	-	-	-	
	Nov-21	Destroyed	850.52	849.67	850.11	-	850.60	Dry	Dry	Frozen	Dry	
	Feb-22	Destroyed	850.40	849.60	849.98	849.03	850.54	Frozen	-	-	Dry	1
	Jun-22	Destroyed	850.55	849.71	850.39	850.66	850.35	Dry	Dry	Dry	Dry	850.71
Combustible Vapour	Aug-13	100	ND	ND	ND	N/A	N/A	140	200	250	260	N/A
Concentrations* (CVCs) (ppm)	May-19	Destroyed	ND	ND	ND	N/A						
	Jun-19	Destroyed	ND	ND	ND	N/A						
	Sep-19	Destroyed	ND	5	150	N/A						
	Dec-19	Destroyed	ND	ND	35	N/A						
Volatile Organic Compounds*	Aug-13	ND	ND	ND	ND	N/A	N/A	ND	ND	ND	ND	N/A
(VOCs) (ppm)	May-19	Destroyed	ND	ND	ND	N/A						
	Jun-19	Destroyed	ND	ND	ND	N/A						
	Sep-19	Destroyed	ND	ND	ND	N/A						
	Dec-19	Destroyed	ND	ND	ND	N/A						
Methane Concentrations** (ppm)	Nov-21	Destroyed	ND	ND	ND	N/A	ND	ND	ND	ND	ND	NA
,	Feb-22	Destroyed	ND	ND	ND	ND	ND	ND	N/A	N/A	ND	NA
	Jun-22	Destroyed	ND	ND	ND	60	ND	ND	ND	ND	ND	NA

mbg - Metres below grade.

mBTPC - Metres below top of plastic pipe casing.

ND - Non-detect

CNL - Could not locate.

N/A - Not applicable; prior to well installation.

TETRA TECH

^{*-} Measured using RKI Eagle II calibrated to hexane and isobutylene and operated in methane elimination mode.

^{**-} Measured using RKI Eagle II calibrated to methane.

Table 2: Groundwater Analytical Results

Fine Temperature 10	Table 2: Groundwater Analytical Re	sults	1	NA\A	/ 02	1414	/ 03
Fine Temperature 10	Parameter	Unit	Tier 1 Guideline 1,2				
File Florate Commenterly	Field Testing						
Tell pit Pet Urille C. S. D. S. S. D. S. D	Field Temperature	°C	-	3.94	6.01	1.08	6.64
Southern	Field Electric Conductivity	μS/cm	-	666			
Pit	-	pH Units	6.5 to 8.5	8.28	6.90	7.73	6.72
Description			T		7.07		
Tried Discovery of Series (TDS)	•						
Individuals of CACCy	, ,	·					
Mainthy (potal as CaCQ.) mgL - 431 448 502 473 245 257	, ,		+				
Seabonate							
Carbonnels	Bicarbonate						
Procession	Carbonate		-		<1		<1
Magnesium	Hydroxide		-	<5.0	-	<5.0	-
Pedestriam	Calcium	mg/L	-	134	129	102	
Sodium	Magnesium	mg/L	-	43.8		39.2	
The content	Potassium	mg/L					
Paper Pape							
Sulphinte mg L 429							
onic Balance N/A - 96.5 101 99.2 99.3 Ammonia as N mgL 0.392 to 5.372* 0.690 0.884 1.31 0.96 Winter (as NO,-W) mgL 2.3 <0.10 <0.90 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000							
Number N	<u>·</u>						
Nemoratia 8 N		IN/A	-	5.06	101	99.∠	99.0
Wilstelle (as NO ₂ N)		ma/l	0.392 to 5.372 ⁶	0.690	0.684	1.31	0.96
Wilter (and NiO ₂ -N) mg/L 0.20	Nitrate (as NO ₃ -N)						
Nitrate and Nitrite (se N)	Nitrite (as NO ₂ -N)		0.204		<0.050		<0.050
Total Ngiodaln Nitrogen (TNN) mg/L 	Nitrate and Nitrite (as N)				-		-
Dissolved Metals	Total Kjeldahl Nitrogen (TKN)		-	1.3	-	35	-
Dissolved Metals	Carbon						
Muminum		mg/L	-	4.8	-	15.1	-
Antmonry mg/L 0.006 <0.00050 <0.00010 0.00014 0.00018 Avsenic mg/L 0.005 0.00758 0.00959 0.0220 0.0333 1.80 1.85 Earlyllum mg/L 1 0.547 0.63 1.80 1.85 Earlyllum mg/L 1.5 <0.00000 0.000050 . <0.000050 Seron mg/L 1.5 <0.050 0.00060 . <0.000050 Scoron mg/L 0.05 <0.00054 0.000048 0.000051 <0.000051 <0.000050 Chromium mg/L 0.05 <0.00050 <0.00004 <0.00051 <0.00050 Chromium mg/L 0.05 <0.000050 <0.00020 0.0013 <0.00005 Storon mg/L 0.05 <0.00000 <0.00002 0.0013 <0.00005 Storon mg/L 0.03 6.89 7.67 14.8 17.2 Load mg/L 0.074 <0.00025							
Atsenic mg/L 0.005 0.00758 0.00895 0.0320 0.0333 Sarium mg/L 1 0.547 0.53 1.80 1.85 Sariyim mg/L <0.000020 - <0.0000020 Sarium mg/L <0.000020 - <0.0000020 Sarium mg/L <0.0000020 - <0.0000020 Sarium mg/L <0.0000020 - <0.0000020 Sarium mg/L 0.00073 0.000045 0.000018 0.							
Barlum							
Beryllum							
Simuth mg/L -			+				
Series	Bismuth						
Cadmium mg/L 0.00037² 0.000046 0.0000168 0.000016 0.000015 <0.00050 Chromium mg/L 0.05 <0.00050	Boron						
Denomin	Cadmium		0.00037 3	0.000045	0.0000168		0.0000136
Copper	Chromium	mg/L		<0.00050	<0.00050	0.00015	<0.00050
mg/L 0.3 6.89 7.67 14.8 17.2	Cobalt	mg/L	-	-		-	
mg/L 0.0070³ <0.00050 0.00011 0.00061	Copper	mg/L					
mg/L	Iron						
Manganese mg/L 0.05 0.528 0.490 0.412 0.437 Mercury mg/L 0.0000050 <0.0000050			0.0070 ³	<0.00025			
Mercury mg/L 0.000005 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.000050 <0.00050 <0.00050 <0.0050 <0.0050 <0.0050 <0.0050 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.00013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.0000010 <0.000010 <0.000010			- 0.05			_	
Molybdenum							
Nicke mg/L			0.00000			-0.0000000	
Probaborus	Nickel		0 144 to 0 209 ³	<0.0025		0.00142	
Selenium	Phosphorus		-		<0.05		
Silicon	Selenium		0.002		<0.000050		0.000138
Strontium mg/L - - 0.719 - 0.614	Silicon		-				
Sulphur	Silver	mg/L	0.0001	<0.000050		<0.000010	
Thallium mg/L <0.000010 - <0.000010 Tin mg/L <0.00010 - <0.00010 Titanium mg/L <0.00010 - <0.00010 Titanium mg/L <0.00010 - <0.00010 Titanium mg/L <0.00030 - 0.00041 Uranium mg/L 0.015 0.00295 0.00294 0.000291 0.000261 Vanadium mg/L <0.00050 - <0.00050 Titanium mg/L <0.00050 - <0.00050 - <0.00050 Titanium mg/L ND - ND - ND - ND - The Titanium mg/L - ND - N	Strontium		-	-		-	
Tin mg/L <0.00010 - <0.00010 Titanium mg/L <0.00010 - <0.00010 Titanium mg/L <0.00030 - 0.00041 Uranium mg/L 0.015 0.00295 0.00294 0.000291 0.000266 Vanadium mg/L <0.00050 - <0.00050 Vanadium mg/L 0.03 <0.0050 0.0025 0.0025 0.0026 0.0042 Variconium mg/L <0.00050 - <0.00050 Variconium mg/L <0.00050 0.0025 0.0026 0.0042 Variconium mg/L - ND - ND - ND - Variconium **Draganics** **AOX mg/L - ND - ND - ND - Variconium mg/L 0.005 0.00050 **Genzene mg/L 0.005 <0.00050 <0.00050 <0.00050 0.00050 **Toluene mg/L 0.021 <0.00050 <0.00050 <0.00050 <0.00050 **Toluene mg/L 0.0016 <0.00050 <0.00050 **Toluene mg/L 0.0016 <0.00050 <0.00050 **Toluene mg/L 0.0016 <0.00050 **Toluene mg	Sulphur			-			
Titanium				-			
Dranium mg/L 0.015 0.00295 0.00294 0.000291 0.000266 Vanadium mg/L - - < 0.00050 - < 0.00050 Zinc mg/L 0.03 < 0.0050 0.0025 0.0026 0.0042 Zirconium mg/L - - < 0.00020 - 0.00073 Drganics				-		-	
Vanadium mg/L - - <0.00050 - <0.00050 Zinc mg/L 0.03 <0.0050				0.00005		0.00004	
Zinc			0.015	0.00295		0.000291	
Companies	Zinc		0.03	- <0.0050		0 0026	
Organics AOX mg/L - ND - ND - Hydrocarbons Benzene mg/L 0.005 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050	Zirconium						
AOX	Organics		1		-		· · · · · · · · · · · · · · · · · · ·
Separation Sep	AOX	mg/L	-	ND	-	ND	-
Toluene	Hydrocarbons						
Ethylbenzene mg/L 0.0016 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00030 <0.00050 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00050 <0.00040 <0.00050 <0.00040 <0.00050 <0.00040 <0.00050 <0.00040 <0.00050 <0.00040 <0.00050 <0.00040 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00	Benzene	mg/L	0.005	<0.00050	<0.00050	<0.00050	<0.00050
Xylene (o) mg/L - <0.00050 <0.00030 <0.00050 <0.00030 Xylenes (m & p) mg/L - <0.00050	Toluene						
Xylenes (m & p) mg/L - <0.00050 <0.00040 <0.00050 <0.00040 Xylenes Total mg/L 0.02 <0.00071	Ethylbenzene		0.0016				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Xylene (o)		-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•						
F1 (C ₆ -C ₁₀) - BTEX			0.072				<0.00050
F2 (C ₁₀ -C ₁₆) mg/L 1.1 <0.10 - <0.10 - Total BTEX mg/L - <0.0010 - <0.0010			- 0 01				-
Total BTEX mg/L <0.0010 - <0.0010	F2 (C40-C40)				-		-
9	Total BTEX		1.1		- <0.0010		- <0.0010
	Notes:	mg/L	<u> </u>	<u> </u>	~ 0.0010	-	~0.0010

1

BOLD - Greater than Tier 1 Guideline.

¹ Alberta Environment and Parks (AEP). 2019. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 198 pp. Referenced guidelines are for coarse-textured soils under Residential/Parkland land use.

² Alberta Environment and Parks (AEP). Environmental Quality Guidelines for Alberta Surface Waters. March 2018. Table 1 Surface water quality guidelines for the protection of freshwater aquatic life (FAL). Most conservative values applied (chronic or acute).

³ Guideline varies with hardness. Values shown based on site hardness range of 333 mg/L to 515 mg/L.

 $^{^4}$ Guideline varies with chloride. Values shown based on site chloride range of 15.2 mg/L to 91.5 mg/L.

⁵ Guideline varies with pH. Values shown based on site pH range of 7.51 to 8.55.

⁶ Guideline varies with pH and temperature. Values shown based on pH range of 7.51 to 8.55 and temperature range of 1.08°C to 4.23°C.

[&]quot;-" No applicable guideline.

Table 2: Groundwater Analytical Results

Table 2: Groundwater Analytical Resul	<u> </u>	<u> </u>	MW	/-02	MW	/-03
Parameter	Unit	Tier 1 Guideline 1,2	5-Dec-2019	21-Nov-2021	5-Dec-2019	21-Nov-2021
Polycyclic Aromatic Hydrocarbons (PAHs)	•					
Naphthalene	mg/L	0.001	-	<0.0010	-	<0.0010
Volatile Fatty/Carboxylic Acids						
Acetic Acid	mg/L	-	<10	-	<10	-
Butyric Acid	mg/L	-	<1.0	-	<1.0	-
Formic Acid	mg/L	-	<50	-	<50	-
Hexanoic Acid	mg/L	-	<1.0	-	<1.0	-
iso-Butyric Acid	mg/L	-	<1.0	-	<1.0	-
Isovaleric acid	mg/L	-	<1.0	-	<1.0	-
Proponic Acid	mg/L	-	<5	-	<5	-
Valeric Acid	mg/L	-	<1.0	-	<1.0	-
Volatile Organic Compounds (VOCs) Bromobenzene		1	10.0010	10.0040	10.0040	<0.0010
Bromochloromethane	mg/L	-	<0.0010 <0.0010	<0.0010 <0.0010	<0.0010 <0.0010	<0.0010
Bromodichloromethane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
Bromoform	mg/L mg/L	-	<0.00050	<0.0010	<0.00050	<0.0010
Bromomethane	mg/L	-	<0.00030	<0.0010	<0.00030	<0.0010
n-Butylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
sec-Butylbenzene	mg/L		<0.0010	<0.0010	<0.0010	<0.0010
tert-Butylbenzene	mg/L	_	<0.0010	<0.0010	<0.0010	<0.0010
Carbon tetrachloride	mg/L	0.00057	<0.00050	<0.00050	<0.00050	<0.00050
Chlorobenzene	mg/L	0.0013	<0.00050	<0.0010	<0.00050	<0.0010
Chloroethane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
Chloroform	mg/L	0.018	<0.00050	<0.0010	<0.00050	<0.0010
Chloromethane	mg/L	-	<0.0010	<0.0050	<0.0010	<0.0050
2-Chlorotoluene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
4-Chlorotoluene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
Dibromochloromethane	mg/L	0.19	<0.00050	<0.0010	<0.00050	<0.0010
1,2-Dibromo-3-chloropropane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
1,2-Dibromoethane	mg/L	-	<0.00050	<0.0010	<0.00050	<0.0010
Dibromomethane	mg/L	-	<0.00050	<0.0010	<0.00050	<0.0010
1,2-Dichlorobenzene	mg/L	0.0007	<0.00050	<0.00050	<0.00050	<0.00050
1,3-Dichlorobenzene	mg/L	-	<0.00050	<0.0010	<0.00050	<0.0010
1,4-Dichlorobenzene	mg/L	0.001	<0.00050	<0.0010	<0.00050	<0.0010
1,1-Dichloroethane	mg/L	-	<0.00050	<0.0010	<0.00050	<0.0010
1,2-Dichloroethane	mg/L	0.005	<0.0010	<0.0010	<0.0010	<0.0010
1,1-Dichloroethene	mg/L	0.014	<0.00050	<0.0010	<0.00050	<0.0010
1,2-Dichloroethene (cis)	mg/L	-	0.0084	0.0075	0.0019	0.0019
1,2-Dichloroethene (trans)	mg/L	-	0.00067	<0.0010	<0.00050	<0.0010
Dichlorodifluoromethane	mg/L	-	<0.00050	<0.0010	<0.00050	<0.0010
1,2-Dichloropropane	mg/L	-	<0.00050	<0.0010 <0.0010	<0.00050	<0.0010 <0.0010
1,3-Dichloropropane 2,2-Dichloropropane	mg/L	-	<0.0010 <0.0010	<0.0010	<0.0010 <0.0010	<0.0010
1,1-Dichloropropene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
1,3-Dichloropropene	mg/L mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
1,3-Dichloropropene [cis]	mg/L	-	<0.00050	<0.0010	<0.00050	<0.0013
1,3-Dichloropropene [trans]	mg/L	-	<0.0010	<0.0010	<0.00030	<0.0010
Hexachlorobutadiene	mg/L	0.0013	<0.0010	<0.0010	<0.0010	<0.0010
p-Isopropyltoluene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
Methyl t-Butyl Ether (MTBE)	mg/L	0.015	-	<0.00050	-	<0.00050
Methylene Chloride	mg/L	0.05	<0.0010	<0.0010	<0.0010	<0.0010
iso-Propylbenzene (cumene)	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
n-Propylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
1,1,1,2-Tetrachloroethane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
1,1,2,2-Tetrachloroethane	mg/L	-	<0.00050	<0.0010	<0.00050	<0.0010
Tetrachloroethene (PCE)	mg/L	0.01	<0.00050	<0.0010	<0.00050	<0.0010
1,2,3-Trichlorobenzene	mg/L	0.008	<0.0010	<0.0010	<0.0010	<0.0010
1,2,4-Trichlorobenzene	mg/L	0.015	<0.0010	<0.0010	<0.0010	<0.0010
1,1,1-Trichloroethane	mg/L	-	<0.00050	<0.0010	<0.00050	<0.0010
1,1,2-Trichloroethane	mg/L	-	<0.00050	<0.0010	<0.00050	<0.0010
Trichloroethene	mg/L	0.005	<0.00050	<0.0010	<0.00050	<0.0010
Trichlorofluoromethane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
Trihalomethanes	mg/L	0.1	-	<0.0020	-	<0.0020
1,2,3-Trichloropropane	mg/L	-	<0.00050	<0.0010	<0.00050	<0.0010
1,2,4-Trimethylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
1,3,5-Trimethylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
Vinyl chloride	mg/L	0.0011	<0.00050	<0.0010	<0.00050	<0.0010

BOLD - Greater than Tier 1 Guideline.

¹ Alberta Environment and Parks (AEP). 2019. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 198 pp. Referenced guidelines are for coarse-textured soils under Residential/Parkland land use.

² Alberta Environment and Parks (AEP). Environmental Quality Guidelines for Alberta Surface Waters. March 2018. Table 1 Surface water quality guidelines for the protection of freshwater aquatic life (FAL). Most conservative values applied (chronic or acute).

 $^{^3}$ Guideline varies with hardness. Values shown based on site hardness range of 333 mg/L to 515 mg/L.

⁴ Guideline varies with chloride. Values shown based on site chloride range of 15.2 mg/L to 91.5 mg/L.

 $^{^{\}rm 5}$ Guideline varies with pH. Values shown based on site pH range of 7.51 to 8.55.

⁶ Guideline varies with pH and temperature. Values shown based on pH range of 7.51 to 8.55 and temperature range of 1.08°C to 4.23°C.

[&]quot;-" No applicable guideline.

Table 2: Groundwater Analytical Results

Parameter	Unit	Tier 1 Guideline 1,2		V-04	Duplicate	BH8	22MW05
			5-Dec-2019	21-Nov-2021	21-Nov-2021	21-Nov-2021	1-Feb-2022
Field Testing	^^	<u> </u>	4.00	6 22	1	E 4	0.0
Field Temperature	°C	-	4.23	6.33	-	5.4	3.2
Field Electric Conductivity	μS/cm	-	490	813	-	1,181	1035
Field pH	pH Units	6.5 to 8.5	8.55	7.50	-	6.63	7.51
Routine							
рН	pH Units	6.5 to 8.5	8.05	7.87	7.94	7.73	7.19
Electrical Conductivity (EC)	μS/cm	-	710	834	829	1,380	1030
Total Dissolved Solids (TDS)	mg/L	500	423	524	519	876	684
Hardness as CaCO ₃	mg/L	-	333	378	369	686	452
Alkalinity (total as CaCO ₃)	mg/L	-	396	488	483	672	580
Bicarbonate	mg/L	_	483	596	589	820	708
Carbonate	mg/L	_	<5.0	<1	<1	<1	<1.0
Hydroxide	mg/L	-	<5.0		-		<1.0
Calcium				95.9	92.5	178	
	mg/L	-	80.2				102
Magnesium	mg/L	-	32.2	33.6	33.6	58.7	47.9
Potassium	mg/L	-	3.54	3.59	3.58	3.97	8.54
Sodium	mg/L	200	48	56.2	56.2	58.7	65.3
Chloride	mg/L	120	15.2	18.5	19.6	70.2	45.0
Fluoride	mg/L	1.5	0.126	0.23	0.229	0.153	0.132
Sulphate	mg/L	429 ³	5.6	1.36	1.71	81.7	7.1
Ionic Balance	N/A	-	104	100	100	101	100
Nutrients							
Ammonia as N	mg/L	0.392 to 5.372 ⁶	0.213	0.204	0.257	0.589	3.66
Nitrate (as NO ₃ -N)	mg/L	3	0.022	<0.020	<0.10	<0.10	0.170
Nitrite (as NO ₂ -N)	mg/L	0.20 4	<0.010	<0.010	<0.050	<0.050	<0.050
Nitrate and Nitrite (as N)		-	<0.022	-	-	-	0.170
Total Kjeldahl Nitrogen (TKN)	mg/L		3.0	-	-		
	mg/L	-	3.0	-	-	-	-
Carbon				1	ı		
Dissolved Organic Carbon (DOC)	mg/L	-	10.1	-	-	-	-
Dissolved Metals							
Aluminum	mg/L	0.050 ⁵	0.162	<0.0010	<0.0010	0.0055	0.0032
Antimony	mg/L	0.006	<0.0001	<0.00010	<0.00010	<0.00050	<0.00010
Arsenic	mg/L	0.005	0.00832	0.0107	0.0105	0.0016	0.0275
Barium	mg/L	1	0.752	0.777	0.77	0.57	1.25
Beryllium	mg/L	-	-	<0.000020	<0.000020	<0.00010	-
Bismuth	mg/L	_	_	<0.000050	<0.000050	<0.00025	_
Boron	mg/L	1.5	0.029	0.036	0.035	0.059	0.064
Cadmium	mg/L	0.00037 3	0.000403	0.0000114	0.0000103	0.0000634	<0.0000050
Chromium	mg/L	0.00037	0.00024	<0.00050	<0.00050	<0.0025	<0.00050
Cobalt		0.03	0.00024	0.00257	0.00255	0.00357	<0.00030
	mg/L		-				-
Copper	mg/L	0.007	0.00233	0.0007	<0.00020	<0.0010	0.00042
Iron	mg/L	0.3	2.94	4.00	3.91	1.07	16.1
Lead	mg/L	0.0070 ³	0.000355	<0.000050	<0.000050	<0.00025	0.000051
Lithium	mg/L	-	-	0.0146	0.0138	0.0194	-
Manganese	mg/L	0.05	0.805	0.865	0.869	1.52	0.509
Mercury	mg/L	0.000005	<0.0000050	<0.000050	<0.000050	<0.000050	0.0000072
Molybdenum	mg/L	-	-	0.00346	0.0033	0.00123	-
Nickel	mg/L	0.144 to 0.209 ³	0.00333	0.00271	0.00265	0.0048	0.00081
Phosphorus	mg/L	-	3.15	<0.05	<0.05	<0.25	-
Selenium	mg/L	0.002	0.000138	0.000138	0.000167	<0.00025	0.000174
Silicon	mg/L	- 0.002	-	6.26	6.13	6.47	5.000174
Silver			-0.000040			<0.000050	-0.000040
	mg/L	0.0001	<0.000010	<0.000010	<0.000010		<0.000010
Strontium	mg/L	-	-	0.651	0.619	0.694	-
Sulphur	mg/L	-	-	0.52	0.52	29.8	-
Thallium	mg/L	-	-	0.000012	0.000013	<0.000050	-
Tin	mg/L	-	-	<0.00010	<0.00010	<0.00050	-
Titanium	mg/L	-	-	<0.00030	<0.00030	<0.0015	-
Uranium	mg/L	0.015	0.0013	0.00179	0.00176	0.00705	0.000605
Vanadium	mg/L	-	-	<0.00050	<0.00050	<0.0025	-
Zinc	mg/L	0.03	0.0036	0.0029	0.0018	<0.0050	0.0039
Zirconium	mg/L	-	-	0.00027	0.00027	<0.0010	-
Organics	ıə, -	1	<u> </u>		1		<u> </u>
AOX	mg/L	_	ND	_	_	_	
Hydrocarbons	I IIIg/L		IAD				
	n	0.005	-0.000E0	-0.00050	40.00050	40.00050	40.00050
Benzene	mg/L	0.005	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Toluene	mg/L	0.021	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Ethylbenzene	mg/L	0.0016	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Xylene (o)	mg/L	-	<0.00050	<0.00030	<0.00030	<0.00030	<0.00030
Xylenes (m & p)	mg/L	-	<0.00050	<0.00040	<0.00040	<0.00040	<0.00040
Xylenes Total	mg/L	0.02	<0.00071	<0.00050	<0.00050	<0.00050	<0.00050
Styrene	mg/L	0.072	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
F1 (C ₆ -C ₁₀)	mg/L	-	<0.10	-	-	-	-
		0.81	<0.10	-	-	-	-
E1 (CC) _ RTEY			<u 111<="" td=""><td>-</td><td>-</td><td>-</td><td>-</td></u>	-	-	-	-
F1 (C ₆ -C ₁₀) - BTEX	mg/L					 	
F1 (C ₆ -C ₁₀) - BTEX F2 (C ₁₀ -C ₁₆) Total BTEX	mg/L mg/L mg/L	1.1	<0.10	- <0.0010	- <0.0010	- <0.0010	- <0.0010

BOLD - Greater than Tier 1 Guideline.

¹ Alberta Environment and Parks (AEP). 2019. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 198 pp. Referenced guidelines are for coarse-textured soils under Residential/Parkland land use.

² Alberta Environment and Parks (AEP). Environmental Quality Guidelines for Alberta Surface Waters. March 2018. Table 1 Surface water quality guidelines for the protection of freshwater aquatic life (FAL). Most conservative values applied (chronic or acute).

 $^{^3}$ Guideline varies with hardness. Values shown based on site hardness range of 333 mg/L to 515 mg/L.

 $^{^4}$ Guideline varies with chloride. Values shown based on site chloride range of 15.2 mg/L to 91.5 mg/L.

⁵ Guideline varies with pH. Values shown based on site pH range of 7.51 to 8.55.

⁶ Guideline varies with pH and temperature. Values shown based on pH range of 7.51 to 8.55 and temperature range of 1.08°C to 4.23°C.

[&]quot;-" No applicable guideline.

Table 2: Groundwater Analytical Results

Table 2: Groundwater Analytical Result		10	MW	V-04	Duplicate	BH8	22MW05
Parameter	Unit	Tier 1 Guideline ^{1,2}	5-Dec-2019	21-Nov-2021	21-Nov-2021	21-Nov-2021	1-Feb-2022
Polycyclic Aromatic Hydrocarbons (PAHs)				l .	l	l	
Naphthalene	mg/L	0.001	-	<0.0010	<0.0010	<0.0010	<0.0010
Volatile Fatty/Carboxylic Acids							
Acetic Acid	mg/L	-	<10	-	-	-	-
Butyric Acid	mg/L	-	<1.0	-	-	-	-
Formic Acid	mg/L	-	<50	-	-	-	-
Hexanoic Acid	mg/L	-	<1.0	-	-	-	-
iso-Butyric Acid	mg/L	-	<1.0	-	-	-	-
Isovaleric acid	mg/L	-	<1.0	-	-	-	-
Proponic Acid	mg/L	-	<5	-	-	-	-
Valeric Acid	mg/L	-	<1.0	-	-	-	-
Volatile Organic Compounds (VOCs)		1	10.0040	<0.0010	<0.0010	<0.0010	10.0040
Bromobenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Bromochloromethane Bromodichloromethane	mg/L	-	<0.0010	<0.0010 <0.0010	<0.0010 <0.0010	<0.0010 <0.0010	<0.0010
Bromoform	mg/L	-	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010
Bromomethane	mg/L mg/L	-	<0.00050 <0.0010	<0.0010	<0.0010	<0.0010	<0.0010 <0.0010
n-Butylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
sec-Butylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
tert-Butylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Carbon tetrachloride	mg/L	0.00057	<0.0010	<0.00050	<0.00050	<0.00050	<0.0010
Chlorobenzene	mg/L	0.0013	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010
Chloroethane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Chloroform	mg/L	0.018	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010
Chloromethane	mg/L	-	<0.0010	<0.0050	<0.0050	<0.0050	<0.0050
2-Chlorotoluene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
4-Chlorotoluene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Dibromochloromethane	mg/L	0.19	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010
1,2-Dibromo-3-chloropropane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,2-Dibromoethane	mg/L	-	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010
Dibromomethane	mg/L	-	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010
1,2-Dichlorobenzene	mg/L	0.0007	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
1,3-Dichlorobenzene	mg/L	-	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010
1,4-Dichlorobenzene	mg/L	0.001	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010
1,1-Dichloroethane	mg/L	-	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010
1,2-Dichloroethane	mg/L	0.005	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,1-Dichloroethene	mg/L	0.014	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010
1,2-Dichloroethene (cis) 1,2-Dichloroethene (trans)	mg/L	-	<0.0010	<0.0010	<0.0010	0.0021	<0.0010
Dichlorodifluoromethane	mg/L	-	<0.00050	<0.0010 <0.0010	<0.0010 <0.0010	<0.0010 <0.0010	<0.0010
1,2-Dichloropropane	mg/L	-	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010
1,3-Dichloropropane	mg/L	-	<0.00050 <0.0010	<0.0010	<0.0010	<0.0010	<0.0010 <0.0010
2,2-Dichloropropane	mg/L mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,1-Dichloropropene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,3-Dichloropropene	mg/L	-	-0.0010	<0.0015	<0.0015	<0.0015	<0.0010
1,3-Dichloropropene [cis]	mg/L	-	<0.00050	<0.0010	<0.0010	<0.0010	<0.0013
1,3-Dichloropropene [trans]	mg/L	_	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Hexachlorobutadiene	mg/L	0.0013	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
p-Isopropyltoluene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Methyl t-Butyl Ether (MTBE)	mg/L	0.015	-	<0.00050	<0.00050	<0.00050	<0.00050
Methylene Chloride	mg/L	0.05	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
iso-Propylbenzene (cumene)	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
n-Propylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,1,1,2-Tetrachloroethane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,1,2,2-Tetrachloroethane	mg/L	-	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010
Tetrachloroethene (PCE)	mg/L	0.01	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010
1,2,3-Trichlorobenzene	mg/L	0.008	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,2,4-Trichlorobenzene	mg/L	0.015	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,1,1-Trichloroethane	mg/L	-	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010
1,1,2-Trichloroethane	mg/L	-	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010
Trichloroethene	mg/L	0.005	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010
Trichlorofluoromethane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Trihalomethanes	mg/L	0.1	-	<0.0020	<0.0020	<0.0020	<0.0020
1,2,3-Trichloropropane	mg/L	-	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010
1,2,4-Trimethylbenzene	mg/L	-	<0.0010	<0.0010 <0.0010	<0.0010	<0.0010	<0.0010
1,3,5-Trimethylbenzene	mg/L	- 0.0044	<0.0010		<0.0010	<0.0010	<0.0010
Vinyl chloride Notes:	mg/L	0.0011	<0.00050	<0.0010	<0.0010	0.0010	<0.0010

BOLD - Greater than Tier 1 Guideline.

¹ Alberta Environment and Parks (AEP). 2019. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 198 pp. Referenced guidelines are for coarse-textured soils under Residential/Parkland land use.

² Alberta Environment and Parks (AEP). Environmental Quality Guidelines for Alberta Surface Waters. March 2018. Table 1 Surface water quality guidelines for the protection of freshwater aquatic life (FAL). Most conservative values applied (chronic or acute).

 $^{^3}$ Guideline varies with hardness. Values shown based on site hardness range of 333 mg/L to 515 mg/L.

⁴ Guideline varies with chloride. Values shown based on site chloride range of 15.2 mg/L to 91.5 mg/L.

 $^{^{\}rm 5}$ Guideline varies with pH. Values shown based on site pH range of 7.51 to 8.55.

⁶ Guideline varies with pH and temperature. Values shown based on pH range of 7.51 to 8.55 and temperature range of 1.08°C to 4.23°C.

[&]quot;-" No applicable guideline.

Table 3: Groundwater Quality			MW-04	DUPLICATE	DDD /0/ \
Parameter	Unit	RDL	21-Nov-2021	21-Nov-2021	RPD (%)
Routine					
pΗ	pH Units	0.1	7.87	7.94	0
Electrical Conductivity (EC)	μS/cm	1	834	829	0
Total Dissolved Solids (TDS)	mg/L	1	524	519	0
Hardness as CaCO ₃	mg/L	0.6	378	369	1
Alkalinity (total as CaCO ₃)	mg/L	1	488	483	1
Bicarbonate	mg/L	1	596	589	1
Carbonate	mg/L	1	<1	<1	-
Hydroxide	mg/L	1	-	-	-
Calcium	mg/L	0.05	95.9	92.5	2
//agnesium	mg/L	0.1	33.6	33.6	0
Potassium	mg/L	0.1	3.59	3.58	0
Sodium	mg/L	0.05	56.2	56.2	0
Chloride	mg/L	0.5	18.5	19.6	3
-luoride	mg/L	0.02	0.23	0.229	0
Sulphate	mg/L	0.3	1.36	1.71	13
onic Balance	N/A	0.01	100	100.1	0
lutrients					
Ammonia as N	mg/L	0.005	0.204	0.257	13
Nitrate (as NO ₃ -N)	mg/L	0.02	<0.020	<0.10	-
Nitrite (as NO ₂ -N)	mg/L	0.01	<0.010	<0.050	-
Dissolved Metals	j 5. –	-	1		
Aluminum	mg/L	0.001	<0.0010	<0.0010	-
Antimony	mg/L	0.0001	<0.00010	<0.00010	-
Arsenic	mg/L	0.0001	0.0107	0.0105	1
Barium	mg/L	0.0001	0.777	0.770	0
Beryllium	mg/L	0.00002	<0.000020	<0.000020	-
Bismuth	mg/L	0.00005	<0.000050	<0.000050	-
Boron	mg/L	0.01	0.036	0.035	1
Cadmium	mg/L	0.000005	0.0000114	0.0000103	5
Chromium	mg/L	0.0005	<0.00050	<0.00050	-
Cobalt	mg/L	0.0001	0.00257	0.00255	0
Copper	mg/L	0.0002	0.0007	<0.00020	-
ron	mg/L	0.01	4.00	3.91	1
.ead	mg/L	0.00005	<0.000050	<0.000050	-
<u> ithium</u>	mg/L	0.001	0.0146	0.0138	3
Manganese	mg/L	0.0001	0.865	0.869	0
Mercury	mg/L	0.000005	<0.0000050	<0.000050	-
Molybdenum	mg/L	0.00005	0.00346	0.0033	2
lickel	mg/L	0.0005	0.00271	0.00265	1
Phosphorus	mg/L	0.05	<0.05	<0.05	-
Selenium	mg/L	0.00005	0.000138	0.000167	11
Silicon	mg/L	0.05	6.26	6.13	1
Silver Strantium	mg/L	0.00001	<0.000010	<0.000010	-
Strontium	mg/L	0.0002	0.651	0.619	2
Sulphur Thallium	mg/L	0.5	0.52	0.52	0
Thallium Tin	mg/L	0.00001 0.0001	0.000012 <0.00010	0.000013 <0.00010	4
in Fitanium	mg/L	0.0001	<0.00010	<0.00010	-
Jranium Jranium	mg/L mg/L	0.0003	0.00030	0.00176	- 1
/anadium	mg/L mg/L	0.0005	<0.00179	<0.00176	I
zanadium Zinc	mg/L	0.0005	0.0029	0.0018	 19
irconium	mg/L	0.0001	0.0029	0.0018	0
lydrocarbons	l IIIg/L	0.0002	0.00021	0.00021	<u> </u>
Benzene	mg/L	0.0005	<0.00050	<0.00050	-
oluene	mg/L	0.0005	<0.00050	<0.00050	<u> </u>
Ethylbenzene	mg/L	0.0005	<0.00050	<0.00050	<u>-</u>
(ylene (o)	mg/L	0.0003	<0.00030	<0.00030	<u> </u>
Kylenes (m & p)	mg/L	0.0003	<0.00030	<0.00030	<u> </u>
(γlenes (π α ρ) (γlenes Total	mg/L	0.0004	<0.00040	<0.00050	-
Styrene	mg/L	0.0005	<0.00050	<0.00050	
Total BTEX	mg/L	0.0003	<0.00030	<0.00030	<u> </u>
Notes:	my/L	0.001	\0.00 TO	\U.UU IU	-

Notes:

RDL - Reportable detection limit.

RPD - Relative Percentage Difference calculated as RPD(%)=(|V1-V2|)/[(V1+V2)/2])*100 where V1,V2 = concentrations of parent and duplicate sample, respectively.

1

BOLD - RPD value greater than 20%.

Shaded - Detect Value in Blank Sample.

[&]quot;-" Indicates RPD not calculated. RPDs have only been considered where both concentrations are greater than 5 times the RDL. N/A - Not applicable.

Table 3: Groundwater Quality Assurance/Quality Control Analytical Results

Table 3: Groundwater Quality Assurance/Quality Control Analytical Results							
Parameter	Unit	RDL	MW-04	DUPLICATE	RPD (%)		
		1.0-	21-Nov-2021	21-Nov-2021	2 (73)		
Polycyclic Aromatic Hydrocarbons (P		1 0 004	10.0040	I 10 0040 I			
Naphthalene	mg/L	0.001	<0.0010	<0.0010	-		
Volatile Organic Compounds (VOCs)		0.004	-0.0040	10.0040			
1,1,1,2-Tetrachloroethane	mg/L	0.001	<0.0010	<0.0010	-		
1,1,1-Trichloroethane	mg/L	0.001	<0.0010	<0.0010	-		
1,1,2,2-Tetrachloroethane	mg/L	0.001	<0.0010	<0.0010	-		
1,1,2-Trichloroethane	mg/L	0.001	<0.0010	<0.0010	-		
1,1-Dichloroethane	mg/L	0.001	<0.0010	<0.0010	-		
1,1-Dichloroethene	mg/L	0.001	<0.0010	<0.0010	-		
1,1-Dichloropropene	mg/L	0.001	<0.0010	<0.0010	-		
1,2,3-Trichlorobenzene	mg/L	0.001	<0.0010	<0.0010	-		
1,2,3-Trichloropropane	mg/L	0.001	<0.00050	<0.00050	-		
1,2,4-Trichlorobenzene	mg/L	0.001	<0.0010	<0.0010	-		
1,2,4-Trimethylbenzene	mg/L	0.001	<0.0010	<0.0010	-		
1,2-Dibromo-3-chloropropane	mg/L	0.001	<0.0010	<0.0010	-		
1,2-Dibromoethane	mg/L	0.001	<0.0050	<0.0050	-		
1,2-Dichlorobenzene	mg/L	0.0005	<0.0010	<0.0010	-		
1,2-Dichloroethane	mg/L	0.001	<0.0010	<0.0010	-		
1,2-Dichloroethene (cis)	mg/L	0.001	<0.0010	<0.0010	-		
1,2-Dichloroethene (trans)	mg/L	0.001	<0.0010	<0.0010	-		
1,2-Dichloropropane	mg/L	0.001	<0.0010	<0.0010	-		
1,3,5-Trimethylbenzene	mg/L	0.001	<0.0010	<0.0010	-		
1,3-Dichlorobenzene	mg/L	0.001	<0.00050	<0.00050	-		
1,3-Dichloropropane	mg/L	0.001	<0.0010	<0.0010	-		
1,3-Dichloropropene	mg/L	0.0015	<0.0010	<0.0010	-		
1,3-Dichloropropene [cis]	mg/L	0.001	<0.0010	<0.0010	-		
1,3-Dichloropropene [trans]	mg/L	0.001	<0.0010	<0.0010	-		
1,4-Dichlorobenzene	mg/L	0.001 0.001	<0.0010 <0.0010	<0.0010 <0.0010	-		
2,2-Dichloropropane	mg/L		<0.0010	<0.0010	-		
2-Chlorotoluene	mg/L	0.001 0.001	<0.0010	<0.0010	-		
4-Chlorotoluene Bromobenzene	mg/L	0.001	<0.0010	<0.0010	-		
	mg/L			<0.0010	-		
Bromochloromethane Bromodichloromethane	mg/L	0.001 0.001	<0.0010 <0.0010	<0.0010	-		
Bromoform	mg/L	0.001	<0.0010	<0.0010	-		
Bromomethane	mg/L	0.001	<0.0010	<0.0010	-		
Carbon tetrachloride	mg/L	0.0005	<0.0015	<0.0015	-		
Chlorobenzene	mg/L mg/L	0.0003	<0.0010	<0.0010	-		
Chloroethane	mg/L	0.001	<0.0010	<0.0010	-		
Chloroform	mg/L	0.001	<0.0010	<0.0010	-		
Chloromethane	mg/L	0.005	<0.0010	<0.0010			
Dibromochloromethane	mg/L	0.003	<0.0010	<0.0010	-		
Dibromomethane	mg/L	0.001	<0.0010	<0.0010	<u> </u>		
Dichlorodifluoromethane	mg/L	0.001	<0.0010	<0.0010	<u> </u>		
Hexachlorobutadiene	mg/L	0.001	<0.0010	<0.0010	<u>-</u>		
iso-Propylbenzene (cumene)	mg/L	0.001	<0.0010	<0.0010	<u>-</u>		
Methyl t-Butyl Ether (MTBE)	mg/L	0.0005	<0.0010	<0.0010	<u>-</u>		
Methylene Chloride	mg/L	0.0003	<0.0010	<0.0010	-		
n-Butylbenzene	mg/L	0.001	<0.0010	<0.0010			
n-Propylbenzene	mg/L	0.001	<0.0010	<0.0010	<u> </u>		
p-Isopropyltoluene	mg/L	0.001	<0.0010	<0.0010			
sec-Butylbenzene	mg/L	0.001	<0.0010	<0.0010	<u> </u>		
tert-Butylbenzene	mg/L	0.001	<0.0010	<0.0010	<u> </u>		
Tetrachloroethene	mg/L	0.001	<0.0010	<0.0010	<u> </u>		
Trichloroethene	mg/L	0.001	<0.0020	<0.0020	<u> </u>		
Trichlorofluoromethane	mg/L	0.001	<0.0010	<0.0010	-		
Trihalomethanes	mg/L	0.002	<0.0010	<0.0010	<u> </u>		
Vinyl chloride	mg/L	0.002	<0.0010	<0.0010	-		
Notac	my/L	0.001	-0.0010	-0.0010			

Notes:

RDL - Reportable detection limit.

 $RPD - Relative\ Percentage\ Difference\ calculated\ as\ RPD(\%) = (|V1-V2|)/[(V1+V2)/2])^* \\ 100\ where\ V1, V2 = concentrations\ of\ parent\ and\ variable \\ 100\ where\ V1, V2 = concentrations\ of\ parent\ and\ variable \\ 100\ where\ V1, V2 = concentrations\ of\ parent\ and\ variable \\ 100\ where\ V1, V2 = concentrations\ of\ parent\ and\ variable \\ 100\ where\ V1, V2 = concentrations\ of\ parent\ and\ variable \\ 100\ where\ V1, V2 = concentrations\ of\ parent\ and\ variable \\ 100\ where\ V1, V2 = concentrations\ of\ parent\ and\ variable \\ 100\ where\ V1, V2 = concentrations\ of\ parent\ and\ variable \\ 100\ where\ V1, V2 = concentrations\ of\ parent\ and\ variable \\ 100\ where\ V1, V2 = concentrations\ of\ parent\ and\ variable \\ 100\ where\ V1, V2 = concentrations\ of\ parent\ and\ variable \\ 100\ where\ V1, V2 = concentrations\ of\ parent\ and\ variable \\ 100\ where\ V1, V2 = concentrations\ of\ parent\ and\ variable \\ 100\ where\ V1, V2 = concentrations\ of\ parent\ and\ variable \\ 100\ where\ V1, V2 = concentrations\ of\ parent\ and\ variable \\ 100\ where\ V1, V2 = concentrations\ of\ parent\ and\ variable \\ 100\ where\ V1, V2 = concentrations\ of\ parent\ and\ variable \\ 100\ where\ V1, V2 = concentrations\ of\ parent\ and\ variable \\ 100\ where\ V1, V2 = concentrations\ of\ parent\ and\ variable \\ 100\ where\ V1, V2 = concentrations\ of\ parent\ and\ variable \\ 100\ where\ variable \\ 100\ whe$ duplicate sample, respectively.

"-" Indicates RPD not calculated. RPDs have only been considered where both concentrations are greater than 5 times the RDL. N/A - Not applicable.

BOLD - RPD value greater than 20%.

Shaded - Detect Value in Blank Sample.

Table 4: Soil Vapour Monitoring Results

											Gas Well											
Parameter		VW-01						VW-02								VW-03						
	Aug-13	May-19	Jun-19	Sep-19	Dec-19	Nov-21	Jun-22	Aug-13	May-19	Jun-19	Sep-19	Dec-19	Nov-21	Jun-22	Aug-13	May-19	Jun-19	Sep-19	Dec-19	Nov-21	Jun-22	
Pressure (kPa) ¹	-						-	0.0	0.0	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0	0.0		
CH ₄ (%)	0.0						0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0		
CO (ppm) ²	-	Could not locate				-	0.0	0.0	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0	0.0			
CO ₂ (%)	5.1					2.4	0.7	1.3	2.2	0.3	1.0	0.7	1.3	0.4	0.9	1.4	0.2	0.6	1.7			
O ₂ (%)	13.4					20.9	20.2	18.5	19.2	22.1	21.1	20.6	21.6	20.1	19.2	19.7	21.7	20.7	15.7			
Balance (% v/v)	81.5					76.7	79.1	80.2	78.6	77.6	78.0	78.7	77.2	79.4	79.9	78.9	78.0	78.7	82.6			
Top of Screen (m)	1.8								2.8							1.6						
Bottom of Screen (m)	2.1								3.0								1.9					
Static Water Level (mbtoc) ³								Dry	Dry	Dry	Dry	Dry	Dry		Dry	Dry	Dry	Dry	Dry	Dry		
Depth to Bottom (m)	2.10							3.00	3.77	3.77	3.77	2.82	3.84	3.77	2.00	3.01	3.01	3.00	2.82	3.08	3.03	
Stick up (m)			The state of the s						0.68	0.68	0.82	0.89	0.84	0.84		0.82	0.82	0.88	0.89	0.93	0.93	

	Gas Well														
Parameter				VW-04			VW-05								
	Aug-13	May-19	Jun-19	Sep-19	Dec-19	Nov-21	Jun-22	Aug-13	May-19	Jun-19	Sep-19	Dec-19	Nov-21	Jun-22	
Pressure (kPa) ¹	-	0.0	0.0	0.0	0.1	-23.9	0.0	-	0.0	0.0	0.0	0.1	0.0	0.0	
CH ₄ (%)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CO (ppm) ²	-	0.0	0.0	0.0	0.0	Frozen	0.0	-	0.0	0.0	0.0	0.0	0.0	0.1	
CO ₂ (%)	3.0	5.0	4.0	3.4	0.1		1.7	3.6	3.0	3.0	8.0	1.0	0.5	0.0	
O ₂ (%)	21.6	13.5	14.5	16.2	18.6		15.7	10.8	12.4	10.4	1.6	19.3	21.5	20.8	
Balance (% v/v)	77.2	81.5	81.5	80.4	81.3		82.6	85.6	84.5	86.6	90.4	79.6	78.1	79.2	
Top of Screen (m)				2.8			2.5								
Bottom of Screen (m)				3.0			2.7								
Static Water Level (mbtoc) ³		Dry	Dry	Dry	Frozen	Frozen	Dry	-	Dry	Dry	Dry	Dry	Dry	Dry	
Depth to Bottom (m)	3.00	2.93	2.91	2.93	Frozen	Frozen	2.94	2.70	2.64	2.64	2.76	2.45	2.71	2.65	
Stick up (m)		-0.14	-0.14	-0.02	-0.04	-0.04	-0.01	-	-0.09	-0.09	-0.01	-0.01	-0.01	-0.04	

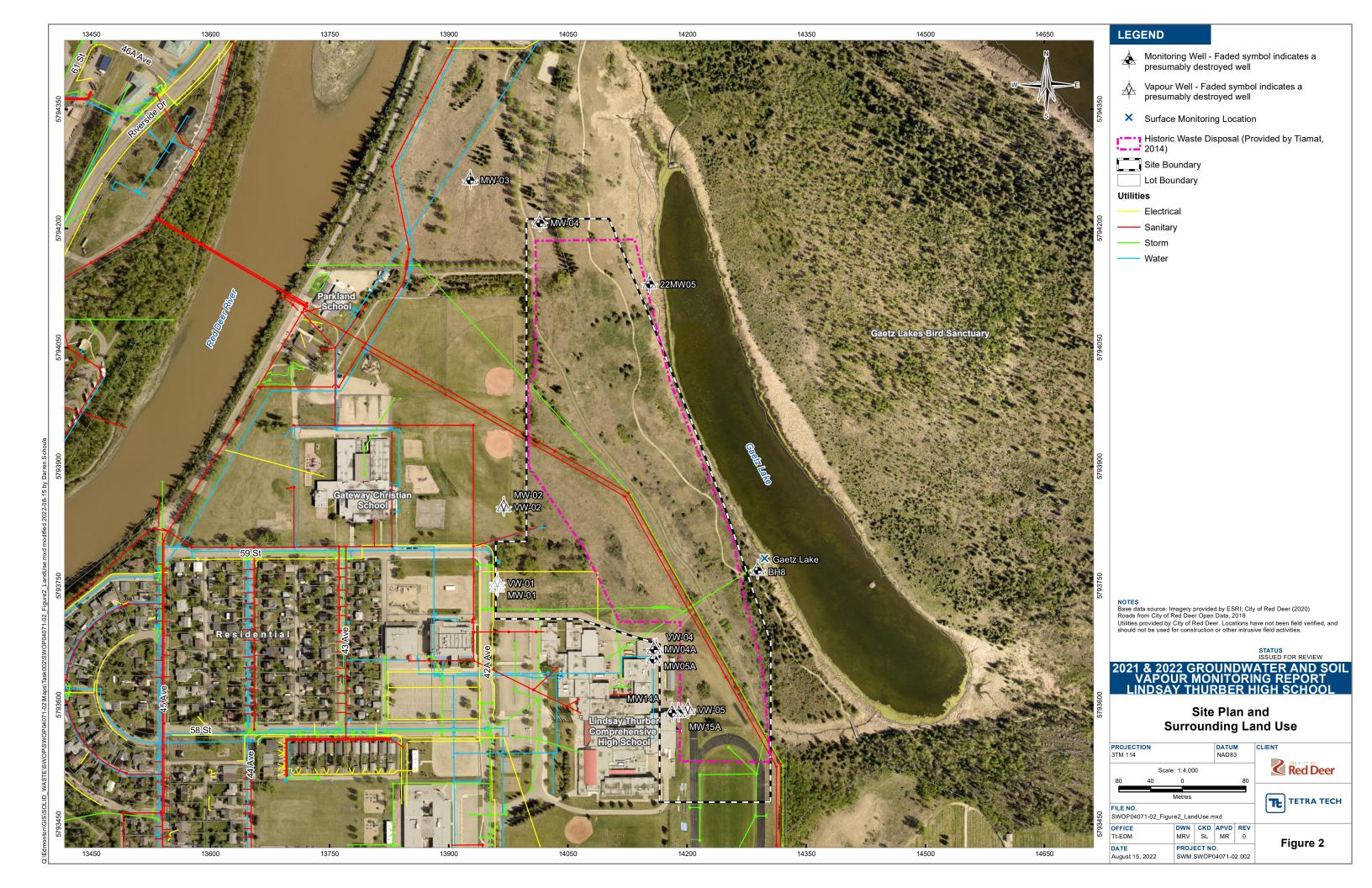
Notes:

TE TETRA TECH

¹ Kpa - Kilopascal.

³ pmb- Parts per million.

³ mbtoc - Meters below top of casing.


N/A - Not applicable - well can not be accessed to obtain measurement.

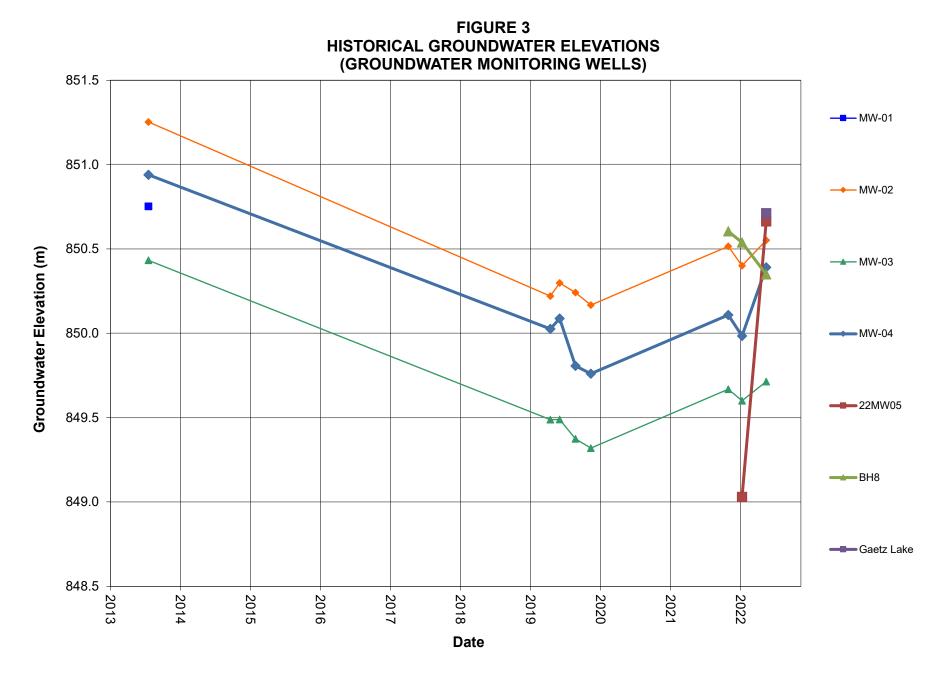
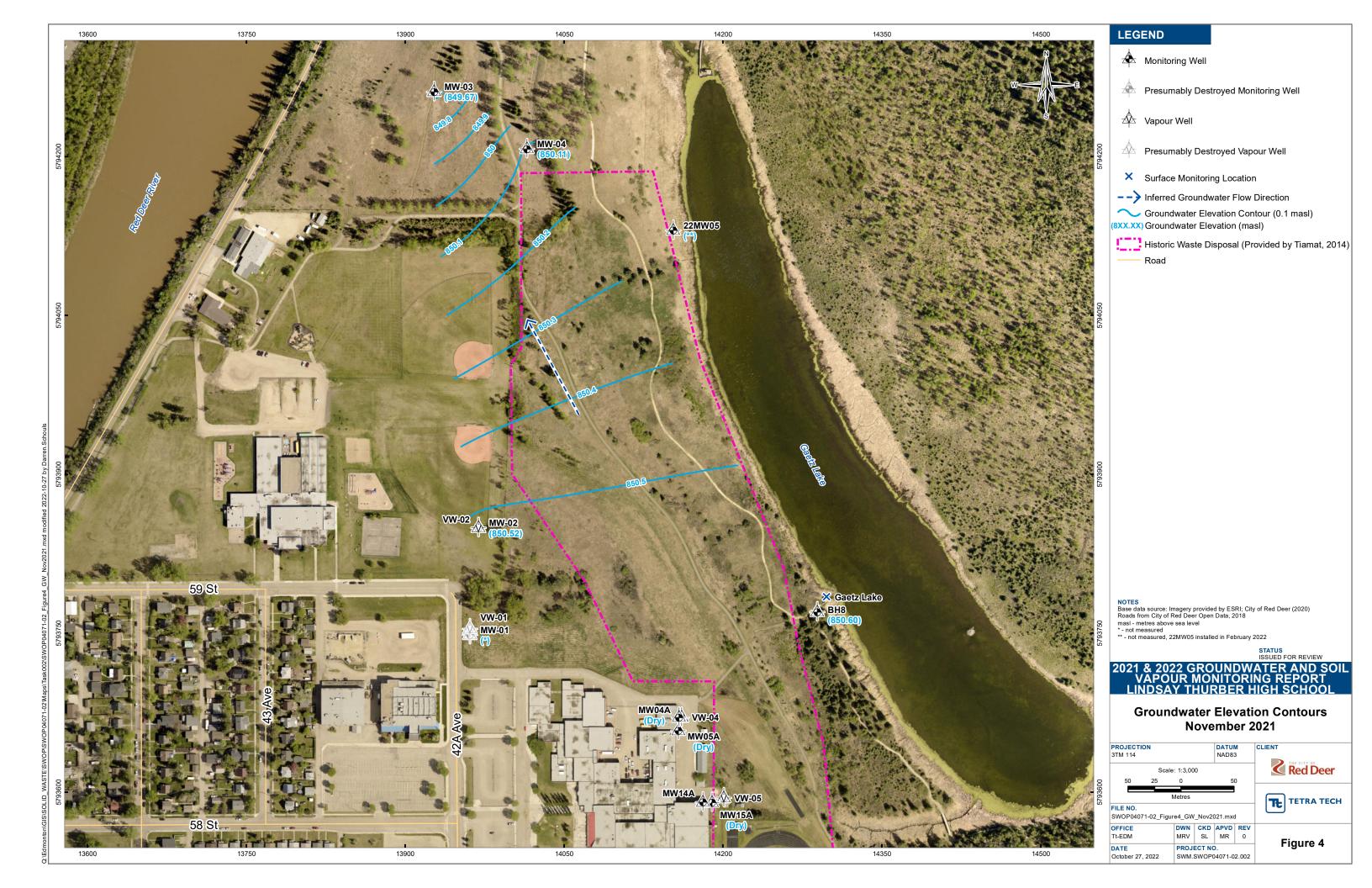
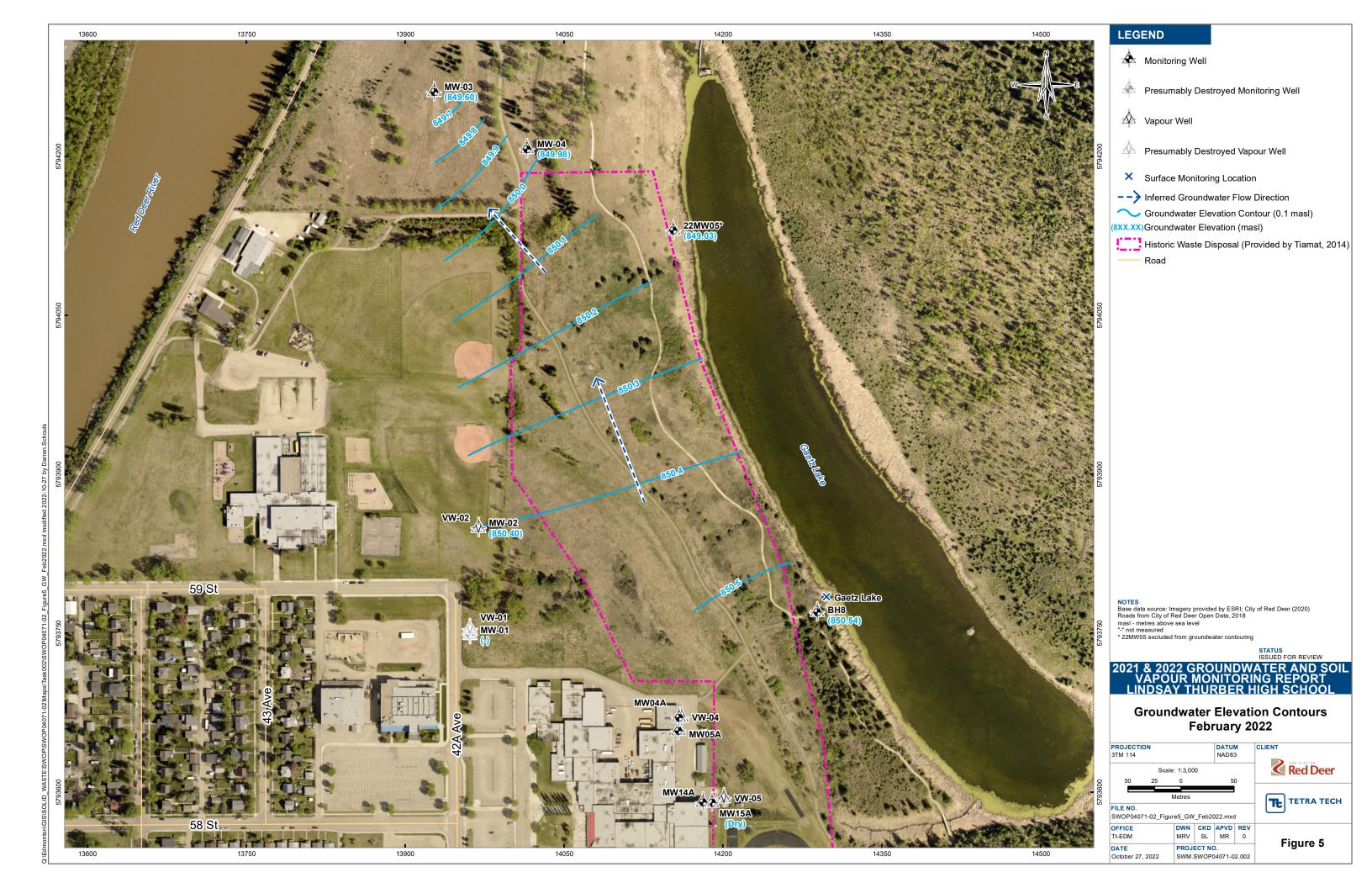
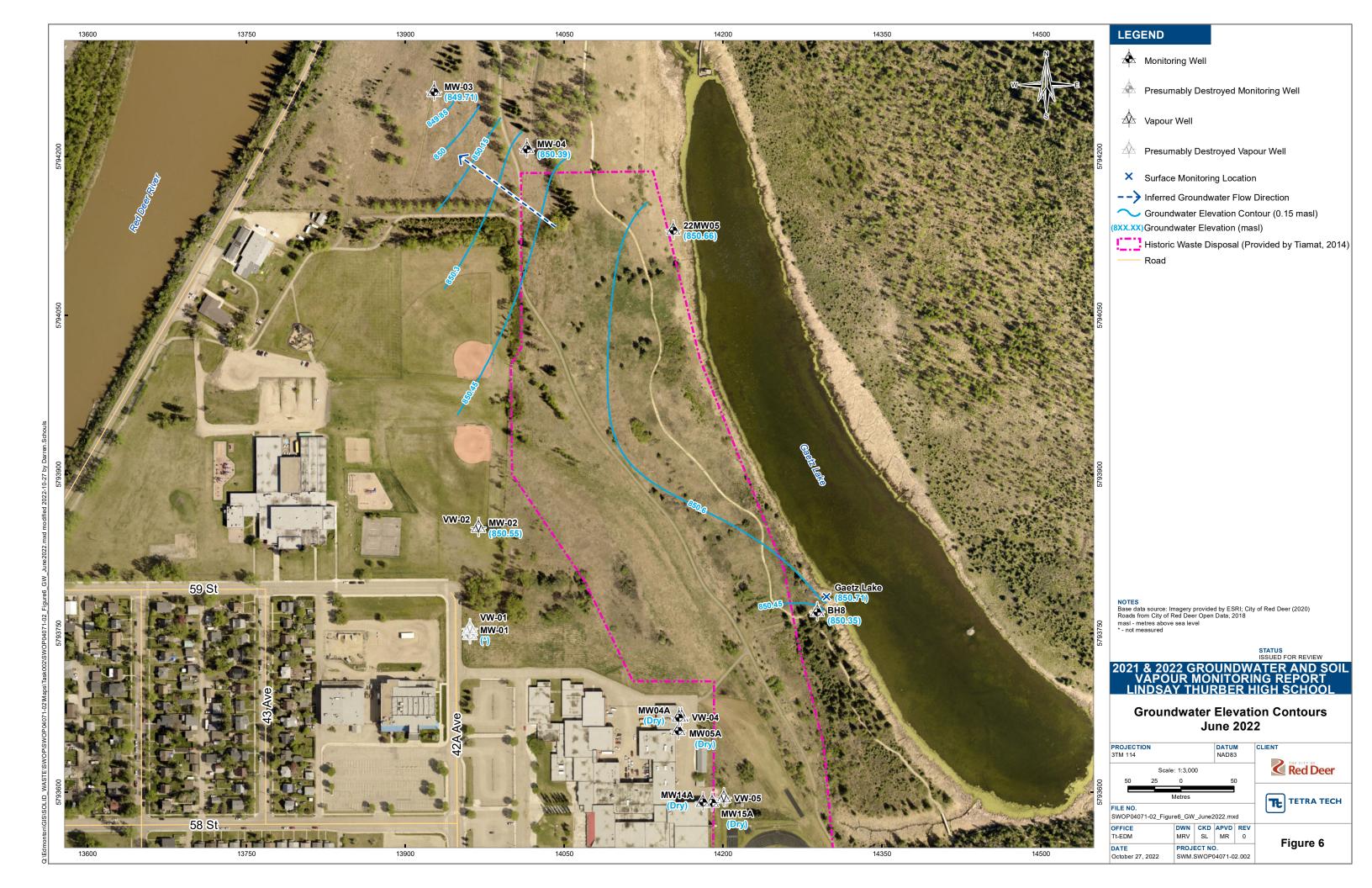

FIGURES

Figure 1	Site Location Plan
Figure 2	Site Plan and Surrounding Land Use
Figure 3	Historical Groundwater Elevations (Groundwater Monitoring Wells
Figure 4	Groundwater Elevation Contours – November 2021
Figure 5	Groundwater Elevation Contours – February 2022
Figure 6	Groundwater Elevation Contours – June 2022







APPENDIX A

TETRA TECH'S LIMITATIONS ON THE USE OF THIS DOCUMENT

LIMITATIONS ON USE OF THIS DOCUMENT

GEOENVIRONMENTAL

1.1 USE OF DOCUMENT AND OWNERSHIP

This document pertains to a specific site, a specific development, and a specific scope of work. The document may include plans, drawings, profiles and other supporting documents that collectively constitute the document (the "Professional Document").

The Professional Document is intended for the sole use of TETRA TECH's Client (the "Client") as specifically identified in the TETRA TECH Services Agreement or other Contractual Agreement entered into with the Client (either of which is termed the "Contract" herein). TETRA TECH does not accept any responsibility for the accuracy of any of the data, analyses, recommendations or other contents of the Professional Document when it is used or relied upon by any party other than the Client, unless authorized in writing by TETRA TECH.

Any unauthorized use of the Professional Document is at the sole risk of the user. TETRA TECH accepts no responsibility whatsoever for any loss or damage where such loss or damage is alleged to be or, is in fact, caused by the unauthorized use of the Professional Document.

Where TETRA TECH has expressly authorized the use of the Professional Document by a third party (an "Authorized Party"), consideration for such authorization is the Authorized Party's acceptance of these Limitations on Use of this Document as well as any limitations on liability contained in the Contract with the Client (all of which is collectively termed the "Limitations on Liability"). The Authorized Party should carefully review both these Limitations on Use of this Document and the Contract prior to making any use of the Professional Document. Any use made of the Professional Document by an Authorized Party constitutes the Authorized Party's express acceptance of, and agreement to, the Limitations on Liability.

The Professional Document and any other form or type of data or documents generated by TETRA TECH during the performance of the work are TETRA TECH's professional work product and shall remain the copyright property of TETRA TECH.

The Professional Document is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of TETRA TECH. Additional copies of the Document, if required, may be obtained upon request.

1.2 ALTERNATIVE DOCUMENT FORMAT

Where TETRA TECH submits electronic file and/or hard copy versions of the Professional Document or any drawings or other project-related documents and deliverables (collectively termed TETRA TECH's "Instruments of Professional Service"), only the signed and/or sealed versions shall be considered final. The original signed and/or sealed electronic file and/or hard copy version archived by TETRA TECH shall be deemed to be the original. TETRA TECH will archive a protected digital copy of the original signed and/or sealed version for a period of 10 years.

Both electronic file and/or hard copy versions of TETRA TECH's Instruments of Professional Service shall not, under any circumstances, be altered by any party except TETRA TECH. TETRA TECH's Instruments of Professional Service will be used only and exactly as submitted by TETRA TECH.

Electronic files submitted by TETRA TECH have been prepared and submitted using specific software and hardware systems. TETRA TECH makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

1.3 STANDARD OF CARE

Services performed by TETRA TECH for the Professional Document have been conducted in accordance with the Contract, in a manner

consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions in the jurisdiction in which the services are provided. Professional judgment has been applied in developing the conclusions and/or recommendations provided in this Professional Document. No warranty or guarantee, express or implied, is made concerning the test results, comments, recommendations, or any other portion of the Professional Document

If any error or omission is detected by the Client or an Authorized Party, the error or omission must be immediately brought to the attention of TETRA TECH.

1.4 DISCLOSURE OF INFORMATION BY CLIENT

The Client acknowledges that it has fully cooperated with TETRA TECH with respect to the provision of all available information on the past, present, and proposed conditions on the site, including historical information respecting the use of the site. The Client further acknowledges that in order for TETRA TECH to properly provide the services contracted for in the Contract, TETRA TECH has relied upon the Client with respect to both the full disclosure and accuracy of any such information.

1.5 INFORMATION PROVIDED TO TETRA TECH BY OTHERS

During the performance of the work and the preparation of this Professional Document, TETRA TECH may have relied on information provided by third parties other than the Client.

While TETRA TECH endeavours to verify the accuracy of such information, TETRA TECH accepts no responsibility for the accuracy or the reliability of such information even where inaccurate or unreliable information impacts any recommendations, design or other deliverables and causes the Client or an Authorized Party loss or damage.

1.6 GENERAL LIMITATIONS OF DOCUMENT

This Professional Document is based solely on the conditions presented and the data available to TETRA TECH at the time the data were collected in the field or gathered from available databases.

The Client, and any Authorized Party, acknowledges that the Professional Document is based on limited data and that the conclusions, opinions, and recommendations contained in the Professional Document are the result of the application of professional judgment to such limited data.

The Professional Document is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site conditions present, or variation in assumed conditions which might form the basis of design or recommendations as outlined in this report, at or on the development proposed as of the date of the Professional Document requires a supplementary exploration, investigation, and assessment.

TETRA TECH is neither qualified to, nor is it making, any recommendations with respect to the purchase, sale, investment or development of the property, the decisions on which are the sole responsibility of the Client.

1.7 NOTIFICATION OF AUTHORITIES

In certain instances, the discovery of hazardous substances or conditions and materials may require that regulatory agencies and other persons be informed and the client agrees that notification to such bodies or persons as required may be done by TETRA TECH in its reasonably exercised discretion.

APPENDIX B

SITE HISTORY, HISTORICAL INFORMATION, AND SITE SETTING

1.0 SITE HISTORY

The following section summarizes the history of the Lindsay Thurber Comprehensive High School (LTCHS) site and was developed for the 2019 groundwater and soil vapour monitoring report¹.

The LTCHS was initially constructed in 1954. Waste disposal at the site is estimated to have occurred from 1965 to 1967 (two years), adjacent to the school. Historical information indicates the waste as being household municipal solid waste (MSW) including a mixture of plastics, cans, paper, scrap metals, wires, and glass. Bricks, wood, and concrete were also encountered during the Phase II environmental site assessment (ESA) investigation². A historical ESA conducted on behalf of the Red Deer Public Schools District No. 104³ identified that the waste was understood to be generally infilled in natural depressions, founded on the alluvial gravels; the water table was indicated to be at or just below the base of the waste level.

Historical waste disposal was identified during the 2014 Phase II ESA to be east and north of LTCHS. The waste area extends to the north, into an undeveloped field, to the east towards Gaetz Lake, to the LTCHS track in the south and to the boundary of the Gateway Christian School (formerly River Glen School) yard in the west. Estimated waste extents are identified on Figure 2. The Phase II ESA estimated the total area of buried waste at approximately 105,800 m². The former landfill is inactive and closed.

Results of the Phase II ESA conducted by Tiamat indicate that surface material of sand and loam was overlying the buried MSW material. Strong odours were released during the drilling activities near surface. The cover soils ranged from 10 cm to 50 cm in thickness. The MSW was mixed with fill consisting of silty sand. Groundwater was encountered at approximately 2.8 m below grade (mbg).

2.0 HISTORICAL GROUNDWATER MONITORING AND INVESTIGATION SUMMARY

Monitoring wells were installed in 2013, including four groundwater monitoring wells (MW-01 to MW-04), five vapour wells (VW-01 to VW-05) within and beside the waste material boundary, and a further eight testhole locations were drilled.

Previous reports prepared by Tiamat include the following:

- Phase I Environmental Site Assessment, Historic Waste Disposal Site, Lindsay Thurber High School, The City of Red Deer. September 24, 2013⁴.
- Phase II Environmental Site Assessment, Historic Waste Disposal Site, Lindsay Thurber High School, The City of Red Deer. March 6, 2014².

⁴ Tiamat Environmental Consultants Ltd. 2013. Phase I Environmental Site Assessment, Historic Waste Disposal Site, Lindsay Thurber High School, The City of Red Deer. Dated September 24, 2013.

¹ Tetra Tech Canada Inc. 2020. 2019 Groundwater and Soil Vapour Monitoring Report – Lindsay Thurber Comprehensive High School. Prepared for The City of Red Deer. October 2020. Project Number: 704-SWM.SWOP04071-01.002

² Tiamat Environmental Consultants Ltd. 2014. Phase II Environmental Site Assessment, Historic Waste Disposal Site, Lindsay Thurber High School, The City of Red Deer. Dated March 6, 2014.

³ Parkland Geotechnical Consulting. 2004. Phase 2 – Environmental Site Investigation, Landfill at Lindsay Thurber Comprehensive High School Property, SE 21-38-27-W4M, Red Deer Alberta. Dated June 2004.

 Environmental Risk Management Plan, Historic Waste Disposal Sites, Lindsay Thurber High School, The City of Red Deer. April 1, 2014⁵.

The above work supplemented earlier investigation by Parkland Geotechnical³ which included numerous additional testhole locations. The results of the Phase II ESA conducted by Tiamat in 2014 indicated the following:

- The waste disposal area is estimated to be 105,800 m² and is overlying native gravels and sand.
- Groundwater was located at approximately 2.8 mbg and is within the waste material. The horizontal gradient is 0.3% towards the northwest. The horizontal permeability of 10⁻⁵ m/sec for the sand unit was applied giving a horizontal velocity of 2.7 m/day.
- Volatile organic compounds (VOCs) and petroleum hydrocarbons (PHCs) were not detected at the hydraulically down-gradient groundwater monitoring wells in 2013.
- Several parameters indicative of leachate were present in the groundwater samples collected hydraulically down-gradient of site. Leachate indicator parameters at these wells consisted of inorganic compounds and nutrients, and indicated high negative redox potential and anoxic conditions in the groundwater.
- Schools, residential homes, natural areas, and public buildings are located on adjacent and nearby lands of the site. No nearby activities were interpreted to be environmental concerns relative to the site.
- Soil vapour samples from the vapour wells at LTCHS contained volatile PHCs to carbon chain 12 and semi-volatile, oxygenated, and halogenated volatile hydrocarbons and ketones.

The recommendations of the program were as follows:

- Monitor groundwater elevations and soil vapour data quarterly for one hydrogeological cycle.
- Determine if additional groundwater wells should be included to determine exposure from leachate contaminants.
- Collect an additional set of soil vapour and groundwater analytical data, groundwater elevations, and volatile headspace measurement during the winter months to determine seasonal changes in soil vapour concentrations.
- Develop a risk management plan (RMP) to consider future land uses and address environmental concerns.
- Review all data to update the RMP with new information.

The recommendations of a subsequent RMP⁵ were as follows:

- An additional monitoring event may be effective in verifying the mitigation methods for development at the site.
- Information in the preliminary quantitative risk assessment (PQRA) should be updated as new site information is obtained.
- A review of the RMP should be completed when the PQRA information is updated, if there are changes to the chemicals of potential concern (COPCs).
- The RMP should be reviewed and updated at five-year intervals.

⁵ Tiamat Environmental Consultants Ltd. 2014. Environmental Risk Management Plan, Historic Waste Disposal Sites, Lindsay Thurber High School, The City of Red Deer. Dated April 1, 2014.

3.0 GAS MITIGATION

Historical assessment work in 2004³ recommended a gas interceptor trench along the east side of the school, and sealing of utility trenches in the vicinity. Subsequently, RMP and landfill gas (LFG) management proposal was prepared by Parkland Geotechnical⁶ in support of a waiver request by the Red Deer Public Schools District No. 104 to reduce the setback for new development. While the setback would only apply to planned renovations and expansion at the school, we understand the intent of the system was to address both existing and new development. Based on the proposed design⁶, we understand the system was proposed to include the following:

- An engineered barrier composed of a trench filled with permeable aggregate, approximately 200 m long and approximately 25 m from the eastern wall of the school. The trench would extend to approximately 5 m depth (0.5 m to 1.0 m below the water table), and the uppermost 1.2 m of the trench would be backfilled with a clay cap.
- A 30 mil geomembrane would be installed on the western side of the trench (i.e., closest to the school).
 A ventilation pipe would be installed near the base of the trench, and a vacuum/blower would be connected to allow active ventilation of any gas build up.
- On the west side of the trench, some degree of sealing/plugs would be used in utility backfill, and any
 encountered waste or permeable soils would be removed and replaced with fine-grained materials. Further, a
 'degassing program' would be undertaken west of the trench using existing wells.
- A deeper horizontal drain was also described at the base of the trench, and below the water table, to allow for possible gas stripping, if required.
- A monitoring program would be implemented, including installation of new probes, indoor air monitoring, and automated monitoring/alarms within the building.

The reporting indicates that the waiver application was made in consultation with the School District, The City, the David Thompson Health District, and Alberta Environment. It further noted that the recommended design was based on the existing landfill capping, and that if cap improvements were to be made in the future (e.g., installation of an impermeable cover), that further evaluation of the system would be required.

Further details of the setback request, and as-built or record details of the trench are not known; however, subsequent reporting⁷ indicates the system was installed in March 2005.

The Tiamat Phase I report included copies of two monitoring reports prepared in relation to the LFG interceptor trench and covering semi-annual monitoring undertaken between 2009 and 2013⁸⁹. Subsequent monitoring reports were reviewed from 2014 and most recently 2019⁷. The results demonstrated the trench was effective at limiting subsurface methane concentrations west of the trench. The monitoring program as reported was focused on LFG probes and did not reference active ventilation or indoor air monitoring. The most recent reporting⁷ indicates that the monitoring was initially monthly, then has been semi-annual between 2009 and the 2019 reporting period. We are not aware of details of the current operation of the interceptor trench or the nature of interior monitoring, if any.

⁹ Parkland Geotechnical Consulting. 2013. Lindsay Thurber Comprehensive High School, 2013 Gas Monitoring Program. Dated June 3, 2013.

⁶ Parkland Geotechnical Consulting. 2004b. Landfill Gas Control Proposal and Risk Management Plan, Old Landfill Near Lindsay Thurber Comprehensive High School, SE 21-38-27-W4M, Red Deer Alberta. Dated August 2004.

Parkland Geotechnical Consulting. 2019. Lindsay Thurber Comprehensive High School, 2019 Gas Monitoring Program, Summary of Results – November Event, Red Deer Alberta. Dated February 2019.

⁸ Parkland Geotechnical Consulting. 2011. Lindsay Thurber Comprehensive High School, 2011 Gas Monitoring Program. Dated October 31, 2011.

4.0 SITE SETTING

The following section presents an overview of the regional and local setting for the site.

4.1 Geology

The following sections summarize the regional and local geology.

4.1.1 Geological Setting and Stratigraphy

The City and site are located within the Red Deer River drainage basin with principal drainage via the Red Deer River located west of the site. The river has incised the uplands with gentle slopes to the east and west of the river in the vicinity of the site.

The geology in the river valley is characterized by fluvial surficial sediments deposited by the Red Deer River, overlying shale and sandstone bedrock of the Paskapoo Formation. Historical oxbows of the river are evident in the river valley, including the adjacent Gaetz Lake.

Key elements of the geological setting are presented below from Tiamat's 2013 Phase I Report⁴:

"The fertile black soil in the region (Penhold Loam) is of alluvial lacustrine origin. The Penhold Loam is a well-drained fine sandy loam classified as Chernozemic. It is generally stone free and in natural areas, is typically 1.5 m thick, more or less.

The Quaternary deposits consist of drift deposits of clay, silt, gravel and sand. Published information indicates the banks of the Red Deer River comprise of dirty gravel with thickness ranging from 6 to 12 m, more or less.

In the valley, lies preglacial Saskatchewan gravels and sand. Terrace gravels hydraulically connected to the Red Deer River are a known resource of groundwater. Surficial soils comprise largely of poorly to moderately sorted sand, silt and gravel with a varying amount of clay. The fluvial sediments generally have obscure bedding planes. Medium to coarse sized gravel with cross-bedded sand have been documented."

The Tertiary bedrock consists of sequences of alternating shales and sandstones of the Paskapoo Formation. The Paskapoo Formation underlies the gravel sediments. This non-marine bedrock is composed of mudstone, siltstone and sandstone. The formation of the Rocky Mountains subjected the Paskapoo Formation to a regional stress-induced fracture pattern."

4.1.2 Local Geology

The site is relatively flat, slightly sloping towards the northwest. Based on the borehole logs completed during the Phase II ESA conducted by Tiamat, in the waste footprint, there are soils comprised of loam and sand fill overlying the MSW to depths of approximately 5 mbg. The wastes are overlying clay and sand. Outside of the waste footprint, there are surficial fills to a depth of approximately 5 mbg, overlying sandstone bedrock, which was encountered at MW-01, MW-02, and MW-04, based on Tiamat's cross-sections². The presence of bedrock near 5 mbg at these three borehole locations suggest that the buried channel that is mapped as trending northeasterly, approximately

beneath LTCHS¹⁰, is not present in that area of the site. MSW was encountered at all testholes extending north to south (A to A'), in the northeastern portion of the site (B) and in the southern portion of the site east of LTCHS (C')².

4.2 Hydrogeology

The following sections summarize the regional and local hydrogeology.

4.2.1 Regional Hydrogeology

The regional hydrogeology is most influenced by the presence of the river sediments situated within the valley along the Red Deer River and a bedrock valley trending north-northeast in the vicinity of the site.

Key elements of the hydrogeological setting are presented below from Tiamat's 2013 Phase I Report⁴:

"A significant buried valley and aquifer resource trending northeastward through the city has been partially mapped and lies in the SE 28-38-27 W4M (MacKenzie Trail and Riverside). This buried valley extends to a depth of 21 m, more or less and may extend to the south into north portions of 21-28-27 W4M." Mapping by the Alberta Geological Survey¹⁵ indicates that the valley could be beneath the site trending in a north-northeast direction, however the width of the valley is not defined.

"The dominant type of near-surface groundwater in the Paskapoo Formation in the area of assessment is sodium bicarbonate. Notable concentrations of sodium sulphate type groundwater have also been reported. The quality of groundwater for potable use is generally suitable to depths of 300 m on the west side of Red Deer and decreases to 90 m, more or less in the east.

Areas of recharge (downward flow) in unsaturated heterogeneous sediments include most areas above the river and creek valleys, whereas; the river valleys will generally exhibit discharge. The distribution of groundwater in the area can also be influenced by the local geology, topographic relief, areas of artesian flow, springs and reasonable yielding water source wells.

Numerous permanent surface water features within The City of Red Deer and vicinity include Red Deer River, Waskasoo Creek, Gaetz Lakes, Hazlett Lake, Bower Ponds (result of formerly mining gravel resources), various sloughs in the fringe areas of the city and an assortment of other smaller creeks and springs."

The regional groundwater flow is expected to follow the bedrock topography and will be influenced by the varying distribution of sediments in the river valley, which will have been deposited in various historical channels since filled in under varying depositional environments. Further, the river is in hydrologic connection with the adjacent sediments; therefore, seasonal changes in the river stage will affect the local groundwater flow patterns (magnitude and direction). In seasons of higher river flow, bank storage will occur, whereas in seasons of lower flow (such as late summer/fall), the storage will be released.

4.2.2 Local Hydrogeology

The closest surface waterbody to the site is Gaetz Lake (westerly one) located adjacent to the east and the easterly Gaetz Lake, located approximately 580 m east of the site. The two lakes are a set of oxbow lakes that have been cut off from the Red Deer River, leaving free standing bodies of water⁴. The Red Deer River is located northwest of

¹⁰ Andriashek, L. comp. 2018. Thalwegs of bedrock valleys, Alberta (GIS data, line features); Alberta Energy Regulator, AER/AGS Digital Data 2018-0001.

the site approximately 250 m from the north waste boundary. The river flows in a northerly direction. Shallow groundwater is assumed to flow towards the river².

4.3 Groundwater Resource Usage

A search of the Alberta Water Well Database in January 2020 for groundwater users within a 1 km radius of LTCHS identified nine water wells; two of the wells are listed as domestic use, one is listed as domestic and industrial use, three are listed as industrial use, and three are listed as investigation¹¹.

The nearest water well to site is located approximately 600 m northwest of site, on the opposite (west) side of the Red Deer River. The proposed well use is listed as for investigation purposes. The water wells within a 1 km radius of the site range from 4.5 mbg to 225 mbg. The status and use of the surrounding groundwater wells were not confirmed and they were not field verified.

5.0 HAZARD QUOTIENTS

5.1 2019 Hazard Quotient Calculations

Using the soil vapour screening levels described in the 2019 groundwater and soil monitoring report and the soil vapour sampling results, estimated cancer risks (for carcinogens) and estimated hazard quotients (HQs) (for non-carcinogens) were calculated for the site.

Estimated risks are calculated by dividing the soil vapour concentration by the corresponding soil vapour screening level for carcinogenic effects and multiplying the ratio by the target risk level of 1 x 10⁻⁵. Similarly, the estimated HQs represent the soil vapour concentration divided by the corresponding soil vapour screening level for non-carcinogenic effects.

For this evaluation, cumulative target risk and hazard levels were determined in accordance with Alberta Tier 2 Guidelines¹². For carcinogens, the target risk level is 1 x 10⁻⁵, as this value is considered by Health Canada to represent a negligible risk. This risk level applies to both individual compounds and a summation (i.e., cumulative) of individual compounds risks. For non-carcinogens a cumulative target hazard level of 1.0 is used as potential exposures that result in cumulative hazard indices equal to or less than 1.0 signify negligible potential for adverse health effects. For individual compounds, a hazard index of 0.2 was used. Each sampling location was screened individually for every chemical detected, and the results evaluated relative to both individual and cumulative risks and hazard levels.

The cumulative risk levels for carcinogens in the samples collected ranged between 5 x 10^{-7} to 3.4 x 10^{-8} . The cumulative hazard levels identified in the samples collected for the non-carcinogens ranged between 0.007 to 0.053.

The estimated individual and cumulative risks and hazards associated with the soil vapour samples collected in December 2019 did not exceed the corresponding target risk and hazard levels in any of the samples collected.

¹² Alberta Environment and Parks. 2019. Alberta Tier 2 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 150 pp.

¹¹ Alberta Environment and Parks. 2019. Water Well Database. Information obtained included in Appendix C. http://www.telusgeomatics.com/tgpub/ag_water/.

5.2 Review of the 2014 Hazard Quotients from the Risk Management Plan

The 2014 RMP presented a proposed site-specific environmental RMP as a tool to assist with the review of future subdivision applications on lands lying within the regulated setback distance from the site (300 m). The focus was on potential ingress of soil gas for COPCs with a HQ greater than 1.0. Residential land use was considered most sensitive, and exposure ratings for other land uses (e.g., school, public institutions, commercial complexes) were considered to not be greater than residential; however, unique exceptions would have to be reviewed and addressed on a site-specific basis². Further, underground utility workers and subsurface utility infrastructure were considered relevant to potential exposure.

The RMP applied a 10x factor of safety to the HQs to address uncertainties. HQs from the RMP ranged up to 567 (including the 10x factor of safety). Based on these, the RMP then provided recommended generic mitigative measures based on the calculated HQs, ranging from passive to active measures, recognizing that the ultimate approach would require a design professional for the proposed development.

Following the 2014 RMP, CCME released the document A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures Via Inhalation of Vapours¹³, designed to provide guidance for developing site-appropriate soil vapour quality guidelines. The guidelines developed using the methods outlined in the CCME document were used for this current study and are included with the vapour sampling results in Table 4. HQs were calculated using estimated dose (based on concentrations measured at the site) and divided by tolerable daily intake. Soil vapour concentrations from the Phase II ESA conducted in 2013 were not compared to soil vapour quality guidelines; however, spot checks of five target compounds with the highest HQs in the 2013 work (chloromethane, trichloroethene, tetrachloroethene, 1,2,4-trimethylbenzene, and cis-1,2-dichloroethene) identified that none of the 2013 concentrations would have unacceptable HQs using the updated CCME methodology.

The 2014 RMP was prepared concurrent to RMPs at several other former City landfills, and a common set of mitigative measures was applied based on the HQs. Subsequent to the 2014 RMP and to the release of the CCME Protocol document, The City undertook additional assessment at another former City Landfill (Montfort); as part of that work, their consultant XCG Consulting Limited (XCG) revised the 2014 RMP criteria ranges for each generic mitigative measure category to include a Cancer Risk range to allow comparison of the 2014 RMP ranges with the individual HQ and cancer risks calculated by XCG¹⁴. From that work, XCG identified the following generic mitigative measures for developments within a 300 m setback of these landfills (based on Tiamat 2014), and these have been adopted for this site:

Passive Measures

- Passive Measures Level A: for Cancer Risk of > 1E⁻⁵ and < 5E⁻⁵ and/or HQ >0.2 and <1.
 Compacted clay liner with a minimum thickness of 1m and confirmed maximum hydraulic conductivity of 10⁻⁶ cm/sec.
- Passive Measures Level B: for Cancer Risk of > 5E⁻⁵ and < 5E⁻⁴ and/or HQ >1 and <5.
 Synthetic liner with type of material, thickness and installation details dependent on the design professional.

¹⁴ XCG Consulting Limited. 2018. Vapour Intrusion Assessment and Environmental Monitoring Report, prepared for the City of Red Deer's Montfort Landfill.

¹³ Canadian Council of Ministers of the Environment. 2014. A Protocol for the Derivation of Soil Vapour Quality Guidelines for Exposure Protection of Human Exposures via Inhalation of Vapours. Available online: http://cegg-rcqe.ccme.ca/en/index.html.

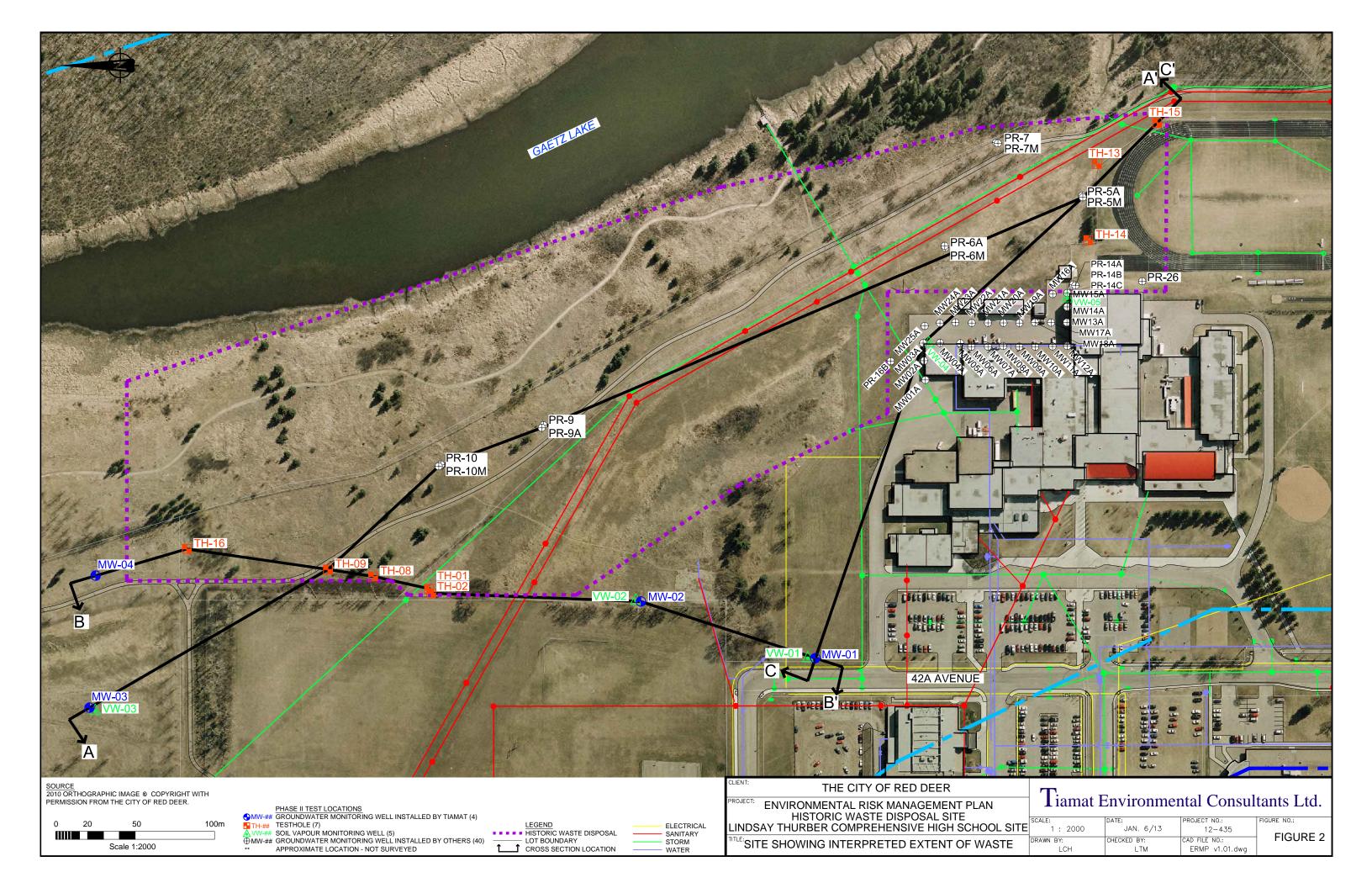
3. Passive Measures – Level C: for Cancer Risk of > 5E-4 and < 1E-3 and/or HQ > 5 and < 50.

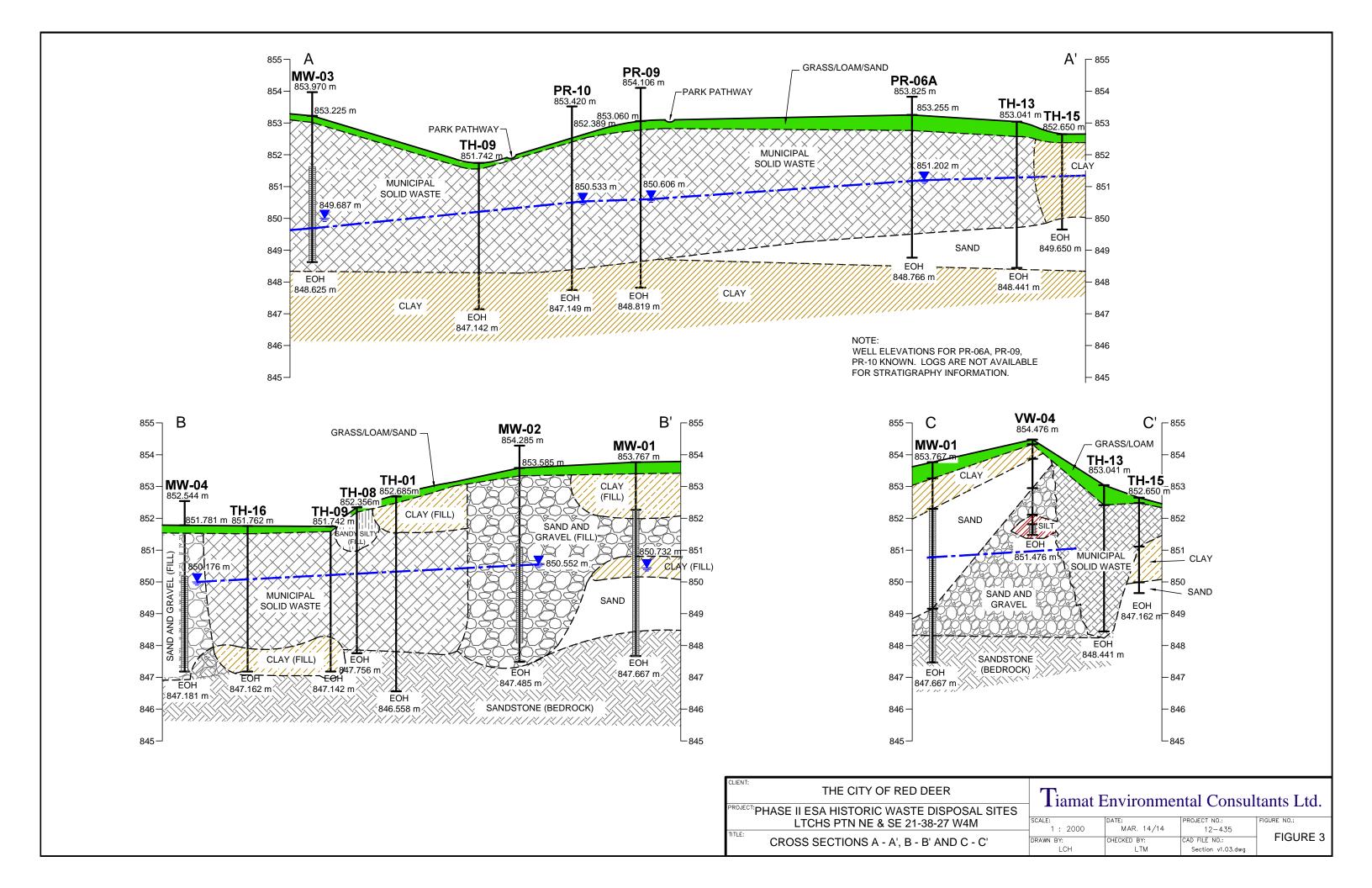
Passive sub-slab depressurization (SSD) system with a minimum depressurization of 4 Pa to 10 Pa. In some instances (such as a pervious subgrade), the actual depressurization necessary may require an active SSD or alternative active ventilation system.

Active Measures

Field verify the presence of the identified chemicals of concern and other potential chemicals in the soil gas state at the development site. If confirmed, determine the most appropriate manner to prevent soil vapour intrusion.

- Active Measures Level D: for Cancer Risk of > 1E⁻³ and < 2E⁻³ and/or HQ values >50 and <100.
 Active SSD must be configured to compensate for depressurization of the building and have adequate negative pressure gradients across the entire footprint of the foundation.
- Active Measures Level E: for Cancer Risk of >2E⁻³ and/or HQ values >100.
 Installation of geomembrane and active soil vapour extraction with system fault notification alarm.


For consistency with XCG's approach from 2017, we compared individual HQs with the individual target hazard level (0.2). Based on the 2019 program, the greatest individual HQ calculated for the site was 0.0008 (vs the individual target hazard level of 0.2) and the greatest estimated cancer risk was 3.4 x 10⁻⁸ (vs target Risk of 1.0 x 10⁻⁵). While development at the site is not currently proposed, for illustrative purposes, based on these HQs and cancer risk levels calculated from the 2019 vapour data, no passive or active measures would be required for the site. It is noted that even if the 10x factor of safety is applied, mitigative measures would still not be required. Similarly, with cumulative risks and HQs the same conclusion can be drawn. The assumptions made in the calculations of HQs and cancer risk above are inherently conservative; therefore, applying a factor of safety is not needed.


Future applications for development within the setback are subject to review by The City. The developer's team would be responsible for reviewing and verifying the available data relative to their proposed development. The mitigative measures presented above are generic and can be used as a general guide for expectations by The City; ultimately, the developer's design engineer would be responsible for developing measures specific to the intended development based on the above or an appropriate equivalent. Protection of workers (e.g., construction and utility) should form part of any development plan.

APPENDIX C

CROSS-SECTIONS (TIAMAT 2014)

APPENDIX D

LABORATORY ANALYTICAL REPORTS

CERTIFICATE OF ANALYSIS

Work Order : CG2105959

Client : Tetra Tech Canada Inc.

Contact : Darby Madalena

Address : 115 - 200 Rivercrest Dr SE

Calgary AB Canada T2C 2X5

Telephone : 403 203 3355

Project : SWM.SWOP04071-02.002

PO : SWM.SWOP04071-02.002

C-O-C number : LINDSAY THURBER
Sampler : RYAN MILLER

Site : ---

Quote number : Q71650 City of Red Deer Pre-1972 Landfill Monitoring

No. of samples received : 5
No. of samples analysed : 5

Page : 1 of 7

Laboratory : Calgary - Environmental

Account Manager : Milica Papic

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 24-Nov-2021 09:35

Date Analysis Commenced : 24-Nov-2021

Issue Date : 01-Dec-2021 15:03

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Daniel Ching	Lab Analyst	Metals, Calgary, Alberta
Joshua Stessun	Laboratory Analyst	Organics, Calgary, Alberta
Mackenzie Lamoureux	Lab Assistant	Metals, Calgary, Alberta
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Sara Niroomand		Metals, Calgary, Alberta
Shirley Li		Metals, Calgary, Alberta
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta

Page : 2 of 7

Work Order : CG2105959

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.002

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.

Page : 3 of 7 Work Order : CG2105959

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.002

Sub-Matrix: Water			Cli	ient sample ID	MW-02	MW-03	MW-04	BH8	DUPLICATE
(Matrix: Water)									
			Client samp	ling date / time	21-Nov-2021 13:50	21-Nov-2021 13:15	21-Nov-2021 13:00	21-Nov-2021 13:35	21-Nov-2021
Analyte	CAS Number	Method	LOR	Unit	CG2105959-001	CG2105959-002	CG2105959-003	CG2105959-004	CG2105959-005
					Result	Result	Result	Result	Result
Physical Tests									
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	544	577	596	820	589
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, total (as CaCO3)		E290	1.0	mg/L	446	473	488	672	483
conductivity		E100	1.0	μS/cm	1110	866	834	1380	829
hardness (as CaCO3), dissolved		EC100	0.60	mg/L	508	389	378	686	369
рН		E108	0.10	pH units	7.87	7.77	7.87	7.73	7.94
solids, total dissolved [TDS], calculated		EC103	1.0	mg/L	691	546	524	876	519
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.684	0.960	0.204	0.589	0.257
chloride	16887-00-6	E235.CI	0.50	mg/L	98.4	30.0	18.5	70.2	19.6
fluoride	16984-48-8	E235.F	0.020	mg/L	0.160	0.246	0.230	0.153	0.229
nitrate (as N)	14797-55-8	E235.NO3	0.020	mg/L	<0.100 DLDS	<0.100 DLDS	<0.020	<0.100 DLDS	<0.100 DLDS
nitrite (as N)	14797-65-0	E235.NO2	0.010	mg/L	<0.050 DLDS	<0.050 DLDS	<0.010	<0.050 DLDS	<0.050 DLDS
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	71.4	<1.50 DLDS	1.36	81.7	1.71
Ion Balance									
anion sum		EC101	0.10	meq/L	13.2	10.3	10.3	17.1	10.2
cation sum		EC101	0.10	meq/L	12.7	11.0	10.3	16.5	10.1
ion balance (cation-anion difference)		EC101	0.010	%	1.93	3.29	<0.010	1.78	0.493
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0024	0.0154	<0.0010	0.0055	<0.0010
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	0.00018	<0.00010	<0.00050 DLDS	<0.00010
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00959	0.0333	0.0107	0.00160	0.0105
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.530	1.85	0.777	0.570	0.770
beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.000020	<0.000020	<0.000020	<0.000100 DLDS	<0.000020
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000250 DLDS	<0.000050
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.046	0.055	0.036	0.059	0.035
cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0000168	0.0000136	0.0000114	0.0000634	0.0000103
calcium, dissolved	7440-70-2	E421	0.050	mg/L	129	94.6	95.9	178	92.5
chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00250 DLDS	<0.00050
1	14-0-41-0		1					1	

Page : 4 of 7 Work Order : CG2105959

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.002

Sub-Matrix: Water			Cli	ent sample ID	MW-02	MW-03	MW-04	BH8	DUPLICATE
(Matrix: Water)									
			Client samp	ling date / time	21-Nov-2021 13:50	21-Nov-2021 13:15	21-Nov-2021 13:00	21-Nov-2021 13:35	21-Nov-2021
Analyte	CAS Number	Method	LOR	Unit	CG2105959-001	CG2105959-002	CG2105959-003	CG2105959-004	CG2105959-005
					Result	Result	Result	Result	Result
Dissolved Metals									
cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	0.00043	0.00084	0.00257	0.00357	0.00255
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	0.00093	0.00070	<0.00100 DLDS	<0.00020
iron, dissolved	7439-89-6	E421	0.010	mg/L	7.67	17.2	4.00	1.07	3.91
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	0.000061	<0.000050	<0.000250 DLDS	<0.000050
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0275	0.0196	0.0146	0.0194	0.0138
magnesium, dissolved	7439-95-4	E421	0.100	mg/L	45.1	37.2	33.6	58.7	33.6
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.490	0.437	0.865	1.52	0.869
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.000050	<0.000050	<0.0000050	<0.0000050
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00303	0.00753	0.00346	0.00123	0.00330
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00170	0.00132	0.00271	0.00480	0.00265
phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<0.050	<0.050	<0.050	<0.250 DLDS	<0.050
potassium, dissolved	7440-09-7	E421	0.100	mg/L	4.77	6.00	3.59	3.97	3.58
selenium, dissolved	7782-49-2	E421	0.000050	mg/L	<0.000050	0.000138	0.000138	<0.000250 DLDS	0.000167
silicon, dissolved	7440-21-3	E421	0.050	mg/L	6.18	7.80	6.26	6.47	6.13
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000050 DLDS	<0.000010
sodium, dissolved	17341-25-2	E421	0.050	mg/L	49.2	54.7	56.2	58.7	56.2
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.719	0.614	0.651	0.694	0.619
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	25.9	<0.50	0.52	29.8	0.52
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0.000012	<0.000050 DLDS	0.000013
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00050 DLDS	<0.00010
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	0.00041	<0.00030	<0.00150 DLDS	<0.00030
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00294	0.000266	0.00179	0.00705	0.00176
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00250 DLDS	<0.00050
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0025	0.0042	0.0029	<0.0050 DLDS	0.0018
zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	0.00073	0.00027	<0.00100 DLDS	0.00027
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	Field	Field
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	Field
Volatile Organic Compounds									
benzene	71-43-2	E611E	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
bromobenzene	108-86-1	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
bromochloromethane	74-97-5	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
ı	I		1	· · ·				I	ı

Page : 5 of 7 Work Order : CG2105959

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.002

Sub-Matrix: Water			С	lient sample ID	MW-02	MW-03	MW-04	ВН8	DUPLICATE
(Matrix: Water)									
			Client samp	oling date / time	21-Nov-2021 13:50	21-Nov-2021 13:15	21-Nov-2021 13:00	21-Nov-2021 13:35	21-Nov-2021
Analyte	CAS Number	Method	LOR	Unit	CG2105959-001	CG2105959-002	CG2105959-003	CG2105959-004	CG2105959-005
					Result	Result	Result	Result	Result
Volatile Organic Compounds									
bromodichloromethane	75-27-4	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
bromoform	75-25-2	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
bromomethane	74-83-9	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
butylbenzene, n-	104-51-8	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
butylbenzene, sec-	135-98-8	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
butylbenzene, tert-	98-06-6	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
carbon tetrachloride	56-23-5	E611E	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
chlorobenzene	108-90-7	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
chloroethane	75-00-3	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
chloroform	67-66-3	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
chloromethane	74-87-3	E611E	5.0	μg/L	<5.0	<5.0	<5.0	<5.0	<5.0
chlorotoluene, 2-	95-49-8	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
chlorotoluene, 4-	106-43-4	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
cymene, p-	99-87-6	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
dibromo-3-chloropropane, 1,2-	96-12-8	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
dibromochloromethane	124-48-1	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
dibromoethane, 1,2-	106-93-4	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
dibromomethane	74-95-3	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
dichlorobenzene, 1,2-	95-50-1	E611E	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
dichlorobenzene, 1,3-	541-73-1	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
dichlorobenzene, 1,4-	106-46-7	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
dichlorodifluoromethane	75-71-8	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
dichloroethane, 1,1-	75-34-3	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
dichloroethane, 1,2-	107-06-2	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
dichloroethylene, 1,1-	75-35-4	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
dichloroethylene, cis-1,2-	156-59-2	E611E	1.0	μg/L	7.5	1.9	<1.0	2.1	<1.0
dichloroethylene, trans-1,2-	156-60-5	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
dichloromethane	75-09-2	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
dichloropropane, 1,2-	78-87-5	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
dichloropropane, 1,3-		E611E	1.0		<1.0	<1.0	<1.0	<1.0	<1.0
	142-28-9	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
dichloropropane, 2,2-	594-20-7	EUITE	1.0	μg/L	~1.0	\ \1.0	<1.0	\ \1.0	<1.0

Page : 6 of 7 Work Order : CG2105959

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.002

Sub-Matrix: Water			С	lient sample ID	MW-02	MW-03	MW-04	ВН8	DUPLICATE
(Matrix: Water)									
			Client samp	oling date / time	21-Nov-2021 13:50	21-Nov-2021 13:15	21-Nov-2021 13:00	21-Nov-2021 13:35	21-Nov-2021
Analyte	CAS Number	Method	LOR	Unit	CG2105959-001	CG2105959-002	CG2105959-003	CG2105959-004	CG2105959-005
					Result	Result	Result	Result	Result
Volatile Organic Compounds	500 50 0	E611E	1.0	a/l	<1.0	<1.0	<1.0	<1.0	<1.0
dichloropropylene, 1,1-	563-58-6	E611E	1.5	μg/L	<1.5	<1.5	<1.5	<1.5	
dichloropropylene, cis+trans-1,3-	542-75-6			μg/L					<1.5
dichloropropylene, cis-1,3-	10061-01-5	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
dichloropropylene, trans-1,3-	10061-02-6	E611E	1.0	μg/L 	<1.0	<1.0	<1.0	<1.0	<1.0
ethylbenzene	100-41-4	E611E	0.50	μg/L 	<0.50	<0.50	<0.50	<0.50	<0.50
hexachlorobutadiene	87-68-3	E611E	1.0	μg/L 	<1.0	<1.0	<1.0	<1.0	<1.0
isopropylbenzene	98-82-8	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
methyl-tert-butyl ether [MTBE]	1634-04-4	E611E	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
propylbenzene, n-	103-65-1	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
styrene	100-42-5	E611E	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
tetrachloroethane, 1,1,1,2-	630-20-6	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
tetrachloroethane, 1,1,2,2-	79-34-5	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
tetrachloroethylene	127-18-4	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
toluene	108-88-3	E611E	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
trichlorobenzene, 1,2,3-	87-61-6	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
trichlorobenzene, 1,2,4-	120-82-1	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
trichloroethane, 1,1,1-	71-55-6	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
trichloroethane, 1,1,2-	79-00-5	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
trichloroethylene	79-01-6	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
trichlorofluoromethane	75-69-4	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
trichloropropane, 1,2,3-	96-18-4	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
trimethylbenzene, 1,2,4-	95-63-6	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
trimethylbenzene, 1,3,5-	108-67-8	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
vinyl chloride	75-01-4	E611E	1.0	μg/L	<1.0	<1.0	<1.0	1.0	<1.0
xylene, m+p-	179601-23-1	E611E	0.40	μg/L	<0.40	<0.40	<0.40	<0.40	<0.40
xylene, o-	95-47-6	E611E	0.30	μg/L	<0.30	<0.30	<0.30	<0.30	<0.30
xylenes, total	1330-20-7	E611E	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
BTEX, total	1030-20-7	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
trihalomethanes [THMs], total		E611E	2.0	μg/L	<2.0	<2.0	<2.0	<2.0	<2.0
Volatile Organic Compounds Surrogates				, ,					
bromofluorobenzene, 4-	460-00-4	E611E	1.0	%	95.0	94.5	96.4	96.4	86.5
	133 33 1		1	1 1		I	I	I	I

Page : 7 of 7

Work Order : CG2105959

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.002

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	MW-02	MW-03	MW-04	ВН8	DUPLICATE
(Matrix: Water)									
			Client samp	ling date / time	21-Nov-2021 13:50	21-Nov-2021 13:15	21-Nov-2021 13:00	21-Nov-2021 13:35	21-Nov-2021
Analyte	CAS Number	Method	LOR	Unit	CG2105959-001	CG2105959-002	CG2105959-003	CG2105959-004	CG2105959-005
					Result	Result	Result	Result	Result
Volatile Organic Compounds Surrogates									
difluorobenzene, 1,4-	540-36-3	E611E	1.0	%	104	103	103	103	103
Polycyclic Aromatic Hydrocarbons									
naphthalene	91-20-3	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order CG2105959 Page : 1 of 13

Client : Tetra Tech Canada Inc. Laboratory : Calgary - Environmental

Contact : Darby Madalena Account Manager : Milica Papic

: 115 - 200 Rivercrest Dr SE Address : 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

Calgary AB Canada T2C 2X5 Telephone : 403 203 3355 Telephone : +1 403 407 1800

Project Date Samples Received SWM.SWOP04071-02.002 : 24-Nov-2021 09:35 PO SWM.SWOP04071-02.002 Issue Date : 01-Dec-2021 15:03

C-O-C number : LINDSAY THURBER Sampler

: RYAN MILLER Site

Quote number : Q71650 City of Red Deer Pre-1972 Landfill Monitoring

No. of samples received : 5 No. of samples analysed : 5

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Address

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 2 of 13 Work Order : CG2105959

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.002

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Εν	/aluation: ≭ =	Holding time exce	edance ; 🗸	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pre	eparation					
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
BH8	E298	21-Nov-2021	29-Nov-2021				29-Nov-2021	28 days	8 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
DUPLICATE	E298	21-Nov-2021	29-Nov-2021				29-Nov-2021	28 days	8 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
MW-02	E298	21-Nov-2021	29-Nov-2021				29-Nov-2021	28 days	8 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
MW-03	E298	21-Nov-2021	29-Nov-2021				29-Nov-2021	28 days	8 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
MW-04	E298	21-Nov-2021	29-Nov-2021				29-Nov-2021	28 days	8 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE	5005.01									,
BH8	E235.CI	21-Nov-2021					24-Nov-2021	28 days	3 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE	F005 01	04 N 0004					04 N 0004	00.1	0.1	
DUPLICATE	E235.CI	21-Nov-2021					24-Nov-2021	28 days	3 days	✓

Page : 3 of 13
Work Order : CG2105959

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.002

Matrix: Water

Evaluation:	x = Holding time	evceedance : V	= Within	Holding Time

atrix: Water					E۱	/aluation: 🗴 =	Holding time exce	edance; v	= vvitnin	Holding I
nalyte Group	Method	Sampling Date	Ext	raction / Pr	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
nions and Nutrients : Chloride in Water by IC										
HDPE										
MW-02	E235.CI	21-Nov-2021					24-Nov-2021	28 days	3 days	✓
nions and Nutrients : Chloride in Water by IC										
HDPE										
MW-03	E235.CI	21-Nov-2021					24-Nov-2021	28 days	3 days	✓
nions and Nutrients : Chloride in Water by IC										
HDPE										
MW-04	E235.CI	21-Nov-2021					24-Nov-2021	28 days	3 days	✓
nions and Nutrients : Fluoride in Water by IC										
HDPE										
BH8	E235.F	21-Nov-2021					24-Nov-2021	28 days	3 days	✓
nions and Nutrients : Fluoride in Water by IC										
HDPE										
DUPLICATE	E235.F	21-Nov-2021					24-Nov-2021	28 days	3 days	✓
nions and Nutrients : Fluoride in Water by IC						ı				
HDPE										
MW-02	E235.F	21-Nov-2021					24-Nov-2021	28 days	3 days	✓
nions and Nutrients : Fluoride in Water by IC										
HDPE	F005 F	04 Nov. 0004					04.11 0004	00.1		
MW-03	E235.F	21-Nov-2021					24-Nov-2021	28 days	3 days	✓
nions and Nutrients : Fluoride in Water by IC						I			l I	
HDPE MW-04	E235.F	21-Nov-2021					24-Nov-2021	28 days	2 days	1
IVIVY-U4	E233.F	Z 1-INUV-ZUZ I					24-INUV-2UZ I	20 uays	Juays	∀
State of the Control										
nions and Nutrients : Nitrate in Water by IC										
HDDE										
HDPE BH8	E235.NO3	21-Nov-2021					24-Nov-2021	3 days	3 days	✓

Page : 4 of 13 Work Order : CG2105959

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.002

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: water							Holding time excee	, ,	************			
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation		Analysis					
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval		
			Date	Rec	Actual		-	Rec	Actual			
Anions and Nutrients : Nitrate in Water by IC												
HDPE												
DUPLICATE	E235.NO3	21-Nov-2021					24-Nov-2021	3 days	3 days	✓		
Anions and Nutrients : Nitrate in Water by IC												
HDPE												
MW-02	E235.NO3	21-Nov-2021					24-Nov-2021	3 days	3 days	✓		
Anions and Nutrients : Nitrate in Water by IC												
HDPE												
MW-03	E235.NO3	21-Nov-2021					24-Nov-2021	3 days	3 days	✓		
Anions and Nutrients : Nitrate in Water by IC												
HDPE												
MW-04	E235.NO3	21-Nov-2021					24-Nov-2021	3 days	3 days	✓		
									-			
Anions and Nutrients : Nitrite in Water by IC												
HDPE												
BH8	E235.NO2	21-Nov-2021					24-Nov-2021	3 days	3 days	✓		
Anions and Nutrients : Nitrite in Water by IC												
HDPE												
DUPLICATE	E235.NO2	21-Nov-2021					24-Nov-2021	3 days	3 days	✓		
									-			
Anions and Nutrients : Nitrite in Water by IC												
HDPE												
MW-02	E235.NO2	21-Nov-2021					24-Nov-2021	3 days	3 days	✓		
									,			
Anions and Nutrients : Nitrite in Water by IC							1					
HDPE												
MW-03	E235.NO2	21-Nov-2021					24-Nov-2021	3 days	3 days	✓		
								, , , , ,	, ,			
Anions and Nutrients : Nitrite in Water by IC												
HDPE												
MW-04	E235.NO2	21-Nov-2021					24-Nov-2021	3 days	3 days	1		
····· • ·				T. Control of the Con	1			, -	,-			

Page : 5 of 13 Work Order : CG2105959

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.002

Matrix: Water

Evaluation:	x = Holding time	evceedance : V	= Within	Holding Time

atrix: Water					E	/aluation: 🗴 =	Holding time exce	edance ; 🕦	= Within	Holding 1
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
BH8	E235.SO4	21-Nov-2021					24-Nov-2021	28 days	3 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
DUPLICATE	E235.SO4	21-Nov-2021					24-Nov-2021	28 days	3 days	✓
									-	
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
MW-02	E235.SO4	21-Nov-2021					24-Nov-2021	28 days	3 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
MW-03	E235.SO4	21-Nov-2021					24-Nov-2021	28 days	3 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
MW-04	E235.SO4	21-Nov-2021					24-Nov-2021	28 days	3 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
BH8	E509	21-Nov-2021	24-Nov-2021				24-Nov-2021	28 days	3 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
DUPLICATE	E509	21-Nov-2021	24-Nov-2021				24-Nov-2021	28 days	3 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
MW-02	E509	21-Nov-2021	24-Nov-2021				24-Nov-2021	28 days	3 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
	The second secon	1		1	1		1	00.1		,
MW-03	E509	21-Nov-2021	24-Nov-2021				24-Nov-2021	28 days	3 days	✓

Page : 6 of 13
Work Order : CG2105959

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.002

Matrix: Water

Evaluation:	x = Holding time	evceedance : V	= Within	Holding Time

atrix: Water					E	/aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding I
nalyte Group	Method	Sampling Date	Ex	traction / Pr	eparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
issolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
MW-04	E509	21-Nov-2021	24-Nov-2021				24-Nov-2021	28 days	3 days	✓
issolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
BH8	E421	21-Nov-2021	30-Nov-2021				30-Nov-2021	180	9 days	✓
								days		
issolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
DUPLICATE	E421	21-Nov-2021	30-Nov-2021				30-Nov-2021	180	9 days	✓
								days		
issolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
MW-02	E421	21-Nov-2021	30-Nov-2021				30-Nov-2021	180	9 days	✓
								days		
issolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
MW-03	E421	21-Nov-2021	30-Nov-2021				30-Nov-2021	180	9 days	✓
								days		
issolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
MW-04	E421	21-Nov-2021	30-Nov-2021				30-Nov-2021	180	9 days	✓
								days		
hysical Tests : Alkalinity Species by Titration										
HDPE										
BH8	E290	21-Nov-2021					25-Nov-2021	14 days	4 days	✓
hysical Tests : Alkalinity Species by Titration										
HDPE	F000	04 Nov. 0004					05 N 0001	44.1		,
DUPLICATE	E290	21-Nov-2021					25-Nov-2021	14 days	4 days	✓
hysical Tests : Alkalinity Species by Titration										
HDPE	F000	04 Nov. 0004					05 Nov. 0004	44.1		,
MW-02	E290	21-Nov-2021					25-Nov-2021	14 days	4 days	✓

Page : 7 of 13
Work Order : CG2105959

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.002

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: water						aldation. • -	Holding time exce	suarice, .	- *************************************	riolaling riii
Analyte Group	Method	Sampling Date	Ext		Analysis					
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Alkalinity Species by Titration										
HDPE										
MW-03	E290	21-Nov-2021					25-Nov-2021	14 days	4 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
MW-04	E290	21-Nov-2021					25-Nov-2021	14 days	4 days	✓
Physical Tests : Conductivity in Water										
HDPE										
BH8	E100	21-Nov-2021					25-Nov-2021	28 days	4 days	✓
Physical Tests : Conductivity in Water										
HDPE										
DUPLICATE	E100	21-Nov-2021					25-Nov-2021	28 days	4 days	✓
Physical Tests : Conductivity in Water										
HDPE										
MW-02	E100	21-Nov-2021					25-Nov-2021	28 days	4 days	✓
Physical Tests : Conductivity in Water										
HDPE										
MW-03	E100	21-Nov-2021					25-Nov-2021	28 days	4 days	✓
Physical Tests : Conductivity in Water										
HDPE										
MW-04	E100	21-Nov-2021					25-Nov-2021	28 days	4 days	✓
Physical Tests : pH by Meter										
HDPE										
BH8	E108	21-Nov-2021					25-Nov-2021	0.25	92 hrs	30
								hrs		EHTR-FM
Physical Tests : pH by Meter										
HDPE										
MW-02	E108	21-Nov-2021					25-Nov-2021	0.25	92 hrs	se
								hrs		EHTR-FM

Page : 8 of 13 Work Order : CG2105959

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.002

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water						uluulion.	nolaing time excee	Juditioo ,	***************************************	r rolaling rill
Analyte Group	Method	Sampling Date	Ext		Analysis					
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual		-	Rec	Actual	
Physical Tests : pH by Meter										
HDPE										
DUPLICATE	E108	21-Nov-2021					25-Nov-2021	0.25	93 hrs	3¢
								hrs		EHTR-FM
Physical Tests : pH by Meter										
HDPE										
MW-03	E108	21-Nov-2021					25-Nov-2021	0.25	93 hrs	×
								hrs		EHTR-FM
Physical Tests : pH by Meter										
HDPE										
MW-04	E108	21-Nov-2021					25-Nov-2021	0.25	93 hrs	*
								hrs		EHTR-FM
Polycyclic Aromatic Hydrocarbons : VOCs (Prairies List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
BH8	E611E	21-Nov-2021	26-Nov-2021				28-Nov-2021			
Polycyclic Aromatic Hydrocarbons : VOCs (Prairies List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
DUPLICATE	E611E	21-Nov-2021	26-Nov-2021				28-Nov-2021			
Polycyclic Aromatic Hydrocarbons : VOCs (Prairies List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
MW-02	E611E	21-Nov-2021	26-Nov-2021				28-Nov-2021			
Polycyclic Aromatic Hydrocarbons : VOCs (Prairies List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
MW-03	E611E	21-Nov-2021	26-Nov-2021				28-Nov-2021			
Polycyclic Aromatic Hydrocarbons : VOCs (Prairies List) by Headspace GC-MS										1
Glass vial (sodium bisulfate)										
MW-04	E611E	21-Nov-2021	26-Nov-2021				28-Nov-2021			
Volatile Organic Compounds : VOCs (Prairies List) by Headspace GC-MS										<u> </u>
Glass vial (sodium bisulfate)										
BH8	E611E	21-Nov-2021	26-Nov-2021				28-Nov-2021	14 days	7 days	✓
		1					I	1		

Page : 9 of 13 Work Order : CG2105959

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.002

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

victiix. Water						aluation. • –	riolding time exceed	suarice, .	- vviti iii i	riolaling rill
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation		Analysis			
Container / Client Sample ID(s)			Preparation	reparation Holding Times		Eval	Analysis Date	ate Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Volatile Organic Compounds : VOCs (Prairies List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
DUPLICATE	E611E	21-Nov-2021	26-Nov-2021				28-Nov-2021	14 days	7 days	✓
Volatile Organic Compounds : VOCs (Prairies List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
MW-02	E611E	21-Nov-2021	26-Nov-2021				28-Nov-2021	14 days	7 days	✓
Volatile Organic Compounds : VOCs (Prairies List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
MW-03	E611E	21-Nov-2021	26-Nov-2021				28-Nov-2021	14 days	7 days	✓
Volatile Organic Compounds : VOCs (Prairies List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
MW-04	E611E	21-Nov-2021	26-Nov-2021				28-Nov-2021	14 days	7 days	✓
							1			

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended Rec. HT: ALS recommended hold time (see units).

Page : 10 of 13 Work Order : CG2105959

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.002

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			C	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Alkalinity Species by Titration	E290	352506	1	20	5.0	5.0	1
Ammonia by Fluorescence	E298	355031	1	20	5.0	5.0	<u>√</u>
Chloride in Water by IC	E235.CI	352003	1	10	10.0	5.0	✓
Conductivity in Water	E100	352507	1	20	5.0	5.0	√
Dissolved Mercury in Water by CVAAS	E509	351711	1	15	6.6	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	355649	1	19	5.2	5.0	✓
Fluoride in Water by IC	E235.F	352004	1	10	10.0	5.0	✓
Nitrate in Water by IC	E235.NO3	352002	1	13	7.6	5.0	✓
Nitrite in Water by IC	E235.NO2	352005	1	10	10.0	5.0	<u>√</u>
pH by Meter	E108	352508	1	20	5.0	5.0	
Sulfate in Water by IC	E235.SO4	352006	1	10	10.0	5.0	<u>√</u>
VOCs (Prairies List) by Headspace GC-MS	E611E	353244	1	10	10.0	5.0	
Laboratory Control Samples (LCS)							
Alkalinity Species by Titration	E290	352506	1	20	5.0	5.0	√
Ammonia by Fluorescence	E298	355031	1	20	5.0	5.0	<u> </u>
Chloride in Water by IC	E235.CI	352003	1	10	10.0	5.0	<u> </u>
Conductivity in Water	E100	352507	1	20	5.0	5.0	
Dissolved Mercury in Water by CVAAS	E509	351711	1	15	6.6	5.0	
Dissolved Metals in Water by CRC ICPMS	E421	355649	1	19	5.2	5.0	<u>√</u>
Fluoride in Water by IC	E235.F	352004	1	10	10.0	5.0	<u>√</u>
Nitrate in Water by IC	E235.NO3	352002	1	13	7.6	5.0	
Nitrite in Water by IC	E235.NO2	352005	1	10	10.0	5.0	<u>√</u>
pH by Meter	E108	352508	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	352006	1	10	10.0	5.0	✓
VOCs (Prairies List) by Headspace GC-MS	E611E	353244	1	10	10.0	5.0	<u>√</u>
Method Blanks (MB)							
Alkalinity Species by Titration	E290	352506	1	20	5.0	5.0	1
Ammonia by Fluorescence	E298	355031	1	20	5.0	5.0	
Chloride in Water by IC	E235.CI	352003	1	10	10.0	5.0	<u> </u>
Conductivity in Water	E100	352507	1	20	5.0	5.0	<u> </u>
Dissolved Mercury in Water by CVAAS	E509	351711	1	15	6.6	5.0	<u> </u>
Dissolved Metals in Water by CRC ICPMS	E421	355649	1	19	5.2	5.0	<u>√</u>
Fluoride in Water by IC	E235.F	352004	1	10	10.0	5.0	<u> </u>
Nitrate in Water by IC	E235.NO3	352002	1	13	7.6	5.0	<u> </u>
Nitrite in Water by IC	E235.NO2	352005	1	10	10.0	5.0	<u> </u>
Sulfate in Water by IC	E235.SO4	352006	1	10	10.0	5.0	<u> </u>
VOCs (Prairies List) by Headspace GC-MS	E611E	353244	1	10	10.0	5.0	

Page : 11 of 13 Work Order : CG2105959

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.002

Matrix: Water Evaluation: × = QC frequency outside specification, ✓ = QC frequency within specification.

matrix vator		Lvaidatioi	i. QO ii oque	may catorac ope	omounon, ·	ac negaciney wit	imi opoomoanon
Quality Control Sample Type			Co	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	355031	1	20	5.0	5.0	✓
Chloride in Water by IC	E235.CI	352003	1	10	10.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	351711	1	15	6.6	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	355649	1	19	5.2	5.0	✓
Fluoride in Water by IC	E235.F	352004	1	10	10.0	5.0	✓
Nitrate in Water by IC	E235.NO3	352002	1	13	7.6	5.0	✓
Nitrite in Water by IC	E235.NO2	352005	1	10	10.0	5.0	✓
Sulfate in Water by IC	E235.SO4	352006	1	10	10.0	5.0	✓
VOCs (Prairies List) by Headspace GC-MS	E611E	353244	1	10	10.0	5.0	✓

Page : 12 of 13 Work Order : CG2105959

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.002

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results,
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Chloride in Water by IC	E235.Cl	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Fluoride in Water by IC	E235.F Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrite in Water by IC	E235.NO2 Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrate in Water by IC	E235.NO3 Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Sulfate in Water by IC	E235.SO4 Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Dissolved Metals in Water by CRC ICPMS	E421 Calgary - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Dissolved Mercury in Water by CVAAS	E509 Calgary - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
VOCs (Prairies List) by Headspace GC-MS	E611E Calgary - Environmental	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.

Page : 13 of 13 Work Order : CG2105959

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Hardness (Calculated)	EC100 Calgary - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
TDS in Water (Calculation)	EC103 Calgary - Environmental	Water	APHA 1030E (mod)	Total Dissolved Solids is calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Dissolved Metals Water Filtration	EP421 Calgary - Environmental	Water	АРНА 3030В	Water samples are filtered (0.45 um), and preserved with HNO3.
Dissolved Mercury Water Filtration	EP509 Calgary - Environmental	Water	АРНА 3030В	Water samples are filtered (0.45 um), and preserved with HCl.
VOCs Preparation for Headspace Analysis	EP581 Calgary - Environmental	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the GC/MS-FID system.

QUALITY CONTROL REPORT

Work Order : CG2105959 Page : 1 of 18

Client : Tetra Tech Canada Inc. Laboratory : Calgary - Environmental

Contact : Darby Madalena : Milica Papic

:115 - 200 Rivercrest Dr SE Address :2559 29th Street NE

Calgary AB Canada T2C 2X5 Calgary, Alberta Canada T1Y 7B5 :403 203 3355 Telephone :+1 403 407 1800

 Telephone
 :403 203 3355
 Telephone
 :+1 403 407 1800

 Project
 :SWM.SWOP04071-02.002
 Date Samples Received
 :24-Nov-2021 09:35

Project : SWM.SWOP04071-02.002 Date Samples Received : 24-Nov-2021 09:35

C-O-C number : LINDSAY THURBER Issue Date :01-Dec-2021 15:03

Sampler : RYAN MILLER

Quote number : Q71650 City of Red Deer Pre-1972 Landfill Monitoring

No. of samples received : 5

No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

Address

Site

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Daniel Ching	Lab Analyst	Metals, Calgary, Alberta
Joshua Stessun	Laboratory Analyst	Organics, Calgary, Alberta
Mackenzie Lamoureux	Lab Assistant	Metals, Calgary, Alberta
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Sara Niroomand		Metals, Calgary, Alberta
Shirley Li		Metals, Calgary, Alberta
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta

Page : 2 of 18 Work Order : CG2105959

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.002

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

Page : 3 of 18 Work Order : CG2105959

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.002

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 352506)										
CG2105949-006	Anonymous	alkalinity, total (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 352507)										
CG2105949-006	Anonymous	conductivity		E100	2.0	μS/cm	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 352508)										
CG2105949-006	Anonymous	pH		E108	0.10	pH units	6.53	6.58	0.763%	4%	
Anions and Nutrien	ts (QC Lot: 352002)										
CG2105956-002	Anonymous	nitrate (as N)	14797-55-8	E235.NO3	0.100	mg/L	<0.100	<0.100	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 352003)										
CG2105956-002	Anonymous	chloride	16887-00-6	E235.CI	2.50	mg/L	450	443	1.42%	20%	
Anions and Nutrien	ts (QC Lot: 352004)										
CG2105956-002	Anonymous	fluoride	16984-48-8	E235.F	0.100	mg/L	0.240	0.244	0.004	Diff <2x LOR	
Anions and Nutrion	ts (QC Lot: 352005)										
CG2105956-002	Anonymous	nitrite (as N)	14797-65-0	E235.NO2	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrion	ts (QC Lot: 352006)	,									
CG2105956-002	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	1.50	mg/L	70.0	69.0	1.49%	20%	
	·	Simulation (and Section 1)				J.				-	
CG2105956-002	ts (QC Lot: 355031) Anonymous	ammonia, total (as N)	7664-41-7	E298	0.125	mg/L	2.12	2.15	1.56%	20%	
	·	ammonia, total (as 14)	7004 41 7	2200	0.120	mg/L	2.12	2.10	1.0070	2070	
Dissolved Metals (C CG2105956-002	QC Lot: 351711) Anonymous	manager discalled	7439-97-6	E509	0.0000050	ma er /1	<0.000050	<0.000050	0	Diff <2x LOR	
	•	mercury, dissolved	7439-97-6	E309	0.0000050	mg/L	<0.0000050	<0.0000050	U	DIII <2X LOR	
Dissolved Metals (C			7400.00.5	= 10.1	0.0050	,,					
CG2106049-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00050	mg/L	0.00086	0.00085	0.000006	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00050	mg/L	0.0273	0.0264	3.02%	20%	
		beryllium, dissolved	7440-41-7	E421	0.100	mg/L	<0.100 µg/L	<0.000100	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000250	mg/L	<0.000250	<0.000250	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0250	mg/L	0.827 μg/L	0.000802	3.01%	20%	
		calcium, dissolved	7440-70-2	E421	0.250	mg/L	303	301	0.629%	20%	
		chromium, dissolved	7440-47-3	E421	0.00250	mg/L	<0.00250	<0.00250	0	Diff <2x LOR	
		cobalt, dissolved	7440-48-4	E421	0.50	mg/L	<0.50 µg/L	<0.00050	0	Diff <2x LOR	

Page : 4 of 18 Work Order : CG2105959

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Dissolved Metals (QC Lot: 355649) - contir	nued									
CG2106049-001	Anonymous	copper, dissolved	7440-50-8	E421	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000250	mg/L	<0.000250	<0.000250	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0050	mg/L	0.0185	0.0181	0.0004	Diff <2x LOR	
		magnesium, dissolved	7439-95-4	E421	0.0250	mg/L	208	205	1.29%	20%	
		manganese, dissolved	7439-96-5	E421	0.00050	mg/L	0.00580	0.00590	1.78%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000250	mg/L	0.00216	0.00203	0.000129	Diff <2x LOR	
		nickel, dissolved	7440-02-0	E421	0.00250	mg/L	0.0294	0.0289	1.55%	20%	
		phosphorus, dissolved	7723-14-0	E421	0.250	mg/L	<0.250	<0.250	0	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.250	mg/L	2.88	2.85	1.11%	20%	
		selenium, dissolved	7782-49-2	E421	0.250	mg/L	252 µg/L	0.253	0.383%	20%	
		silicon, dissolved	7440-21-3	E421	0.250	mg/L	3.12	3.11	0.372%	20%	
		silver, dissolved	7440-22-4	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		sodium, dissolved	17341-25-2	E421	0.250	mg/L	1.91	1.87	0.035	Diff <2x LOR	
		strontium, dissolved	7440-24-6	E421	0.00100	mg/L	0.170	0.170	0.0726%	20%	
		sulfur, dissolved	7704-34-9	E421	2.50	mg/L	390	398	1.91%	20%	
		thallium, dissolved	7440-28-0	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00150	mg/L	<0.00150	<0.00150	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000050	mg/L	0.0139	0.0138	0.645%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00250	mg/L	<0.00250	<0.00250	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0050	mg/L	0.0493	0.0487	0.0006	Diff <2x LOR	
		zirconium, dissolved	7440-67-7	E421	0.00150	mg/L	<0.00150	<0.00150	0	Diff <2x LOR	
olatile Organic Co	mpounds (QC Lot: 3532	244)									
G2105956-002	Anonymous	benzene	71-43-2	E611E	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		bromobenzene	108-86-1	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		bromochloromethane	74-97-5	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		bromodichloromethane	75-27-4	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		bromoform	75-25-2	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		bromomethane	74-83-9	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		butylbenzene, n-	104-51-8	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		butylbenzene, sec-	135-98-8	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		butylbenzene, tert-	98-06-6	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		carbon tetrachloride	56-23-5	E611E	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
							1				

Page : 5 of 18 Work Order : CG2105959

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
olatile Organic Co	mpounds (QC Lot: 353	244) - continued									
G2105956-002	Anonymous	chloroethane	75-00-3	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		chloroform	67-66-3	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		chloromethane	74-87-3	E611E	5.0	μg/L	<5.0	<5.0	0	Diff <2x LOR	
		chlorotoluene, 2-	95-49-8	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		chlorotoluene, 4-	106-43-4	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		cymene, p-	99-87-6	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		dibromo-3-chloropropane, 1,2-	96-12-8	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		dibromochloromethane	124-48-1	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		dibromoethane, 1,2-	106-93-4	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		dibromomethane	74-95-3	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		dichlorobenzene, 1,2-	95-50-1	E611E	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichlorobenzene, 1,3-	541-73-1	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		dichlorobenzene, 1,4-	106-46-7	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		dichlorodifluoromethane	75-71-8	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		dichloroethane, 1,1-	75-34-3	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		dichloroethane, 1,2-	107-06-2	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		dichloroethylene, 1,1-	75-35-4	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		dichloroethylene, cis-1,2-	156-59-2	E611E	1.0	μg/L	3.2	3.3	0.2	Diff <2x LOR	
		dichloroethylene, trans-1,2-	156-60-5	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		dichloromethane	75-09-2	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		dichloropropane, 1,2-	78-87-5	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		dichloropropane, 1,3-	142-28-9	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		dichloropropane, 2,2-	594-20-7	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		dichloropropylene, 1,1-	563-58-6	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		dichloropropylene, cis-1,3-	10061-01-5	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		dichloropropylene, trans-1,3-	10061-02-6	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		ethylbenzene	100-41-4	E611E	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		hexachlorobutadiene	87-68-3	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		isopropylbenzene	98-82-8	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611E	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		naphthalene	91-20-3	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		propylbenzene, n-	103-65-1	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		styrene	100-42-5	E611E	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		tetrachloroethane, 1,1,1,2-	630-20-6	E611E	1.0	μg/L μg/L	<1.0	<1.0	0	Diff <2x LOR	
		tetrachloroethane, 1,1,2,2-	79-34-5	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	

Page : 6 of 18 Work Order : CG2105959

Sub-Matrix: Water							Labora	ntory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Volatile Organic Co	ompounds (QC Lot: 3	353244) - continued									
CG2105956-002	Anonymous	tetrachloroethylene	127-18-4	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		toluene	108-88-3	E611E	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		trichlorobenzene, 1,2,3-	87-61-6	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		trichlorobenzene, 1,2,4-	120-82-1	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		trichloroethane, 1,1,1-	71-55-6	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		trichloroethane, 1,1,2-	79-00-5	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		trichloroethylene	79-01-6	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		trichlorofluoromethane	75-69-4	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		trichloropropane, 1,2,3-	96-18-4	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		trimethylbenzene, 1,2,4-	95-63-6	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		trimethylbenzene, 1,3,5-	108-67-8	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		vinyl chloride	75-01-4	E611E	1.0	μg/L	3.9	4.1	5.47%	50%	
		xylene, m+p-	179601-23-1	E611E	0.40	μg/L	<0.40	<0.40	0	Diff <2x LOR	
		xylene, o-	95-47-6	E611E	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	
		I I		The second secon					The second secon	I and the second	T. Control of the Con

Page : 7 of 18
Work Order : CG2105959

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.002

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 352506)					
Ikalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 352507)					
conductivity	E100	1	μS/cm	<1.0	
Anions and Nutrients (QCLot: 352002)					
itrate (as N)	14797-55-8 E235.NO3	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 352003)					
hloride	16887-00-6 E235.CI	0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 352004)					
uoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 352005)					
nitrite (as N)	14797-65-0 E235.NO2	0.01	mg/L	<0.010	
Anions and Nutrients (QCLot: 352006)					
ulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 355031)					
mmonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Dissolved Metals (QCLot: 351711)					
nercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.000050	
Dissolved Metals (QCLot: 355649)					
luminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
ntimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
rsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
arium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
eryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
ismuth, dissolved	7440-69-9 E421	0.00005	mg/L	<0.000050	
oron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
admium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.000050	
alcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
hromium, dissolved	7440-47-3 E421	0.0005	mg/L	<0.00050	
obalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
opper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
on, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
ithium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	

Page : 8 of 18 Work Order : CG2105959

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.002

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 355649) - continued				
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
nolybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
phosphorus, dissolved	7723-14-0 E421	0.05	mg/L	<0.050	
ootassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3 E421	0.05	mg/L	<0.050	
ilver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
odium, dissolved	17341-25-2 E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
hallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.000010	
in, dissolved	7440-31-5 E421	0.0001	mg/L	<0.00010	
itanium, dissolved	7440-32-6 E421	0.0003	mg/L	<0.00030	
ranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.000010	
anadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050	
rinc, dissolved	7440-66-6 E421	0.001	mg/L	<0.0010	
zirconium, dissolved	7440-67-7 E421	0.0002	mg/L	<0.00020	
Volatile Organic Compounds (QC	Lot: 353244)				
penzene	71-43-2 E611E	0.5	μg/L	<0.50	
promobenzene	108-86-1 E611E	1	μg/L	<1.0	
romochloromethane	74-97-5 E611E	1	μg/L	<1.0	
romodichloromethane	75-27-4 E611E	1	μg/L	<1.0	
promoform	75-25-2 E611E	1	μg/L	<1.0	
promomethane	74-83-9 E611E	1	μg/L	<1.0	
utylbenzene, n-	104-51-8 E 611E	1	μg/L	<1.0	
utylbenzene, sec-	135-98-8 E611E	1	μg/L	<1.0	
outylbenzene, tert-	98-06-6 E611E	1	μg/L	<1.0	
carbon tetrachloride	56-23-5 E611E	0.5	μg/L	<0.50	
hlorobenzene	108-90-7 E611E	1	μg/L	<1.0	
chloroethane	75-00-3 E611E	1	μg/L	<1.0	
chloroform	67-66-3 E611E	1	μg/L	<1.0	
chloromethane	74-87-3 E611E	5	μg/L	<5.0	
chlorotoluene, 2-	95-49-8 E611E	1	μg/L	<1.0	
chlorotoluene, 4-	106-43-4 E611E	1	μg/L	<1.0	

Page : 9 of 18 Work Order : CG2105959

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.002

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Volatile Organic Compounds (QCLo	ot: 353244) - continued				
cymene, p-	99-87-6 E611E	1	μg/L	<1.0	
dibromo-3-chloropropane, 1,2-	96-12-8 E611E	1	μg/L	<1.0	
dibromochloromethane	124-48-1 E611E	1	μg/L	<1.0	
dibromoethane, 1,2-	106-93-4 E611E	1	μg/L	<1.0	
dibromomethane	74-95-3 E611E	1	μg/L	<1.0	
lichlorobenzene, 1,2-	95-50-1 E611E	0.5	μg/L	<0.50	
lichlorobenzene, 1,3-	541-73-1 E611E	1	μg/L	<1.0	
lichlorobenzene, 1,4-	106-46-7 E611E	1	μg/L	<1.0	
lichlorodifluoromethane	75-71-8 E611E	1	μg/L	<1.0	
lichloroethane, 1,1-	75-34-3 E611E	1	μg/L	<1.0	
dichloroethane, 1,2-	107-06-2 E611E	1	μg/L	<1.0	
lichloroethylene, 1,1-	75-35-4 E611E	1	μg/L	<1.0	
lichloroethylene, cis-1,2-	156-59-2 E611E	1	μg/L	<1.0	
lichloroethylene, trans-1,2-	156-60-5 E611E	1	μg/L	<1.0	
lichloromethane	75-09-2 E611E	1	μg/L	<1.0	
lichloropropane, 1,2-	78-87-5 E611E	1	μg/L	<1.0	
lichloropropane, 1,3-	142-28-9 E611E	1	μg/L	<1.0	
lichloropropane, 2,2-	594-20-7 E611E	1	μg/L	<1.0	
lichloropropylene, 1,1-	563-58-6 E611E	1	μg/L	<1.0	
lichloropropylene, cis-1,3-	10061-01-5 E611E	1	μg/L	<1.0	
lichloropropylene, trans-1,3-	10061-02-6 E611E	1	μg/L	<1.0	
ethylbenzene	100-41-4 E611E	0.5	μg/L	<0.50	
exachlorobutadiene	87-68-3 E611E	1	μg/L	<1.0	
sopropylbenzene	98-82-8 E611E	1	μg/L	<1.0	
nethyl-tert-butyl ether [MTBE]	1634-04-4 E611E	0.5	μg/L	<0.50	
aphthalene	91-20-3 E611E	1	μg/L	<1.0	
propylbenzene, n-	103-65-1 E611E	1	μg/L	<1.0	
tyrene	100-42-5 E611E	0.5	μg/L	<0.50	
etrachloroethane, 1,1,1,2-	630-20-6 E611E	1	μg/L	<1.0	
etrachloroethane, 1,1,2,2-	79-34-5 E611E	1	μg/L	<1.0	
etrachloroethylene	127-18-4 E611E	1	μg/L	<1.0	
bluene	108-88-3 E611E	0.5	μg/L	<0.50	
richlorobenzene, 1,2,3-	87-61-6 E611E	1	μg/L	<1.0	
richlorobenzene, 1,2,4-	120-82-1 E611E	1	μg/L	<1.0	
richloroethane, 1,1,1-	71-55-6 E611E	1	μg/L	<1.0	
trichloroethane, 1,1,2-	79-00-5 E611E	1	μg/L	<1.0	

Page : 10 of 18 Work Order : CG2105959

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.002

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Volatile Organic Compounds (Q0	CLot: 353244) - continued					
trichloroethylene	79-01-6	E611E	1	μg/L	<1.0	
trichlorofluoromethane	75-69-4	E611E	1	μg/L	<1.0	
trichloropropane, 1,2,3-	96-18-4	E611E	1	μg/L	<1.0	
trimethylbenzene, 1,2,4-	95-63-6	E611E	1	μg/L	<1.0	
trimethylbenzene, 1,3,5-	108-67-8	E611E	1	μg/L	<1.0	
vinyl chloride	75-01-4	E611E	1	μg/L	<1.0	
xylene, m+p-	179601-23-1	E611E	0.4	μg/L	<0.40	
xylene, o-	95-47-6	E611E	0.3	μg/L	<0.30	

Page : 11 of 18
Work Order : CG2105959

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.002

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water			Laboratory Cor	ntrol Sample (LCS)	Report				
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 352506)									
alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	112	85.0	115	
Physical Tests (QCLot: 352507)									
conductivity		E100	1	μS/cm	146.9 μS/cm	96.8	90.0	110	
Physical Tests (QCLot: 352508)									
рН		E108		pH units	7 pH units	100	98.6	101	
Anions and Nutrients (QCLot: 352002)									
nitrate (as N)	14797-55-8	E235.NO3	0.02	mg/L	2.5 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 352003)									
chloride	16887-00-6	E235.CI	0.5	mg/L	100 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 352004)									
fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 352005)									
nitrite (as N)	14797-65-0	E235.NO2	0.01	mg/L	0.5 mg/L	100	90.0	110	
Anions and Nutrients (QCLot: 352006)									
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 355031)									
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	92.4	85.0	115	
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	80.1	80.0	120	
Dissolved Metals (QCLot: 355649)									
aluminum, dissolved	7429-90-5		0.001	mg/L	2 mg/L	96.4	80.0	120	
antimony, dissolved	7440-36-0		0.0001	mg/L	1 mg/L	110	80.0	120	
arsenic, dissolved	7440-38-2		0.0001	mg/L	1 mg/L	94.6	80.0	120	
barium, dissolved	7440-39-3		0.0001	mg/L	0.25 mg/L	99.5	80.0	120	
beryllium, dissolved	7440-41-7		0.00002	mg/L	0.1 mg/L	94.0	80.0	120	
bismuth, dissolved	7440-69-9		0.00005	mg/L	1 mg/L	100	80.0	120	
boron, dissolved	7440-42-8		0.01	mg/L	1 mg/L	94.1	80.0	120	
cadmium, dissolved	7440-43-9		0.000005	mg/L	0.1 mg/L	98.9	80.0	120	
calcium, dissolved	7440-70-2		0.05	mg/L	50 mg/L	97.2	80.0	120	
chromium, dissolved	7440-47-3		0.0005	mg/L	0.25 mg/L	99.4	80.0	120	
cobalt, dissolved	7440-48-4		0.0001	mg/L	0.25 mg/L	98.3	80.0	120	
copper, dissolved	7440-50-8		0.0002	mg/L	0.25 mg/L	98.0	80.0	120	
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	97.0	80.0	120	

Page : 12 of 18 Work Order : CG2105959

Disposed Ments QCLot: 355649 Continued Table 50 Est Co.0006 mgt. Co.5 mgt. So.5 mgt.	Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
Dissolved Motals QCLot: \$55649 -continued 7499-97 Feft 0.00005 mgl. 0.5 mgl. 95.0 80.0 120						Spike	Recovery (%)	Recovery	Limits (%)			
Page	Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Institute dissolved	Dissolved Metals (QCLot: 355649) - conf	tinued										
Page	lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	99.0	80.0	120			
Transperse, disorded 749-96 E421 0.0001 mgL 0.25 mgL 99.2 80.0 120	lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	94.5	80.0	120			
Metal deserved	magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	95.5	80.0	120			
incision, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 96.0 86.0 120 —— phosphorus, dissolved 7725-14-0 E421 0.05 mg/L 96.0 mg/L 97.9 70.0 130 —— phosphorus, dissolved 7725-14-0 E421 0.05 mg/L 95 mg/L 98.4 80.0 120 —— pagement, dissolved 7740-92-7 E421 0.05 mg/L 95 mg/L 98.7 80.0 120 —— pagement, dissolved 7740-92-7 E421 0.05 mg/L 10 mg/L 98.0 60.0 140 —— pagement, dissolved 7740-92-7 E421 0.05 mg/L 10 mg/L 98.0 60.0 140 —— pagement, dissolved 7740-92-7 E421 0.0001 mg/L 0.1 mg/L 100 80.0 120 —— pagement, dissolved 7740-92-7 E421 0.0001 mg/L 0.25 mg/L 99 mg/L 100 80.0 120 —— pagement, dissolved 7740-92-8 E421 0.0001 mg/L 90 mg/L 100 80.0 120 —— pagement, dissolved 7740-92-8 E421 0.0001 mg/L 90 mg/L 100 80.0 120 —— pagement, dissolved 7740-92-8 E421 0.0001 mg/L 90 mg/L 100 80.0 120 —— pagement, dissolved 7740-92-8 E421 0.0001 mg/L 90 mg/L 100 80.0 120 —— pagement, dissolved 7740-92-8 E421 0.0001 mg/L 90 mg/L 100 80.0 120 —— pagement, dissolved 7740-92-8 E421 0.0001 mg/L 90 mg/L 90 mg/L 98.0 120 —— pagement, dissolved 7740-92-8 E421 0.0001 mg/L 90	manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	99.2	80.0	120			
phosphorus, dissolved 7723-14-0 [642] 0.06 mg/L 10 mg/L 97.9 70.0 130	molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	104	80.0	120			
Consistent Con	nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	96.0	80.0	120			
### ### ### ### ### ### ### ### ### ##	phosphorus, dissolved	7723-14-0	E421	0.05	mg/L	10 mg/L	97.9	70.0	130			
silicon, dissolved 7440-213 E421 0.05 mg/L 10 mg/L 99.0 66.0 140	potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	98.4	80.0	120			
salver, dissolved 7440-224 E421 0.00001 mg/L 0.1 mg/L 105 80.0 120	selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	97.7	80.0	120			
section, dissolved 17341-25-2 E421 0.05 mg/L 50 mg/L 100 80.0 120 strontum, dissolved 7440-246 E421 0.0002 mg/L 0.25 mg/L 99.5 80.0 120 strontum, dissolved 7440-246 E421 0.0002 mg/L 50 mg/L 104 80.0 120 strontum, dissolved 7440-28-0 E421 0.0001 mg/L 1 mg/L 100 80.0 120 strontum, dissolved 7440-31-5 E421 0.0001 mg/L 0.5 mg/L 97.6 80.0 120 strontum, dissolved 7440-31-5 E421 0.0001 mg/L 0.5 mg/L 97.6 80.0 120 strontum, dissolved 7440-31-6 E421 0.0001 mg/L 0.005 mg/L 0.25 mg/L 97.4 80.0 120 strontum, dissolved 7440-81-1 E421 0.0001 mg/L 0.005 mg/L 0.25 mg/L 97.4 80.0 120 strontum, dissolved 7440-82-2 E421 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 strontum, dissolved 7440-86-6 E421 0.0005 mg/L 0.5 mg/L 94.2 80.0 120 strontum, dissolved 7440-86-7 E421 0.0002 mg/L 0.1 mg/L 0.5 mg/L 94.2 80.0 120 strontum, dissolved 7440-86-8 E411 0.0002 mg/L 0.1 mg/L 94.2 80.0 120 strontum, dissolved 7440-86-8 E411 0.0002 mg/L 0.1 mg/L 94.2 80.0 120 strontum, dissolved 7440-86-8 E411 0.0002 mg/L 0.1 mg/L 94.2 80.0 120 strontum, dissolved 7440-86-8 E411 0.0002 mg/L 0.1 mg/L 94.2 80.0 120 strontum, dissolved 7440-86-8 E411 0.0002 mg/L 0.1 mg/L 94.2 80.0 120 strontum, dissolved 7440-86-8 E411 0.0002 mg/L 0.1 mg/L 94.2 80.0 120 strontum, dissolved 7440-86-8 E411 0.0002 mg/L 0.1 mg/L 94.2 80.0 120 strontum, dissolved 7440-86-8 E411 0.0002 mg/L 0.1 mg/L 94.2 80.0 120 strontum, dissolved 7440-86-8 E411 0.0002 mg/L 0.1 mg/L 94.2 80.0 120 strontum, dissolved 94.4 86.0 120 strontum, disso	silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	99.0	60.0	140			
strontium, dissolved 7440-24-6 E421 0.0002 mg/L 0.25 mg/L 99.5 80.0 120	silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	105	80.0	120			
suffur, dissolved 7704-34-9 E421 0.5 mg/L 50 mg/L 104 80.0 120 thallium, dissolved 77440-28-0 E421 0.00001 mg/L 0.5 mg/L 100 80.0 120 thallium, dissolved 7440-31-5 E421 0.0001 mg/L 0.5 mg/L 97.6 80.0 120 thallium, dissolved 7440-31-5 E421 0.0001 mg/L 0.25 mg/L 97.4 80.0 120 translum, dissolved 7440-81-1 E421 0.0003 mg/L 0.05 mg/L 98.7 80.0 120 variandum, dissolved 7440-81-1 E421 0.0001 mg/L 0.05 mg/L 98.7 80.0 120 variandum, dissolved 7440-81-1 E421 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 variandum, dissolved 7440-86-6 E421 0.001 mg/L 0.5 mg/L 98.7 80.0 120 variandum, dissolved 7440-86-6 E421 0.001 mg/L 0.5 mg/L 98.7 80.0 120 variandum, dissolved 7440-86-7 E421 0.0002 mg/L 0.1 mg/L 103 80.0 120 variandum, dissolved 7440-87-7 E421 0.0002 mg/L 0.1 mg/L 91.2 87.4 70.0 130 80.0 120 volatile Organic Compounds (QCLot: 353244) volatile	sodium, dissolved	17341-25-2	E421	0.05	mg/L	50 mg/L	100	80.0	120			
thallum, dissolved 7440-28-0 [E421 0.00001 mg/L 1 mg/L 100 80.0 120 tin, dissolved 7440-31-5 [E421 0.0001 mg/L 0.5 mg/L 97.6 88.0 120 titlanium, dissolved 7440-32-6 [E421 0.0001 mg/L 0.5 mg/L 97.4 80.0 120 transition, dissolved 7440-61-1 [E421 0.00001 mg/L 0.005 mg/L 102 80.0 120 vanadium, dissolved 7440-62-2 [E421 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 vanadium, dissolved 7440-66-6 [E421 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 vanadium, dissolved 7440-66-6 [E421 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 vanadium, dissolved 7440-66-7 [E421 0.0005 mg/L 0.5 mg/L 94.2 80.0 120 vanadium, dissolved 7440-67-7 [E421 0.0005 mg/L 0.5 mg/L 94.2 80.0 120 vanadium, dissolved 7440-67-7 [E421 0.0005 mg/L 0.5 mg/L 94.2 80.0 120 vanadium, dissolved 7440-67-7 [E421 0.0005 mg/L 0.5 mg/L 94.2 80.0 120 vanadium, dissolved 7440-67-7 [E421 0.0005 mg/L 0.5 mg/L 94.2 80.0 120 vanadium, dissolved 7440-67-7 [E421 0.0005 mg/L 0.5 mg/L 94.2 80.0 120 vanadium, dissolved 7440-68-6 [E421 0.0005 mg/L 0.5 mg/L 94.2 80.0 120 vanadium, dissolved 7440-68-6 [E421 0.0005 mg/L 0.5 mg/L 94.2 80.0 120 vanadium, dissolved 7440-68-6 [E421 0.0005 mg/L 0.5 mg/L 94.2 80.0 120 vanadium, dissolved 7440-68-6 [E421 0.0005 mg/L 0.5 mg/L 94.2 80.0 120 vanadium, dissolved 7440-68-6 [E421 0.0005 mg/L 0.5 mg/L 94.8 7.0 0 130 vanadium, dissolved 7440-68-6 [E421 0.0005 mg/L 0.5 mg/L 0.	strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	99.5	80.0	120			
tin, dissolved 7440-31-5 E421 0.0001 mg/L 0.5 mg/L 97.6 80.0 120	sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	104	80.0	120			
Ittentium, dissolved 7440-32-6 E421 0.0003 mg/L 0.25 mg/L 97.4 80.0 120	thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	100	80.0	120			
variantum, dissolved 7440-61-1 (42-61) E421 0.0001 mg/L (15-61) 0.005 mg/L (10-5) 102 (10-5) 80.0 (120) 120 (120)	tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	97.6	80.0	120			
vanadium, dissolved 7440-62-2 E421 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 zinc, dissolved 7440-86-6 E421 0.0001 mg/L 0.5 mg/L 94.2 80.0 120 zinconium, dissolved 7440-67-7 E421 0.0002 mg/L 0.1 mg/L 103 80.0 120 Volatile Organic Compounds (QCLot: 353244) benzene 71-43-2 E611E 0.5 μg/L 100 μg/L 87.4 70.0 130 bromobenzene 108-86-1 E611E 1 μg/L 100 μg/L 81.7 70.0 130 bromobenzene 74-97-5 E611E 1 μg/L 100 μg/L 81.7 70.0 130 bromodichloromethane 75-27-4 E611E 1 μg/L 100 μg/L 86.4 70.0 130 bromomethane 75-27-2 E611E 1 μg/L 100 μg/L 86.4 70.0 130 bromomethane 74-83-9 E611E 1 μg/L 100 μg/L 100 μg/L 80.0 140 bromomethane 74-83-9 E611E 1 μg/L 100 μg/L 100 μg/L 93.4 60.0 140 butybenzene, n- butybenzene, so- b	titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	97.4	80.0	120			
zirc, dissolved 7440-66-6 E421 0.001 mg/L 0.5 mg/L 94.2 80.0 120 Volatile Organic Compounds (QCLot: 353244) berozene 71-43-2 E611E 0.5 μg/L 100 μg/L 91.8 7.4 70.0 130 bromochloromethane 74-97-5 E611E 1 μg/L 100 μg/L 86.4 70.0 130 bromochloromethane 75-27-4 E611E 1 μg/L 100 μg/L 86.4 70.0 130 bromochloromethane 75-28-2 E611E 1 μg/L 100 μg/L 86.4 70.0 130 bromochloromethane 74-83-9 E611E 1 μg/L 100 μg/L 86.4 70.0 130 bromochloromethane 74-83-9 E611E 1 μg/L 100 μg/L 86.4 70.0 130 butylbenzene, n- 104-51-8 E611E 1 μg/L 100 μg/L 93.4 66.0 140 butylbenzene, sec- 135-98-8 E611E 1 μg/L 100 μg/L 100 γ0.0 130 butylbenzene, sec- 135-98-8 E611E 1 μg/L 100 μg/L 100 γ0.0 130 butylbenzene, tert- 98-06-6 E611E 1 μg/L 100 μg/L 100 γ0.0 130 butylbenzene, tert- 98-06-6 E611E 1 μg/L 100 μg/L 100 γ0.0 130 butylbenzene, tert- 98-06-6 E611E 1 μg/L 100 μg/L 100 γ0.0 130 butylbenzene, tert- 98-06-6 E611E 1 μg/L 100 μg/L 100 γ0.0 130 butylbenzene, tert- 98-06-6 E611E 1 μg/L 100 μg/L 100 γ0.0 130 butylbenzene, tert- 98-06-6 E611E 1 μg/L 100 μg/L 90.5 70.0 130 carbon tetrachloride 56-23-5 E611E 1 μg/L 100 μg/L 90.5 70.0 130 chlorobenzene 108-90-7 E611E 1 μg/L 100 μg/L 90.5 70.0 130 chlorobenzene 47-60-3 E611E 1 μg/L 100 μg/L 94.3 60.0 140 chloroform 67-66-3 E611E 1 μg/L 100 μg/L 94.3 60.0 140 chloroform 67-66-3 E611E 1 μg/L 100 μg/L 94.3 60.0 140	uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	102	80.0	120			
Volatile Organic Compounds (QCLot: 353244) E421 0.0002 mg/L 0.1 mg/L 103 80.0 120	vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	98.7	80.0	120			
Volatile Organic Compounds (QCLot: 353244) E611E 0.5 µg/L 100 µg/L 87.4 70.0 130	zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	94.2	80.0	120			
benzene 71-43-2	zirconium, dissolved	7440-67-7	E421	0.0002	mg/L	0.1 mg/L	103	80.0	120			
benzene 71-43-2												
benzene 71-43-2	Volatile Organic Compounds (QCLot: 35	3244)										
bromochloromethane 74-97-5 E611E 1 µg/L 100 µg/L 81.7 70.0 130	benzene		E611E	0.5	μg/L	100 μg/L	87.4	70.0	130			
bromochloromethane 74-97-5 bromochloromethane 74-97-5 bromochloromethane 75-27-4 bromochloromethane 75-27-4 bromochloromethane 75-27-4 bromochloromethane 75-27-2 bromochloromethane 75-28-2 bromochloromethane 75-28-3 bromochloromethane 75	bromobenzene	108-86-1	E611E	1	μg/L	100 μg/L	91.8	70.0	130			
bromoform 75-26-2 E611E 1 µg/L 100 µg/L 93.4 60.0 140	bromochloromethane	74-97-5	E611E	1	μg/L		81.7	70.0	130			
bromoform 75-25-2 E611E 1 µg/L 100 µg/L 93.4 60.0 140	bromodichloromethane	75-27-4	E611E	1	μg/L	100 μg/L	86.4	70.0	130			
butylbenzene, n- butylbenzene, sec- butylbenzene, sec- butylbenzene, sec- butylbenzene, tert- carbon tetrachloride chlorobenzene chlorobenzene chloroform chloroform chloroform chloroform chloroform chloromethane 74-83-9 E611E 1 µg/L 100 µg/L 100 µg/L 100 µg/L 100 µg/L 100 70.0 130 130	bromoform	75-25-2	E611E	1	μg/L		100	70.0	130			
butylbenzene, sec- butylbenzene, sec- butylbenzene, tert- butylbenzene, tert- carbon tetrachloride chlorobenzene chloroform chloroform chloroform chloromethane chlorometh	bromomethane	74-83-9	E611E	1	μg/L		93.4	60.0	140			
butylbenzene, tert- carbon tetrachloride 56-23-5 E611E 1	butylbenzene, n-	104-51-8	E611E	1	μg/L	100 μg/L	100	70.0	130			
butylbenzene, tert- carbon tetrachloride 56-23-5 E611E 1 µg/L 100 µg/L 100 µg/L 105 70.0 130 carbon tetrachloride chlorobenzene 108-90-7 E611E 1 µg/L 100 µg/L 100 µg/L 90.5 70.0 130 chlorobenzene 108-90-7 E611E 1 µg/L 100 µg/L 90.5 70.0 130 chlorofethane 109-90-7 100 µg/L 100 µg/L 91.3 60.0 140 chloroform 100 µg/L 100 µg/L 100 µg/L 91.2 60.0 140 chloromethane	butylbenzene, sec-	135-98-8	E611E	1	μg/L	100 μg/L	100	70.0	130			
carbon tetrachloride 56-23-5 E611E 0.5 μg/L 100 μg/L 87.6 70.0 130 chlorobenzene 108-90-7 E611E 1 μg/L 100 μg/L 90.5 70.0 130 chloroethane 75-00-3 E611E 1 μg/L 100 μg/L 94.3 60.0 140 chloroform 67-66-3 E611E 1 μg/L 100 μg/L 83.2 70.0 130 chloromethane 74-87-3 E611E 5 μg/L 100 μg/L 91.2 60.0 140	butylbenzene, tert-	98-06-6	E611E	1	μg/L	1	105	70.0	130			
chlorobenzene 108-90-7 E611E 1 μg/L 100 μg/L 90.5 70.0 130 chloroethane 75-00-3 E611E 1 μg/L 100 μg/L 94.3 60.0 140 chloroform 67-66-3 E611E 1 μg/L 100 μg/L 83.2 70.0 130 chloromethane 74-87-3 E611E 5 μg/L 100 μg/L 91.2 60.0 140	carbon tetrachloride	56-23-5	E611E	0.5	μg/L	1	87.6	70.0	130			
chloroethane 75-00-3 E611E 1 μg/L 100 μg/L 94.3 60.0 140 chloroform 67-66-3 E611E 1 μg/L 100 μg/L 83.2 70.0 130 chloromethane 74-87-3 E611E 5 μg/L 100 μg/L 91.2 60.0 140	chlorobenzene	108-90-7	E611E	1	μg/L	1	90.5	70.0	130			
chloroform 67-66-3 E611E 1 μg/L 100 μg/L 83.2 70.0 130 chloromethane 74-87-3 E611E 5 μg/L 100 μg/L 91.2 60.0 140	chloroethane	75-00-3	E611E	1	μg/L	1	94.3	60.0	140			
chloromethane 74-87-3 E611E 5 μg/L 100 μg/L 91.2 60.0 140	chloroform	67-66-3	E611E	1	μg/L		83.2	70.0	130			
	chloromethane	74-87-3	E611E	5	μg/L			60.0	140			
	chlorotoluene, 2-	95-49-8	E611E	1		100 μg/L	99.1	70.0	130			

Page : 13 of 18 Work Order : CG2105959

Sub-Matrix: Water		Laboratory Control Sample (LCS) Report							
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Metho	od L	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Volatile Organic Compounds (QCLot	: 353244) - continued								
chlorotoluene, 4-	106-43-4 E611E		1	μg/L	100 μg/L	100	70.0	130	
cymene, p-	99-87-6 E611E		1	μg/L	100 μg/L	111	70.0	130	
dibromo-3-chloropropane, 1,2-	96-12-8 E611E		1	μg/L	100 μg/L	117	70.0	130	
dibromochloromethane	124-48-1 E611E	Ē	1	μg/L	100 μg/L	80.5	70.0	130	
dibromoethane, 1,2-	106-93-4 E611E	Ē	1	μg/L	100 μg/L	91.4	70.0	130	
dibromomethane	74-95-3 E611E	Ē	1	μg/L	100 μg/L	96.4	70.0	130	
dichlorobenzene, 1,2-	95-50-1 E611E	[0.5	μg/L	100 μg/L	98.7	70.0	130	
dichlorobenzene, 1,3-	541-73-1 E611E	1	1	μg/L	100 μg/L	93.4	70.0	130	
dichlorobenzene, 1,4-	106-46-7 E611E	1	1	μg/L	100 μg/L	97.9	70.0	130	
dichlorodifluoromethane	75-71-8 E611E	1	1	μg/L	100 μg/L	87.2	60.0	140	
dichloroethane, 1,1-	75-34-3 E611E	[1	μg/L	100 μg/L	104	70.0	130	
dichloroethane, 1,2-	107-06-2 E611E	[1	μg/L	100 μg/L	82.9	70.0	130	
dichloroethylene, 1,1-	75-35-4 E611E		1	μg/L	100 μg/L	98.2	70.0	130	
dichloroethylene, cis-1,2-	156-59-2 E611E		1	μg/L	100 μg/L	90.0	70.0	130	
dichloroethylene, trans-1,2-	156-60-5 E611E	1	1	μg/L	100 μg/L	81.3	70.0	130	
dichloromethane	75-09-2 E611E	:	1	μg/L	100 μg/L	92.6	70.0	130	
dichloropropane, 1,2-	78-87-5 E611E	1	1	μg/L	100 μg/L	87.3	70.0	130	
dichloropropane, 1,3-	142-28-9 E611E	1	1	μg/L	100 μg/L	95.1	70.0	130	
dichloropropane, 2,2-	594-20-7 E611E	1	1	μg/L	100 μg/L	102	70.0	130	
dichloropropylene, 1,1-	563-58-6 E611E	1	1	μg/L	100 μg/L	86.8	70.0	130	
dichloropropylene, cis-1,3-	10061-01-5 E611E	1	1	μg/L	100 μg/L	91.4	70.0	130	
dichloropropylene, trans-1,3-	10061-02-6 E611E	1	1	μg/L	100 μg/L	96.0	70.0	130	
ethylbenzene	100-41-4 E611E	<u>:</u>	0.5	μg/L	100 μg/L	93.3	70.0	130	
hexachlorobutadiene	87-68-3 E611E	:	1	μg/L	100 μg/L	111	70.0	130	
isopropylbenzene	98-82-8 E611E	i	1	μg/L	100 μg/L	96.1	70.0	130	
methyl-tert-butyl ether [MTBE]	1634-04-4 E611E	<u>:</u>	0.5	μg/L	100 μg/L	93.5	70.0	130	
naphthalene	91-20-3 E611E	:	1	μg/L	100 μg/L	110	70.0	130	
propylbenzene, n-	103-65-1 E611E	:	1	μg/L	100 μg/L	110	70.0	130	
styrene	100-42-5 E611E	<u>:</u>	0.5	μg/L	100 μg/L	92.3	70.0	130	
tetrachloroethane, 1,1,1,2-	630-20-6 E611E	E	1	μg/L	100 μg/L	81.4	70.0	130	
tetrachloroethane, 1,1,2,2-	79-34-5 E611E	E	1	μg/L	100 μg/L	87.7	70.0	130	
tetrachloroethylene	127-18-4 E611E	E	1	μg/L	100 μg/L	92.9	70.0	130	
toluene	108-88-3 E611E	E	0.5	μg/L	100 μg/L	99.4	70.0	130	
trichlorobenzene, 1,2,3-	87-61-6 E611E	E	1	μg/L	100 μg/L	106	70.0	130	
trichlorobenzene, 1,2,4-	120-82-1 E611E	E	1	μg/L	100 μg/L	112	70.0	130	
trichloroethane, 1,1,1-	71-55-6 E611E	Ē	1	μg/L	100 μg/L	82.8	70.0	130	
trichloroethane, 1,1,2-	79-00-5 E611E	E	1	μg/L	100 μg/L	85.4	70.0	130	
trichloroethylene	79-01-6 E611E	:	1	μg/L	100 μg/L	88.2	70.0	130	

Page : 14 of 18 Work Order : CG2105959

ıb-Matrix: Water					Laboratory Control Sample (LCS) Report									
					Spike	Recovery (%)	Recovery	Limits (%)						
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier					
Volatile Organic Compounds (QCLot: 353244) - continued														
trichlorofluoromethane	75-69-4	E611E	1	μg/L	100 μg/L	94.0	60.0	140						
trichloropropane, 1,2,3-	96-18-4	E611E	1	μg/L	100 μg/L	87.0	70.0	130						
trimethylbenzene, 1,2,4-	95-63-6	E611E	1	μg/L	100 μg/L	114	70.0	130						
trimethylbenzene, 1,3,5-	108-67-8	E611E	1	μg/L	100 μg/L	114	70.0	130						
vinyl chloride	75-01-4	E611E	1	μg/L	100 μg/L	85.3	60.0	140						
xylene, m+p-	179601-23-1	E611E	0.4	μg/L	200 μg/L	100	70.0	130						
xylene, o-	95-47-6	E611E	0.3	μg/L	100 μg/L	96.1	70.0	130						

Page : 15 of 18 Work Order : CG2105959

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.002

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

ub-Matrix: Water					Matr			Matrix Spike (MS) Report			
					Spi	ike	Recovery (%)	Recovery	y Limits (%)		
Laboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Anions and Nutri	ents (QCLot: 352002)										
CG2105959-003	MW-04	nitrate (as N)	14797-55-8	E235.NO3	2.31 mg/L	2.5 mg/L	92.3	75.0	125		
Anions and Nutri	ents (QCLot: 352003)										
CG2105959-003	MW-04	chloride	16887-00-6	E235.CI	90.0 mg/L	100 mg/L	90.0	75.0	125		
Anions and Nutri	ents (QCLot: 352004)										
CG2105959-003	MW-04	fluoride	16984-48-8	E235.F	0.874 mg/L	1 mg/L	87.4	75.0	125		
Anions and Nutri	ents (QCLot: 352005)										
CG2105959-003	MW-04	nitrite (as N)	14797-65-0	E235.NO2	0.452 mg/L	0.5 mg/L	90.4	75.0	125		
Anions and Nutri	ents (QCLot: 352006)									1	
CG2105959-003	MW-04	sulfate (as SO4)	14808-79-8	E235.SO4	85.2 mg/L	100 mg/L	85.2	75.0	125		
Anions and Nutri	ents (QCLot: 355031)										
CG2105956-003	Anonymous	ammonia, total (as N)	7664-41-7	E298	ND mg/L	0.1 mg/L	ND	75.0	125		
Dissolved Metals	(QCLot: 351711)										
CG2105956-003	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000901 mg/L	0.0001 mg/L	90.1	70.0	130		
Dissolved Metals	(QCLot: 355649)										
CG2106049-002	Anonymous	aluminum, dissolved	7429-90-5	E421	1.81 mg/L	2 mg/L	90.5	70.0	130		
		antimony, dissolved	7440-36-0	E421	0.213 mg/L	0.2 mg/L	106	70.0	130		
		arsenic, dissolved	7440-38-2	E421	0.179 mg/L	0.2 mg/L	89.3	70.0	130		
		barium, dissolved	7440-39-3	E421	0.178 mg/L	0.2 mg/L	89.1	70.0	130		
		beryllium, dissolved	7440-41-7	E421	0.345 mg/L	0.4 mg/L	86.2	70.0	130		
		bismuth, dissolved	7440-69-9	E421	0.0918 mg/L	0.1 mg/L	91.8	70.0	130		
		boron, dissolved	7440-42-8	E421	0.931 mg/L	1 mg/L	93.1	70.0	130		
		cadmium, dissolved	7440-43-9	E421	0.0385 mg/L	0.04 mg/L	96.4	70.0	130		
		calcium, dissolved	7440-70-2	E421	ND mg/L	40 mg/L	ND	70.0	130		
		chromium, dissolved	7440-47-3	E421	0.369 mg/L	0.4 mg/L	92.2	70.0	130		
		cobalt, dissolved	7440-48-4	E421	0.180 mg/L	0.2 mg/L	89.8	70.0	130		
		copper, dissolved	7440-50-8	E421	0.181 mg/L	0.2 mg/L	90.7	70.0	130		
		iron, dissolved	7439-89-6	E421	18.5 mg/L	20 mg/L	92.7	70.0	130		
		lead, dissolved	7439-92-1	E421	0.188 mg/L	0.2 mg/L	94.0	70.0	130		
	I	lithium, dissolved	7439-93-2	E421	0.863 mg/L	1 mg/L	86.3	70.0	130		

Page : 16 of 18 Work Order : CG2105959

Sub-Matrix: Water							Matrix Spik	Matrix Spike (MS) Report							
					Spil	ke	Recovery (%)	Recovery	Limits (%)						
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier					
	s (QCLot: 355649) -	continued													
CG2106049-002	Anonymous	magnesium, dissolved	7439-95-4	E421	ND mg/L	10 mg/L	ND	70.0	130						
		manganese, dissolved	7439-96-5	E421	0.186 mg/L	0.2 mg/L	93.1	70.0	130						
		molybdenum, dissolved	7439-98-7	E421	0.193 mg/L	0.2 mg/L	96.4	70.0	130						
		nickel, dissolved	7440-02-0	E421	0.360 mg/L	0.4 mg/L	90.1	70.0	130						
		phosphorus, dissolved	7723-14-0	E421	91.5 mg/L	100 mg/L	91.5	70.0	130						
		potassium, dissolved	7440-09-7	E421	35.5 mg/L	40 mg/L	88.8	70.0	130						
		selenium, dissolved	7782-49-2	E421	0.373 mg/L	0.4 mg/L	93.4	70.0	130						
		silicon, dissolved	7440-21-3	E421	87.1 mg/L	100 mg/L	87.1	70.0	130						
		silver, dissolved	7440-22-4	E421	0.0394 mg/L	0.04 mg/L	98.4	70.0	130						
		sodium, dissolved	17341-25-2	E421	18.0 mg/L	20 mg/L	90.1	70.0	130						
		strontium, dissolved	7440-24-6	E421	0.189 mg/L	0.2 mg/L	94.7	70.0	130						
		sulfur, dissolved	7704-34-9	E421	ND mg/L	200 mg/L	ND	70.0	130						
		thallium, dissolved	7440-28-0	E421	0.0382 mg/L	0.04 mg/L	95.6	70.0	130						
		tin, dissolved	7440-31-5	E421	0.190 mg/L	0.2 mg/L	94.9	70.0	130						
		titanium, dissolved	7440-32-6	E421	0.369 mg/L	0.4 mg/L	92.3	70.0	130						
		uranium, dissolved	7440-61-1	E421	0.0380 mg/L	0.04 mg/L	94.9	70.0	130						
		vanadium, dissolved	7440-62-2	E421	0.913 mg/L	1 mg/L	91.3	70.0	130						
		zinc, dissolved	7440-66-6	E421	3.64 mg/L	4 mg/L	91.0	70.0	130						
		zirconium, dissolved	7440-67-7	E421	0.377 mg/L	0.4 mg/L	94.3	70.0	130						
olatile Organic	Compounds (QCLo	t: 353244)													
G2105956-002	Anonymous	benzene	71-43-2	E611E	101 μg/L	100 μg/L	101	70.0	130						
		bromobenzene	108-86-1	E611E	93.8 μg/L	100 μg/L	93.8	70.0	130						
		bromochloromethane	74-97-5	E611E	93.3 μg/L	100 μg/L	93.3	70.0	130						
		bromodichloromethane	75-27-4	E611E	87.6 μg/L	100 μg/L	87.6	70.0	130						
		bromoform	75-25-2	E611E	93.2 μg/L	100 μg/L	93.2	70.0	130						
		bromomethane	74-83-9	E611E	99.5 μg/L	100 μg/L	99.5	60.0	140						
		butylbenzene, n-	104-51-8	E611E	118 µg/L	100 μg/L	118	70.0	130						
		butylbenzene, sec-	135-98-8	E611E	99.7 μg/L	100 μg/L	99.7	70.0	130						
		butylbenzene, tert-	98-06-6	E611E	104 μg/L	100 μg/L	104	70.0	130						
		carbon tetrachloride	56-23-5	E611E	80.8 μg/L	100 μg/L	80.8	70.0	130						
		chlorobenzene	108-90-7	E611E	92.6 μg/L	100 μg/L	92.6	70.0	130						
		chloroethane	75-00-3	E611E	102 μg/L	100 μg/L	102	60.0	140						
		chloroform	67-66-3	E611E	86.0 µg/L	100 μg/L	86.0	70.0	130						
		chloromethane	74-87-3	E611E	83.6 µg/L	100 μg/L	83.6	60.0	140						
		chlorotoluene, 2-	95-49-8	E611E	98.6 μg/L	100 μg/L	98.6	70.0	130						
	I	chlorotoluene, 4-	106-43-4	E611E	100 μg/L	100 μg/L	100	70.0	130						

Page : 17 of 18 Work Order : CG2105959

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spil	re	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
	Compounds (QCLo	t: 353244) - continued								
CG2105956-002	Anonymous	cymene, p-	99-87-6	E611E	114 μg/L	100 μg/L	114	70.0	130	
		dibromo-3-chloropropane, 1,2-	96-12-8	E611E	90.4 μg/L	100 μg/L	90.4	70.0	130	
		dibromochloromethane	124-48-1	E611E	87.8 μg/L	100 μg/L	87.8	70.0	130	
		dibromoethane, 1,2-	106-93-4	E611E	108 μg/L	100 μg/L	108	70.0	130	
		dibromomethane	74-95-3	E611E	106 μg/L	100 μg/L	106	70.0	130	
		dichlorobenzene, 1,2-	95-50-1	E611E	96.7 μg/L	100 μg/L	96.7	70.0	130	
		dichlorobenzene, 1,3-	541-73-1	E611E	96.0 μg/L	100 μg/L	96.0	70.0	130	
		dichlorobenzene, 1,4-	106-46-7	E611E	97.0 μg/L	100 μg/L	97.0	70.0	130	
		dichlorodifluoromethane	75-71-8	E611E	81.2 μg/L	100 μg/L	81.2	60.0	140	
		dichloroethane, 1,1-	75-34-3	E611E	86.7 μg/L	100 μg/L	86.7	70.0	130	
		dichloroethane, 1,2-	107-06-2	E611E	93.9 μg/L	100 μg/L	93.9	70.0	130	
		dichloroethylene, 1,1-	75-35-4	E611E	106 μg/L	100 μg/L	106	70.0	130	
		dichloroethylene, cis-1,2-	156-59-2	E611E	105 μg/L	100 μg/L	105	70.0	130	
		dichloroethylene, trans-1,2-	156-60-5	E611E	86.6 µg/L	100 μg/L	86.6	70.0	130	
		dichloromethane	75-09-2	E611E	81.7 μg/L	100 μg/L	81.7	70.0	130	
		dichloropropane, 1,2-	78-87-5	E611E	102 μg/L	100 μg/L	102	70.0	130	
		dichloropropane, 1,3-	142-28-9	E611E	105 μg/L	100 μg/L	105	70.0	130	
		dichloropropane, 2,2-	594-20-7	E611E	112 μg/L	100 μg/L	112	70.0	130	
		dichloropropylene, 1,1-	563-58-6	E611E	103 μg/L	100 μg/L	103	70.0	130	
		dichloropropylene, cis-1,3-	10061-01-5	E611E	101 μg/L	100 μg/L	101	70.0	130	
		dichloropropylene, trans-1,3-	10061-02-6	E611E	105 μg/L	100 μg/L	105	70.0	130	
		ethylbenzene	100-41-4	E611E	100 μg/L	100 μg/L	100	70.0	130	
		hexachlorobutadiene	87-68-3	E611E	114 µg/L	100 μg/L	114	70.0	130	
		isopropylbenzene	98-82-8	E611E	97.6 μg/L	100 μg/L	97.6	70.0	130	
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611E	97.6 μg/L	100 μg/L	97.6	70.0	130	
		naphthalene	91-20-3	E611E	101 μg/L	100 μg/L	101	70.0	130	
		propylbenzene, n-	103-65-1	E611E	120 µg/L	100 μg/L	120	70.0	130	
		styrene	100-42-5	E611E	93.9 µg/L	100 μg/L	93.9	70.0	130	
		tetrachloroethane, 1,1,1,2-	630-20-6	E611E	98.0 µg/L	100 μg/L	98.0	70.0	130	
		tetrachloroethane, 1,1,2,2-	79-34-5	E611E	82.7 µg/L	100 μg/L	82.7	70.0	130	
		tetrachloroethylene	127-18-4	E611E	105 µg/L	100 μg/L	105	70.0	130	
		toluene	108-88-3	E611E	114 µg/L	100 μg/L	114	70.0	130	
		trichlorobenzene, 1,2,3-	87-61-6	E611E	95.8 µg/L	100 μg/L	95.8	70.0	130	
		trichlorobenzene, 1,2,4-	120-82-1	E611E	110 μg/L	100 μg/L	110	70.0	130	
		trichloroethane, 1,1,1-	71-55-6	E611E	88.5 µg/L	100 μg/L	88.5	70.0	130	
		trichloroethane, 1,1,2-	79-00-5	E611E	96.1 μg/L	100 μg/L	96.1	70.0	130	
		trichloroethylene	79-00-5 79-01-6	E611E	90.1 μg/L 105 μg/L	100 μg/L 100 μg/L	105	70.0	130	

Page : 18 of 18 Work Order : CG2105959

Sub-Matrix: Water					Matrix Spil	ke (MS) Report								
					Spi	ke	Recovery (%)		Limits (%)					
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier				
ID														
Volatile Organic Compounds (QCLot: 353244) - continued														
CG2105956-002	Anonymous	trichlorofluoromethane	75-69-4	E611E	104 μg/L	100 μg/L	104	60.0	140					
		trichloropropane, 1,2,3-	96-18-4	E611E	81.6 μg/L	100 μg/L	81.6	70.0	130					
		trimethylbenzene, 1,2,4-	95-63-6	E611E	112 μg/L	100 μg/L	112	70.0	130					
		trimethylbenzene, 1,3,5-	108-67-8	E611E	113 μg/L	100 μg/L	113	70.0	130					
		vinyl chloride	75-01-4	E611E	95.3 μg/L	100 μg/L	95.3	60.0	140					
		xylene, m+p-	179601-23-1	E611E	201 μg/L	200 μg/L	100	70.0	130					
		xylene, o-	95-47-6	E611E	100 μg/L	100 μg/L	100	70.0	130					

ALS Laboratory Group

Environmental Division

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsqlobal.com

COC#	CORD	Lindsay	Thurbe

provided detail

Page	1_of	1

Report to:	Report Format / Distribution							Service Requested:									
	Tetra Tech Canada I	nc.		「 Stand	ard Cother			12	Reg	ular :	Service	(Default)				
Contact:	Darby Madalena			₽ PDF	₽ Excel	Fax			Rus	h Se	vice (2	-3 Days)					
Address:	110, 140 Quarry Parl	Blvd SE, Calg	ary, AB T2C 3G3	Email 1:	darby.madalena@	tetratech.com		Г	Pric	rity S	ervice	1 Day or	ASAP)				
	_			Email 2:					Eme	ergen	cy Serv	rice (<1 [Day / Wke	nd) - (Conta	ct AL	.s
Phone:	403-723-6867	Fax: 4	03-203-3301	ALS Digit	al Crosstab results	, ,						Analysis	Request				
Invoice To	: FoSamèas Re	eport				Indicate Bottle	es: Filtered / Preserved (F/P) \rightarrow	→									
Company:	SAME AS REPORT			Client / P	roject Information	:			T .			TT		7			ı
Contact:				Job#:		SWM.SWOP04	1071-02.002	1									- 1
Address:				PO/AFE:		SWM.SWOP04	1071-02.002	1								5	ဖျှ
Sample				Legal Site	Description:			7	ΙË							ate	<u></u>
Phone:		Fax:		Quote #:	Q71650			1	-ABT							Contaminated?	Container
Lab	Work Order#			ALS	Milica Papic	Sampler	yan Miller	٦.,							¿S	rta	ζ̈́
(1	ab use only)	l ·	* 1	Contact:	Willica i apic	(Initials): K	yariner	<u>, 3</u> 2	Ē	l l					gon		e c
Sample		Sample Ider			Date	Time	Sample Type	VOC-8260	ROU-MET	NH3-F					-lazardous?	Highly	튑
# .	(This description will appear on the report)				dd-mmm-yy	hh:mm	(Select from drop-down list)	_	_					Щ	풀	土土	Ž.
1	MW-02				31-nov-31	1350	Water	X	X	Х		\perp	\bot	╨	↓ ↓	\longrightarrow	DI.
2	MW-03					1315	Water	X	X	X	\perp	$\perp \perp$	\bot		\sqcup	\vdash	5
3	MW-04					1300	Water	X	X	Х		\bot \bot	11		<u> </u>		5
4	BH8				1 1	1335	Water	X	X	Х		\perp	$\perp \perp$			igsquare	5
	21-144406~ NOT	TDRILLE	DIEL O	·			Water	- ×	×	*		$\perp \perp$				\longrightarrow	_
	MWO4A- DRY						Water	- × -	*	*			$\perp \perp$			\square	
	MW15A DRY	.					Water	_X	_X_	-×-		\perp					
5	Duplicate				al-nov-21		Water -	X	Х	X	. -			ļ		\Box	5
									L	<u> </u>						\square	
				ŕ								1					
	Guidelines / Regulations						Special Instruction					_					
				Dissolve	+ Metals	tha Field F	i1 K	<u> </u>	, è,	PE,	ちじへ	<u>er</u>					
							s. Please-fill-in-this form										
L			is form the user ack	nowledges	and agrees with		Conditions as specified	on th	ne ad	jacei							
Relinquished							124/117:3	d==	Tema	erature		ple-Condition					
By: Relinquished	1000	Date & Time: •	1.20	By: Date & Time:			1 /	~)		36	mples Rec		Er	nvir	onm	ent	

Environmental Division Calgary
Work Order Reference
CG2105959

Telephone: +1 403 407 1800

CERTIFICATE OF ANALYSIS

Page

Laboratory

Address

Telephone

Issue Date

Account Manager

Date Samples Received

Date Analysis Commenced

: 1 of 6

: Calgary - Environmental

Calgary AB Canada T1Y 7B5

Patryk Wojciak

: +1 403 407 1800

: 01-Feb-2022

: 01-Feb-2022 14:40

: 08-Feb-2022 13:12

: 2559 29th Street NE

Work Order : CG2201107

Client : Tetra Tech Canada Inc.

Contact : Darby Madalena

Address : 110, 140 Quarry Park Blvd SE

Calgary AB Canada T2C 3G3

Telephone : 403 203-3355

Project : SWM.SWOP04071-02.008

PO : SWM.SWOP04071-02.008

C-O-C number : CORD LINDSAY THURBER

Sampler : MEGAN.S

Site : ----

Quote number : Q71650 City of Red Deer Pre-1972 Landfill Monitoring

No. of samples received : 1
No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Harpreet Chawla	Team Leader - Inorganics	Metals, Calgary, Alberta
Jeanie Mark	Laboratory Analyst	Organics, Calgary, Alberta
Olivia Gu	Lab Analyst	Metals, Calgary, Alberta
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Shirley Li		Inorganics, Calgary, Alberta
Shirley Li		Metals, Calgary, Alberta

Page : 2 of 6

Work Order : CG2201107
Client : Tetra Tech Car

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.008

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

No Unit				
percent				
micrograms per litre				
Microsiemens per centimetre				
milliequivalents per litre				
milligrams per litre				
pH units				

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

ved Solids / Electrical

Page : 3 of 6 Work Order : CG2201107

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.008

Analytical Results

Sub-Matrix: Water			Cl	ient sample ID	22MW05	 	
(Matrix: Water)							
			Client samp	ling date / time	01-Feb-2022 12:30	 	
Analyte	CAS Number	Method	LOR	Unit	CG2201107-001	 	
					Result	 	
Physical Tests							
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	708	 	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	<1.0	 	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	580	 	
conductivity		E100	1.0	μS/cm	1030	 	
hardness (as CaCO3), dissolved		EC100	0.60	mg/L	452	 	
pH		E108	0.10	pH units	7.19	 	
solids, total dissolved [TDS], calculated		EC103	1.0	mg/L	684	 	
Anions and Nutrients							
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	3.66	 	
chloride	16887-00-6	E235.CI	0.50	mg/L	45.0	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.132	 	
nitrate (as N)	14797-55-8	E235.NO3	0.020	mg/L	0.170	 	
nitrate + nitrite (as N)		EC235.N+N	0.0050	mg/L	0.170	 	
nitrite (as N)	14797-65-0	E235.NO2	0.010	mg/L	<0.050 DLDS	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	7.10	 	
Ion Balance							
anion sum		EC101	0.10	meq/L	13.0	 	
cation sum		EC101	0.10	meq/L	12.9	 	
ion balance (cation-anion difference)		EC101	0.010	%	0.386	 	
Dissolved Metals							
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0032	 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	 	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.0275	 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	1.25	 	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.064	 	
cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.000050	 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	102	 	
chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00042	 	
copper, aissoivea	/440-50-8	E421	0.00020	mg/L	0.00042	 	

Page : 4 of 6 Work Order : CG2201107

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.008

Analytical Results

Sub-Matrix: Water			Cli	ent sample ID	22MW05		 	
(Matrix: Water)							 	
			Client samp	ling date / time	01-Feb-2022 12:30		 	
Analyte	CAS Number	Method	LOR	Unit	CG2201107-001		 	
					Result		 	
Dissolved Metals								
iron, dissolved	7439-89-6	E421	0.010	mg/L	16.1		 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	0.000051		 	
magnesium, dissolved	7439-95-4	E421	0.100	mg/L	47.9		 	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.509		 	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	0.0000072 RRV		 	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00081		 	
potassium, dissolved	7440-09-7	E421	0.100	mg/L	8.54		 	
selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.000174		 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010		 	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	65.3		 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000605		 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0039		 	
dissolved mercury filtration location		EP509	-	-	Field		 	
dissolved metals filtration location		EP421	-	-	Field		 	
Volatile Organic Compounds								
benzene	71-43-2	E611E	0.50	μg/L	<0.50		 	
bromobenzene	108-86-1	E611E	1.0	μg/L	<1.0		 	
bromochloromethane	74-97-5	E611E	1.0	μg/L	<1.0		 	
bromodichloromethane	75-27-4	E611E	1.0	μg/L	<1.0		 	
bromoform	75-25-2	E611E	1.0	μg/L	<1.0		 	
bromomethane	74-83-9	E611E	1.0	μg/L	<1.0		 	
butylbenzene, n-	104-51-8	E611E	1.0	μg/L	<1.0		 	
butylbenzene, sec-	135-98-8	E611E	1.0	μg/L	<1.0		 	
butylbenzene, tert-	98-06-6	E611E	1.0	μg/L	<1.0		 	
carbon tetrachloride	56-23-5	E611E	0.50	μg/L	<0.50		 	
chlorobenzene	108-90-7	E611E	1.0	μg/L	<1.0		 	
chloroethane	75-00-3	E611E	1.0	μg/L	<1.0		 	
chloroform	67-66-3	E611E	1.0	μg/L	<1.0		 	
chloromethane	74-87-3	E611E	5.0	μg/L	<5.0		 	
chlorotoluene, 2-	95-49-8	E611E	1.0	μg/L	<1.0		 	
chlorotoluene, 4-	106-43-4	E611E	1.0	μg/L	<1.0		 	
I '	131 70 1		1	1.5				

Page : 5 of 6 Work Order : CG2201107

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.008

Analytical Results

Sub-Matrix: Water			C	lient sample ID	22MW05	 		
(Matrix: Water)								
			Client samp	oling date / time	01-Feb-2022 12:30	 		
Analyte	CAS Number	Method	LOR	Unit	CG2201107-001	 		
				Ī	Result	 		
Volatile Organic Compounds								
cymene, p-	99-87-6	E611E	1.0	μg/L	<1.0	 		
dibromo-3-chloropropane, 1,2-	96-12-8	E611E	1.0	μg/L	<1.0	 		
dibromochloromethane	124-48-1	E611E	1.0	μg/L	<1.0	 		
dibromoethane, 1,2-	106-93-4	E611E	1.0	μg/L	<1.0	 		
dibromomethane	74-95-3	E611E	1.0	μg/L	<1.0	 		
dichlorobenzene, 1,2-	95-50-1	E611E	0.50	μg/L	<0.50	 		
dichlorobenzene, 1,3-	541-73-1	E611E	1.0	μg/L	<1.0	 		
dichlorobenzene, 1,4-	106-46-7	E611E	1.0	μg/L	<1.0	 		
dichlorodifluoromethane	75-71-8	E611E	1.0	μg/L	<1.0	 		
dichloroethane, 1,1-	75-34-3	E611E	1.0	μg/L	<1.0	 		
dichloroethane, 1,2-	107-06-2	E611E	1.0	μg/L	<1.0	 		
dichloroethylene, 1,1-	75-35-4	E611E	1.0	μg/L	<1.0	 		
dichloroethylene, cis-1,2-	156-59-2	E611E	1.0	μg/L	<1.0	 		
dichloroethylene, trans-1,2-	156-60-5	E611E	1.0	μg/L	<1.0	 		
dichloromethane	75-09-2	E611E	1.0	μg/L	<1.0	 		
dichloropropane, 1,2-	78-87-5	E611E	1.0	μg/L	<1.0	 		
dichloropropane, 1,3-	142-28-9	E611E	1.0	μg/L	<1.0	 		
dichloropropane, 2,2-	594-20-7	E611E	1.0	μg/L	<1.0	 		
dichloropropylene, 1,1-	563-58-6	E611E	1.0	μg/L	<1.0	 		
dichloropropylene, cis+trans-1,3-	542-75-6	E611E	1.5	μg/L	<1.5	 		
dichloropropylene, cis-1,3-	10061-01-5	E611E	1.0	μg/L	<1.0	 		
dichloropropylene, trans-1,3-	10061-02-6	E611E	1.0	μg/L	<1.0	 		
ethylbenzene	100-41-4	E611E	0.50	μg/L	<0.50	 		
hexachlorobutadiene	87-68-3	E611E	1.0	μg/L	<1.0	 		
isopropylbenzene	98-82-8	E611E	1.0	μg/L	<1.0	 		
methyl-tert-butyl ether [MTBE]	1634-04-4	E611E	0.50	μg/L	<0.50	 		
propylbenzene, n-	103-65-1	E611E	1.0	μg/L	<1.0	 		
styrene	100-42-5	E611E	0.50	μg/L	<0.50	 		
tetrachloroethane, 1,1,1,2-	630-20-6	E611E	1.0	μg/L	<1.0	 		
tetrachloroethane, 1,1,2,2-	79-34-5	E611E	1.0	μg/L	<1.0	 		
tetrachloroethylene	127-18-4	E611E	1.0	μg/L	<1.0	 		
•	'				'		1	'

Page : 6 of 6
Work Order : CG2201107

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.008

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	22MW05	 	
(Matrix: Water)							
			Client samp	ling date / time	01-Feb-2022 12:30	 	
Analyte	CAS Number	Method	LOR	Unit	CG2201107-001	 	
					Result	 	
Volatile Organic Compounds							
toluene	108-88-3	E611E	0.50	μg/L	<0.50	 	
trichlorobenzene, 1,2,3-	87-61-6	E611E	1.0	μg/L	<1.0	 	
trichlorobenzene, 1,2,4-	120-82-1	E611E	1.0	μg/L	<1.0	 	
trichloroethane, 1,1,1-	71-55-6	E611E	1.0	μg/L	<1.0	 	
trichloroethane, 1,1,2-	79-00-5	E611E	1.0	μg/L	<1.0	 	
trichloroethylene	79-01-6	E611E	1.0	μg/L	<1.0	 	
trichlorofluoromethane	75-69-4	E611E	1.0	μg/L	<1.0	 	
trichloropropane, 1,2,3-	96-18-4	E611E	1.0	μg/L	<1.0	 	
trimethylbenzene, 1,2,4-	95-63-6	E611E	1.0	μg/L	<1.0	 	
trimethylbenzene, 1,3,5-	108-67-8	E611E	1.0	μg/L	<1.0	 	
vinyl chloride	75-01-4	E611E	1.0	μg/L	<1.0	 	
xylene, m+p-	179601-23-1	E611E	0.40	μg/L	<0.40	 	
xylene, o-	95-47-6	E611E	0.30	μg/L	<0.30	 	
xylenes, total	1330-20-7	E611E	0.50	μg/L	<0.50	 	
BTEX, total		E611E	1.0	μg/L	<1.0	 	
trihalomethanes [THMs], total		E611E	2.0	μg/L	<2.0	 	
Volatile Organic Compounds Surrogates							
bromofluorobenzene, 4-	460-00-4	E611E	1.0	%	109	 	
difluorobenzene, 1,4-	540-36-3	E611E	1.0	%	104	 	
Polycyclic Aromatic Hydrocarbons							
naphthalene	91-20-3	E611E	1.0	μg/L	<1.0	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : CG2201107 Page : 1 of 7

Client : Tetra Tech Canada Inc. Laboratory : Calgary - Environmental

Contact : Darby Madalena Account Manager : Patryk Wojciak Address : 110, 140 Quarry Park Blvd SE Address : 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

Calgary AB Canada T2C 3G3 Telephone : 403 203 3355 Telephone : +1 403 407 1800

Project SWM.SWOP04071-02.008 **Date Samples Received** : 01-Feb-2022 14:40 PO Issue Date : 08-Feb-2022 13:12 SWM.SWOP04071-02.008

C-O-C number : CORD LINDSAY THURBER

Sampler : MEGAN.S

Site

Quote number : Q71650 City of Red Deer Pre-1972 Landfill Monitoring

No. of samples received : 1 No. of samples analysed : 1

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers occur - please see following pages for full details.

Page : 2 of 7
Work Order : CG2201107

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.008

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	/aluation: × =	Holding time exce	edance ; •	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
22MW05	E298	01-Feb-2022	01-Feb-2022				01-Feb-2022	28 days	0 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE										
22MW05	E235.CI	01-Feb-2022					02-Feb-2022	28 days	1 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
22MW05	E235.F	01-Feb-2022					02-Feb-2022	28 days	1 days	✓
Anions and Nutrients : Nitrate in Water by IC										
HDPE	E005 NO0	04 5 1 0000								,
22MW05	E235.NO3	01-Feb-2022					02-Feb-2022	3 days	1 days	✓
Anions and Nutrients : Nitrite in Water by IC				I	ı			T	l I	
HDPE 22MW05	E235.NO2	01-Feb-2022					02-Feb-2022	3 days	1 days	1
ZZIVIVVOS	L233.NO2	01-1 eb-2022					02-1 eb-2022	3 days	1 uays	•
Anions and Nutrients : Sulfate in Water by IC HDPE										
22MW05	E235.SO4	01-Feb-2022					02-Feb-2022	28 days	1 days	1
LLIVITYOU		011002022					02-1 05-2022	Lo days	, days	•
Discoluded Matala , Discoluded Mayayuru in Water by CVAAC										
Dissolved Metals : Dissolved Mercury in Water by CVAAS Glass vial dissolved (hydrochloric acid)								I		
22MW05	E509	01-Feb-2022	06-Feb-2022				06-Feb-2022	28 days	5 davs	1
			- 3 . 55 2522						2 44,5	

Page : 3 of 7
Work Order : CG2201107

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.008

Matrix: Water

Evaluation: × = Holding time exceedance ; ✓ = Within Holding Time

Matrix: Water					□ \	/aiuation. 🔻 –	Holding time exce	edance, v	– vvitriir	Holding I
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation Hold		g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) 22MW05	E421	01-Feb-2022	03-Feb-2022				03-Feb-2022	180	2 days	✓
								days		
Physical Tests : Alkalinity Species by Titration										
HDPE 22MW05	E290	01-Feb-2022					02-Feb-2022	14 days	1 days	✓
Physical Tests : Conductivity in Water										
HDPE 22MW05	E100	01-Feb-2022					02-Feb-2022	28 days	1 days	✓
Physical Tests : pH by Meter										
HDPE 22MW05	E108	01-Feb-2022					02-Feb-2022	0.25 hrs	22 hrs	* EHTR-F
Polycyclic Aromatic Hydrocarbons : VOCs (Prairies List) by Headspace GC-MS										
Glass vial (sodium bisulfate) 22MW05	E611E	01-Feb-2022	02-Feb-2022				02-Feb-2022			
Volatile Organic Compounds : VOCs (Prairies List) by Headspace GC-MS										
Glass vial (sodium bisulfate) 22MW05	E611E	01-Feb-2022	02-Feb-2022				02-Feb-2022	14 days	1 days	*

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended Rec. HT: ALS recommended hold time (see units).

Page : 4 of 7
Work Order : CG2201107

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.008

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			C	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Alkalinity Species by Titration	E290	400224	1	9	11.1	5.0	1
Ammonia by Fluorescence	E298	399911	1	1	100.0	5.0	✓
Chloride in Water by IC	E235.CI	400255	1	1	100.0	5.0	✓
Conductivity in Water	E100	400222	1	9	11.1	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	403609	1	18	5.5	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	401380	1	14	7.1	5.0	✓
Fluoride in Water by IC	E235.F	400252	1	14	7.1	5.0	√
Nitrate in Water by IC	E235.NO3	400253	1	4	25.0	5.0	✓
Nitrite in Water by IC	E235.NO2	400254	1	4	25.0	5.0	✓
pH by Meter	E108	400223	1	13	7.6	5.0	<u> </u>
Sulfate in Water by IC	E235.SO4	400251	1	14	7.1	5.0	✓
VOCs (Prairies List) by Headspace GC-MS	E611E	400539	1	2	50.0	5.0	1
Laboratory Control Samples (LCS)							_
Alkalinity Species by Titration	E290	400224	1	9	11.1	5.0	✓
Ammonia by Fluorescence	E298	399911	1	1	100.0	5.0	√
Chloride in Water by IC	E235.CI	400255	1	1	100.0	5.0	<u>√</u>
Conductivity in Water	E100	400222	1	9	11.1	5.0	1
Dissolved Mercury in Water by CVAAS	E509	403609	1	18	5.5	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	401380	1	14	7.1	5.0	✓
Fluoride in Water by IC	E235.F	400252	1	14	7.1	5.0	√
Nitrate in Water by IC	E235.NO3	400253	1	4	25.0	5.0	1
Nitrite in Water by IC	E235.NO2	400254	1	4	25.0	5.0	✓
pH by Meter	E108	400223	1	13	7.6	5.0	✓
Sulfate in Water by IC	E235.SO4	400251	1	14	7.1	5.0	✓
VOCs (Prairies List) by Headspace GC-MS	E611E	400539	1	2	50.0	5.0	√
Method Blanks (MB)							
Alkalinity Species by Titration	E290	400224	1	9	11.1	5.0	1
Ammonia by Fluorescence	E298	399911	1	1	100.0	5.0	√
Chloride in Water by IC	E235.CI	400255	1	1	100.0	5.0	√
Conductivity in Water	E100	400222	1	9	11.1	5.0	√
Dissolved Mercury in Water by CVAAS	E509	403609	1	18	5.5	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	401380	1	14	7.1	5.0	√
Fluoride in Water by IC	E235.F	400252	1	14	7.1	5.0	1
Nitrate in Water by IC	E235.NO3	400253	1	4	25.0	5.0	<i>'</i>
Nitrite in Water by IC	E235.NO2	400254	1	4	25.0	5.0	√
Sulfate in Water by IC	E235.SO4	400251	1	14	7.1	5.0	√
<u>-</u>		The second secon					_

Page : 5 of 7
Work Order : CG2201107

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.008

Matrix: Water Evaluation: × = QC frequency outside specification, ✓ = QC frequency within specification.

	and the second s	and the second s					
Quality Control Sample Type			Co	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	399911	0	1	0.0	5.0	3c
Chloride in Water by IC	E235.CI	400255	0	1	0.0	5.0	æ
Dissolved Mercury in Water by CVAAS	E509	403609	1	18	5.5	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	401380	1	14	7.1	5.0	✓
Fluoride in Water by IC	E235.F	400252	1	14	7.1	5.0	✓
Nitrate in Water by IC	E235.NO3	400253	1	4	25.0	5.0	✓
Nitrite in Water by IC	E235.NO2	400254	1	4	25.0	5.0	✓
Sulfate in Water by IC	E235.SO4	400251	1	14	7.1	5.0	✓
VOCs (Prairies List) by Headspace GC-MS	E611E	400539	1	2	50.0	5.0	✓

Page : 6 of 7
Work Order : CG2201107

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.008

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results,
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Chloride in Water by IC	E235.Cl	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Fluoride in Water by IC	E235.F Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrite in Water by IC	E235.NO2 Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrate in Water by IC	E235.NO3 Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Sulfate in Water by IC	E235.SO4 Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Dissolved Metals in Water by CRC ICPMS	E421 Calgary - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Dissolved Mercury in Water by CVAAS	E509 Calgary - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
VOCs (Prairies List) by Headspace GC-MS	E611E Calgary - Environmental	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.

Page : 7 of 7 Work Order : CG2201107

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Hardness (Calculated)	EC100 Calgary - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
TDS in Water (Calculation)	EC103 Calgary - Environmental	Water	APHA 1030E (mod)	Total Dissolved Solids is calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present.
Nitrate and Nitrite (as N) (Calculation)	EC235.N+N Calgary - Environmental	Water	EPA 300.0	Nitrate and Nitrite (as N) is a calculated parameter. Nitrate and Nitrite (as N) = Nitrite (as N) + Nitrate (as N).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Dissolved Metals Water Filtration	EP421 Calgary - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
Dissolved Mercury Water Filtration	EP509 Calgary - Environmental	Water	АРНА 3030В	Water samples are filtered (0.45 um), and preserved with HCl.
VOCs Preparation for Headspace Analysis	EP581 Calgary - Environmental	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the GC/MS-FID system.

QUALITY CONTROL REPORT

Work Order : CG2201107 Page : 1 of 14

Client : Tetra Tech Canada Inc. Laboratory : Calgary - Environmental

Contact : Darby Madalena : Patryk Wojciak

:110, 140 Quarry Park Blvd SE Address :2559 29th Street NE

Calgary AB Canada T2C 3G3 Calgary, Alberta Canada T1Y 7B5

 Telephone
 :403 203 3355
 Telephone
 :+1 403 407 1800

 Project
 :SWM.SWOP04071-02.008
 Date Samples Received
 :01-Feb-2022 14:40

PO : SWM.SWOP04071-02.008 Date Analysis Commenced : 01-Feb-2022

C-O-C number : CORD LINDSAY THURBER Issue Date : 08-Feb-2022 13:12

Sampler : MEGAN.S
Site :----

Quote number : Q71650 City of Red Deer Pre-1972 Landfill Monitoring

No. of samples received :1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

• Matrix Spike (MS) Report; Recovery and Acceptance Limits

: 1

- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

No. of samples analysed

Address

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Harpreet Chawla	Team Leader - Inorganics	Metals, Calgary, Alberta
Jeanie Mark	Laboratory Analyst	Organics, Calgary, Alberta
Olivia Gu	Lab Analyst	Metals, Calgary, Alberta
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Shirley Li		Inorganics, Calgary, Alberta
Shirley Li		Metals, Calgary, Alberta

Page : 2 of 14 Work Order : CG2201107

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.008

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

Page : 3 of 14
Work Order : CG2201107

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.008

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC	Lot: 400222)										
CG2201104-001	Anonymous	conductivity		E100	2.0	μS/cm	2890	2860	1.04%	10%	
Physical Tests (QC	Lot: 400223)										
CG2201104-001	Anonymous	pH		E108	0.10	pH units	8.15	8.16	0.123%	4%	
Physical Tests (QC	Lot: 400224)										
CG2201104-001	Anonymous	alkalinity, total (as CaCO3)		E290	1.0	mg/L	464	457	1.50%	20%	
Anions and Nutrien	ts (QC Lot: 399911)										
CG2201107-001	22MW05	ammonia, total (as N)	7664-41-7	E298	0.125	mg/L	3.66	3.72	1.47%	20%	
Anions and Nutrien	ts (QC Lot: 400251)										
CG2201101-004	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	95.8	97.1	1.34%	20%	
Anions and Nutrien	ts (QC Lot: 400252)										
CG2201101-004	Anonymous	fluoride	16984-48-8	E235.F	0.020	mg/L	0.144	0.146	0.003	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 400253)										
CG2201107-001	22MW05	nitrate (as N)	14797-55-8	E235.NO3	0.100	mg/L	0.170	0.170	0.0006	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 400254)										
CG2201107-001	22MW05	nitrite (as N)	14797-65-0	E235.NO2	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 400255)										
CG2201107-001	22MW05	chloride	16887-00-6	E235.CI	2.50	mg/L	45.0	45.0	0.238%	20%	
Dissolved Metals (QC Lot: 401380)										
CG2201099-014	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00050	mg/L	0.00058	0.00055	0.00004	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00050	mg/L	0.0114	0.0111	2.14%	20%	
		boron, dissolved	7440-42-8	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000250	mg/L	0.00138	0.00136	1.55%	20%	
		calcium, dissolved	7440-70-2	E421	0.250	mg/L	285	284	0.260%	20%	
		chromium, dissolved	7440-47-3	E421	0.00250	mg/L	<0.00250	<0.00250	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000250	mg/L	<0.000250	<0.000250	0	Diff <2x LOR	
		magnesium, dissolved	7439-95-4	E421	0.0250	mg/L	171	173	1.02%	20%	
		manganese, dissolved	7439-96-5	E421	0.00050		0.726	0.730	0.484%	20%	

Page : 4 of 14 Work Order : CG2201107

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.008

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie	
Dissolved Metals (QC Lot: 401380) - coi	ntinued										
CG2201099-014	Anonymous	nickel, dissolved	7440-02-0	E421	0.00250	mg/L	0.0639	0.0643	0.705%	20%		
		potassium, dissolved	7440-09-7	E421	0.250	mg/L	4.16	4.11	1.05%	20%		
		selenium, dissolved	7782-49-2	E421	0.000250	mg/L	0.00650	0.00640	1.50%	20%		
		silver, dissolved	7440-22-4	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		
		sodium, dissolved	7440-23-5	E421	0.250	mg/L	6.22	6.26	0.514%	20%		
		uranium, dissolved	7440-61-1	E421	0.000050	mg/L	0.0155	0.0152	2.16%	20%		
		zinc, dissolved	7440-66-6	E421	0.0050	mg/L	0.0218	0.0220	0.0003	Diff <2x LOR		
Dissolved Metals (QC Lot: 403609)											
CG2201047-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	<0.0000050	0	Diff <2x LOR		
olatile Organic Co	ompounds (QC Lot: 4	00539)										
CG2201055-001	Anonymous	benzene	71-43-2	E611E	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		bromobenzene	108-86-1	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		bromochloromethane	74-97-5	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		bromodichloromethane	75-27-4	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		bromoform	75-25-2	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		bromomethane	74-83-9	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		butylbenzene, n-	104-51-8	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		butylbenzene, sec-	135-98-8	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		butylbenzene, tert-	98-06-6	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		carbon tetrachloride	56-23-5	E611E	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		chlorobenzene	108-90-7	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		chloroethane	75-00-3	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		chloroform	67-66-3	E611E	1.0	μg/L	2.6	2.6	0.01	Diff <2x LOR		
		chloromethane	74-87-3	E611E	5.0	μg/L	<5.0	<5.0	0	Diff <2x LOR		
		chlorotoluene, 2-	95-49-8	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		chlorotoluene, 4-	106-43-4	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		cymene, p-	99-87-6	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		dibromo-3-chloropropane, 1,2-	96-12-8	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		dibromochloromethane	124-48-1	E611E	1.0	μg/L	2.3	2.2	0.08	Diff <2x LOR		
		dibromoethane, 1,2-	106-93-4	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		dibromomethane	74-95-3	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichlorobenzene, 1,2-	95-50-1	E611E	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		dichlorobenzene, 1,3-	541-73-1	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichlorobenzene, 1,4-	106-46-7	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
	The second secon		1				The second secon		T. Control of the Con	The second secon	f .	

Page : 5 of 14 Work Order : CG2201107

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.008

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report							
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie	
olatile Organic Co	mpounds (QC Lot: 40	00539) - continued										
G2201055-001	Anonymous	dichloroethane, 1,1-	75-34-3	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichloroethane, 1,2-	107-06-2	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichloroethylene, 1,1-	75-35-4	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichloroethylene, cis-1,2-	156-59-2	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichloroethylene, trans-1,2-	156-60-5	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichloromethane	75-09-2	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichloropropane, 1,2-	78-87-5	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichloropropane, 1,3-	142-28-9	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichloropropane, 2,2-	594-20-7	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichloropropylene, 1,1-	563-58-6	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichloropropylene, cis-1,3-	10061-01-5	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichloropropylene, trans-1,3-	10061-02-6	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		ethylbenzene	100-41-4	E611E	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		hexachlorobutadiene	87-68-3	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		isopropylbenzene	98-82-8	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611E	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		naphthalene	91-20-3	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		propylbenzene, n-	103-65-1	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		styrene	100-42-5	E611E	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		tetrachloroethane, 1,1,1,2-	630-20-6	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		tetrachloroethane, 1,1,2,2-	79-34-5	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		tetrachloroethylene	127-18-4	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		toluene	108-88-3	E611E	0.50	μg/L	13.0	12.7	1.87%	30%		
		trichlorobenzene, 1,2,3-	87-61-6	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		trichlorobenzene, 1,2,4-	120-82-1	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		trichloroethane, 1,1,1-	71-55-6	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		trichloroethane, 1,1,2-	79-00-5	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		trichloroethylene	79-01-6	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		trichlorofluoromethane	75-69-4	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		trichloropropane, 1,2,3-	96-18-4	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		trimethylbenzene, 1,2,4-	95-63-6	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		trimethylbenzene, 1,3,5-	108-67-8	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		vinyl chloride	75-01-4	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		xylene, m+p-	179601-23-1	E611E	0.40	μg/L	<0.40	<0.40	0	Diff <2x LOR		
		xylene, o-	95-47-6	E611E	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR		

 Page
 : 6 of 14

 Work Order
 : CG2201107

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.008

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number Me	ethod	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 400222)						
conductivity	E1	100	1	μS/cm	<1.0	
Physical Tests (QCLot: 400224)						
alkalinity, total (as CaCO3)	E2	290	1	mg/L	<1.0	
Anions and Nutrients (QCLot: 399911)						
ammonia, total (as N)	7664-41-7 E2	298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 400251)						
sulfate (as SO4)	14808-79-8 E2	235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 400252)						
fluoride	16984-48-8 E2	235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 400253)						
nitrate (as N)	14797-55-8 E2	235.NO3	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 400254)						
nitrite (as N)	14797-65-0 E2	235.NO2	0.01	mg/L	<0.010	
Anions and Nutrients (QCLot: 400255)						
chloride	16887-00-6 E2	235.Cl	0.5	mg/L	<0.50	
Dissolved Metals (QCLot: 401380)						
aluminum, dissolved	7429-90-5 E4	421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0 E4	421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2 E4	421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3 E4	421	0.0001	mg/L	<0.00010	
boron, dissolved	7440-42-8 E4	421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9 E4	421	0.000005	mg/L	<0.000050	
calcium, dissolved	7440-70-2 E4	421	0.05	mg/L	<0.050	
chromium, dissolved	7440-47-3 E4	421	0.0005	mg/L	<0.00050	
copper, dissolved	7440-50-8 E4	421	0.0002	mg/L	<0.00020	
iron, dissolved	7439-89-6 E4	421	0.01	mg/L	<0.010	
lead, dissolved	7439-92-1 E4	421	0.00005	mg/L	<0.000050	
magnesium, dissolved	7439-95-4 E4	421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5 E4	421	0.0001	mg/L	<0.00010	
nickel, dissolved	7440-02-0 E4	421	0.0005	mg/L	<0.00050	
potassium, dissolved	7440-09-7 E4	421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2 E4	421	0.00005	mg/L	<0.000050	
silver, dissolved	7440-22-4 E4	421	0.00001	mg/L	<0.000010	

Page : 7 of 14 Work Order : CG2201107

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.008

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 401380)	- continued					
sodium, dissolved	7440-23-5	E421	0.05	mg/L	<0.050	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
Dissolved Metals (QCLot: 403609)						
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.000050	
/olatile Organic Compounds (QCL	ot: 400539)					
enzene	71-43-2	E611E	0.5	μg/L	<0.50	
promobenzene	108-86-1	E611E	1	μg/L	<1.0	
romochloromethane	74-97-5	E611E	1	μg/L	<1.0	
oromodichloromethane	75-27-4	E611E	1	μg/L	<1.0	
oromoform	75-25-2	E611E	1	μg/L	<1.0	
promomethane	74-83-9	E611E	1	μg/L	<1.0	
outylbenzene, n-	104-51-8	E611E	1	μg/L	<1.0	
outylbenzene, sec-	135-98-8	E611E	1	μg/L	<1.0	
utylbenzene, tert-	98-06-6	E611E	1	μg/L	<1.0	
arbon tetrachloride	56-23-5	E611E	0.5	μg/L	<0.50	
hlorobenzene	108-90-7	E611E	1	μg/L	<1.0	
hloroethane	75-00-3	E611E	1	μg/L	<1.0	
hloroform	67-66-3	E611E	1	μg/L	<1.0	
chloromethane	74-87-3	E611E	5	μg/L	<5.0	
chlorotoluene, 2-	95-49-8	E611E	1	μg/L	<1.0	
chlorotoluene, 4-	106-43-4	E611E	1	μg/L	<1.0	
ymene, p-	99-87-6	E611E	1	μg/L	<1.0	
libromo-3-chloropropane, 1,2-	96-12-8	E611E	1	μg/L	<1.0	
dibromochloromethane	124-48-1	E611E	1	μg/L	<1.0	
libromoethane, 1,2-	106-93-4	E611E	1	μg/L	<1.0	
libromomethane	74-95-3	E611E	1	μg/L	<1.0	
lichlorobenzene, 1,2-	95-50-1	E611E	0.5	μg/L	<0.50	
dichlorobenzene, 1,3-	541-73-1	E611E	1	μg/L	<1.0	
lichlorobenzene, 1,4-	106-46-7	E611E	1	μg/L	<1.0	
ichlorodifluoromethane	75-71-8	E611E	1	μg/L	<1.0	
lichloroethane, 1,1-	75-34-3	E611E	1	μg/L	<1.0	
lichloroethane, 1,2-	107-06-2		1	μg/L	<1.0	
dichloroethylene, 1,1-	75-35-4		1	μg/L	<1.0	
dichloroethylene, cis-1,2-	156-59-2		1	μg/L	<1.0	
dichloroethylene, trans-1,2-	156-60-5		1	μg/L	<1.0	

Page : 8 of 14 Work Order : CG2201107

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.008

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Volatile Organic Compounds (QCL	ot: 400539) - continued					
dichloromethane	75-09-2	E611E	1	μg/L	<1.0	
dichloropropane, 1,2-	78-87-5	E611E	1	μg/L	<1.0	
dichloropropane, 1,3-	142-28-9	E611E	1	μg/L	<1.0	
dichloropropane, 2,2-	594-20-7	E611E	1	μg/L	<1.0	
dichloropropylene, 1,1-	563-58-6	E611E	1	μg/L	<1.0	
dichloropropylene, cis-1,3-	10061-01-5	E611E	1	μg/L	<1.0	
dichloropropylene, trans-1,3-	10061-02-6	E611E	1	μg/L	<1.0	
ethylbenzene	100-41-4	E611E	0.5	μg/L	<0.50	
nexachlorobutadiene	87-68-3	E611E	1	μg/L	<1.0	
sopropylbenzene	98-82-8	E611E	1	μg/L	<1.0	
nethyl-tert-butyl ether [MTBE]	1634-04-4	E611E	0.5	μg/L	<0.50	
naphthalene	91-20-3	E611E	1	μg/L	<1.0	
propylbenzene, n-	103-65-1	E611E	1	μg/L	<1.0	
styrene	100-42-5	E611E	0.5	μg/L	<0.50	
etrachloroethane, 1,1,1,2-	630-20-6	E611E	1	μg/L	<1.0	
etrachloroethane, 1,1,2,2-	79-34-5	E611E	1	μg/L	<1.0	
etrachloroethylene	127-18-4	E611E	1	μg/L	<1.0	
oluene	108-88-3	E611E	0.5	μg/L	<0.50	
trichlorobenzene, 1,2,3-	87-61-6	E611E	1	μg/L	<1.0	
richlorobenzene, 1,2,4-	120-82-1	E611E	1	μg/L	<1.0	
richloroethane, 1,1,1-	71-55-6	E611E	1	μg/L	<1.0	
richloroethane, 1,1,2-	79-00-5	E611E	1	μg/L	<1.0	
richloroethylene	79-01-6	E611E	1	μg/L	<1.0	
richlorofluoromethane	75-69-4	E611E	1	μg/L	<1.0	
richloropropane, 1,2,3-	96-18-4	E611E	1	μg/L	<1.0	
rimethylbenzene, 1,2,4-	95-63-6	E611E	1	μg/L	<1.0	
rimethylbenzene, 1,3,5-	108-67-8	E611E	1	μg/L	<1.0	
vinyl chloride	75-01-4	E611E	1	μg/L	<1.0	
xylene, m+p-	179601-23-1	E611E	0.4	μg/L	<0.40	
xylene, o-	95-47-6	E611E	0.3	μg/L	<0.30	

Page : 9 of 14 Work Order : CG2201107

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.008

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Physical Tests (QCLot: 400222)										
conductivity		E100	1	μS/cm	146.9 μS/cm	96.7	90.0	110		
Physical Tests (QCLot: 400223)										
рН		E108		pH units	7 pH units	99.7	98.6	101		
Physical Tests (QCLot: 400224)										
alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	105	85.0	115		
Anions and Nutrients (QCLot: 399911)										
ammonia, total (as N)	7664-41-7 I	E298	0.005	mg/L	0.2 mg/L	98.1	85.0	115		
Anions and Nutrients (QCLot: 400251)										
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	104	90.0	110		
Anions and Nutrients (QCLot: 400252)										
fluoride	16984-48-8 I	E235.F	0.02	mg/L	1 mg/L	96.3	90.0	110		
Anions and Nutrients (QCLot: 400253)										
nitrate (as N)	14797-55-8	E235.NO3	0.02	mg/L	2.5 mg/L	102	90.0	110		
Anions and Nutrients (QCLot: 400254)										
nitrite (as N)	14797-65-0	E235.NO2	0.01	mg/L	0.5 mg/L	104	90.0	110		
Anions and Nutrients (QCLot: 400255)										
chloride	16887-00-6 I	E235.CI	0.5	mg/L	100 mg/L	101	90.0	110		
Dissolved Metals (QCLot: 401380)										
aluminum, dissolved	7429-90-5		0.001	mg/L	2 mg/L	100	80.0	120		
antimony, dissolved	7440-36-0		0.0001	mg/L	1 mg/L	118	80.0	120		
arsenic, dissolved	7440-38-2		0.0001	mg/L	1 mg/L	96.7	80.0	120		
barium, dissolved	7440-39-3		0.0001	mg/L	0.25 mg/L	102	80.0	120		
boron, dissolved	7440-42-8		0.01	mg/L	1 mg/L	92.8	80.0	120		
cadmium, dissolved	7440-43-9		0.000005	mg/L	0.1 mg/L	98.3	80.0	120		
calcium, dissolved	7440-70-2		0.05	mg/L	50 mg/L	98.5	80.0	120		
chromium, dissolved	7440-47-3		0.0005	mg/L	0.25 mg/L	102	80.0	120		
copper, dissolved	7440-50-8		0.0002	mg/L	0.25 mg/L	97.4	80.0	120		
iron, dissolved	7439-89-6		0.01	mg/L	1 mg/L	104	80.0	120		
lead, dissolved	7439-92-1		0.00005	mg/L	0.5 mg/L	96.1	80.0	120		
magnesium, dissolved	7439-95-4		0.005	mg/L	50 mg/L	108	80.0	120		
manganese, dissolved	7439-96-5		0.0001	mg/L	0.25 mg/L	100	80.0	120		
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	102	80.0	120		

Page : 10 of 14 Work Order : CG2201107

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.008

Sub-Matrix: Water					Laboratory Co.	ntrol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 401380) - continued								
potassium, dissolved 7440-09-	7 E421	0.05	mg/L	50 mg/L	103	80.0	120	
selenium, dissolved 7782-49-	E421	0.00005	mg/L	1 mg/L	95.6	80.0	120	
silver, dissolved 7440-22-	4 E421	0.00001	mg/L	0.1 mg/L	91.4	80.0	120	
sodium, dissolved 7440-23-	5 E421	0.05	mg/L	50 mg/L	98.6	80.0	120	
uranium, dissolved 7440-61-	1 E421	0.00001	mg/L	0.005 mg/L	106	80.0	120	
zinc, dissolved 7440-66-	6 E421	0.001	mg/L	0.5 mg/L	98.4	80.0	120	
mercury, dissolved 7439-97-	6 E509	0.000005	mg/L	0.0001 mg/L	98.0	80.0	120	
Volatile Organic Compounds (QCLot: 400539)								
	2 E611E	0.5	μg/L	100 μg/L	91.9	70.0	130	
bromobenzene 108-86-	1 E611E	1	μg/L	100 μg/L	106	70.0	130	
bromochloromethane 74-97-	5 E611E	1	μg/L	100 μg/L	99.9	70.0	130	
bromodichloromethane 75-27-	4 E611E	1	μg/L	100 μg/L	83.2	70.0	130	
bromoform 75-25-	2 E611E	1	μg/L	100 μg/L	80.2	70.0	130	
bromomethane 74-83-	9 E611E	1	μg/L	100 μg/L	92.8	60.0	140	
butylbenzene, n- 104-51-	8 E611E	1	μg/L	100 μg/L	118	70.0	130	
butylbenzene, sec- 135-98-	8 E611E	1	μg/L	100 μg/L	123	70.0	130	
butylbenzene, tert- 98-06-	6 E611E	1	μg/L	100 μg/L	114	70.0	130	
carbon tetrachloride 56-23-	5 E611E	0.5	μg/L	100 μg/L	99.0	70.0	130	
chlorobenzene 108-90-	7 E611E	1	μg/L	100 μg/L	109	70.0	130	
chloroethane 75-00-	3 E611E	1	μg/L	100 μg/L	105	60.0	140	
chloroform 67-66-	3 E611E	1	μg/L	100 μg/L	97.1	70.0	130	
chloromethane 74-87-	3 E611E	5	μg/L	100 μg/L	120	60.0	140	
chlorotoluene, 2- 95-49-	8 E611E	1	μg/L	100 μg/L	111	70.0	130	
chlorotoluene, 4- 106-43-	4 E611E	1	μg/L	100 μg/L	101	70.0	130	
cymene, p- 99-87-	6 E611E	1	μg/L	100 μg/L	110	70.0	130	
dibromo-3-chloropropane, 1,2-	8 E611E	1	μg/L	100 μg/L	73.3	70.0	130	
dibromochloromethane 124-48-	1 E611E	1	μg/L	100 μg/L	75.7	70.0	130	
dibromoethane, 1,2-	4 E611E	1	μg/L	100 μg/L	75.7	70.0	130	
dibromomethane 74-95-	3 E611E	1	μg/L	100 μg/L	86.0	70.0	130	
dichlorobenzene, 1,2- 95-50-	1 E611E	0.5	μg/L	100 μg/L	108	70.0	130	
dichlorobenzene, 1,3- 541-73-	1 E611E	1	μg/L	100 μg/L	114	70.0	130	
dichlorobenzene, 1,4-	7 E611E	1	μg/L	100 μg/L	121	70.0	130	
dichlorodifluoromethane 75-71-	8 E611E	1	μg/L	100 μg/L	122	60.0	140	
dichloroethane, 1,1-	3 E611E	1	μg/L	100 μg/L	94.9	70.0	130	
dichloroethane, 1,2-	2 E611E	1	μg/L	100 μg/L	85.9	70.0	130	
dichloroethylene, 1,1-	4 E611E	1	μg/L	100 μg/L	105	70.0	130	
dichloroethylene, cis-1,2-	2 E611E	1	μg/L	100 μg/L	98.3	70.0	130	

Page : 11 of 14
Work Order : CG2201107

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.008

Laboratory Control Sample (LCS) Report Sub-Matrix: Water Spike Recovery Limits (%) Recovery (%) CAS Number Method LOR Unit Qualifier Analyte Concentration LCS Low High Volatile Organic Compounds (QCLot; 400539) - continued dichloroethylene, trans-1,2-156-60-5 E611E μg/L 96.6 70.0 100 µg/L 130 75-09-2 E611E dichloromethane μg/L 102 70.0 130 100 µg/L dichloropropane, 1,2-78-87-5 E611E μg/L 100 µg/L 81.9 70.0 130 142-28-9 E611E dichloropropane, 1,3μg/L 130 100 µg/L 75.9 70.0 dichloropropane, 2,2-594-20-7 E611E μg/L 100 µg/L 92.8 70.0 130 563-58-6 E611E dichloropropylene, 1,1μg/L 100 µg/L 93.3 70.0 130 10061-01-5 E611E μg/L dichloropropylene, cis-1,3-100 µg/L 112 70.0 130 dichloropropylene, trans-1,3-10061-02-6 E611E μg/L 100 µg/L 74.3 70.0 130 100-41-4 E611E 0.5 ethylbenzene μg/L 100 µg/L 101 70.0 130 hexachlorobutadiene 87-68-3 E611E μg/L 100 µg/L 104 70.0 130 98-82-8 E611E μg/L isopropylbenzene 100 µg/L 108 70.0 130 1634-04-4 E611E 0.5 methyl-tert-butyl ether [MTBE] μg/L 100 μg/L 109 70.0 130 91-20-3 E611E naphthalene μg/L 100 µg/L 76.9 70.0 130 103-65-1 E611E propylbenzene, nμg/L 100 μg/L 104 70.0 130 100-42-5 E611E 0.5 styrene μg/L 100 µg/L 73.3 70.0 130 tetrachloroethane, 1,1,1,2-630-20-6 E611E μq/L 101 70.0 100 µg/L 130 79-34-5 E611E tetrachloroethane, 1,1,2,2μg/L 100 µg/L 98.8 70.0 130 127-18-4 E611E tetrachloroethylene μg/L 100 µg/L 109 70.0 130 108-88-3 E611E 0.5 toluene μg/L 100 µg/L 91.5 70.0 130 87-61-6 E611E trichlorobenzene, 1,2,3μg/L 100 µg/L 100 70.0 130 120-82-1 E611E μg/L 113 70.0 trichlorobenzene, 1,2,4-100 µg/L 130 71-55-6 E611E μg/L trichloroethane, 1,1,1-100 µg/L 93.3 70.0 130 79-00-5 E611E μg/L trichloroethane, 1,1,2-100 μg/L 85.0 70.0 130 trichloroethylene 79-01-6 E611E μg/L 100 μg/L 108 70.0 130 75-69-4 E611E μg/L trichlorofluoromethane 100 μg/L 120 60.0 140 trichloropropane, 1,2,3-96-18-4 E611E μg/L 100 µg/L 83.0 70.0 130 95-63-6 E611E trimethylbenzene, 1,2,4μg/L 100 μg/L 109 70.0 130 trimethylbenzene, 1,3,5-108-67-8 E611E μg/L 100 µg/L 110 70.0 130 75-01-4 E611E μg/L vinyl chloride 100 µg/L 124 60.0 140 179601-23-1 E611E 0.4 xylene, m+pμg/L 200 µg/L 112 70.0 130 95-47-6 E611E 0.3 μg/L 100 µg/L xylene, o-98.2 70.0 130

Page : 12 of 14
Work Order : CG2201107

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.008

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water	-Matrix: Water					Matrix Spike (MS) Report						
					Spi	ke	Recovery (%)	Recovery	Limits (%)			
Laboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
	ents (QCLot: 400251)											
CG2201101-005	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	ND mg/L	100 mg/L	ND	75.0	125			
Anions and Nutri	ents (QCLot: 400252)											
CG2201101-005	Anonymous	fluoride	16984-48-8	E235.F	0.833 mg/L	1 mg/L	83.3	75.0	125			
Anions and Nutri	ents (QCLot: 400253)											
GP2200166-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3	2.45 mg/L	2.5 mg/L	98.0	75.0	125			
nions and Nutri	ents (QCLot: 400254)											
GP2200166-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2	0.401 mg/L	0.5 mg/L	80.1	75.0	125			
	(QCLot: 401380)				31.01.11.3							
CG2201099-015	Anonymous	aluminum, dissolved	7429-90-5	E421	2.00 mg/L	2 mg/L	100.0	70.0	130			
302201000 010	,	antimony, dissolved	7440-36-0	E421	0.202 mg/L	0.2 mg/L	101	70.0	130			
		arsenic, dissolved	7440-38-2	E421	0.189 mg/L	0.2 mg/L	94.4	70.0	130			
		barium, dissolved	7440-39-3	E421	0.208 mg/L	0.2 mg/L	104	70.0	130			
		boron, dissolved	7440-42-8	E421	0.982 mg/L	1 mg/L	98.2	70.0	130			
		cadmium, dissolved	7440-43-9	E421	0.0401 mg/L	0.04 mg/L	100	70.0	130			
		calcium, dissolved	7440-70-2	E421	39.8 mg/L	40 mg/L	99.6	70.0	130			
		chromium, dissolved	7440-47-3	E421	0.410 mg/L	0.4 mg/L	102	70.0	130			
		copper, dissolved	7440-50-8	E421	0.198 mg/L	0.2 mg/L	98.9	70.0	130			
		iron, dissolved	7439-89-6	E421	19.9 mg/L	20 mg/L	99.5	70.0	130			
		lead, dissolved	7439-92-1	E421	0.180 mg/L	0.2 mg/L	90.0	70.0	130			
		magnesium, dissolved	7439-95-4	E421	9.74 mg/L	10 mg/L	97.4	70.0	130			
		manganese, dissolved	7439-96-5	E421	0.201 mg/L	0.2 mg/L	101	70.0	130			
		nickel, dissolved	7440-02-0	E421	0.410 mg/L	0.4 mg/L	102	70.0	130			
		potassium, dissolved	7440-09-7	E421	35.8 mg/L	40 mg/L	89.6	70.0	130			
		selenium, dissolved	7782-49-2	E421	0.391 mg/L	0.4 mg/L	97.8	70.0	130			
		silver, dissolved sodium, dissolved	7440-22-4	E421	0.0377 mg/L	0.04 mg/L	94.2	70.0	130			
		uranium, dissolved	7440-23-5	E421	19.8 mg/L	20 mg/L	99.1	70.0	130			
		zinc, dissolved	7440-61-1 7440-66-6	E421	0.0432 mg/L 3.99 mg/L	0.04 mg/L 4 mg/L	108 99.7	70.0 70.0	130 130			
issolved Metals	(QCLot: 403609)		7 740-00-0	L721	5.99 mg/L	→ mg/L	55.1	70.0	130			
CG2201047-002	Anonymous	mercury, dissolved	7420.07.0	E500	0.0000040 :: "	0.0004 "	04.0	70.0	420			
JG2201047-002	Allollyllious	mercury, dissolved	7439-97-6	E509	0.0000910 mg/L	0.0001 mg/L	91.0	70.0	130			

Page : 13 of 14 Work Order : CG2201107

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.008

Sub-Matrix: Water							Matrix Spik	e (MS) Report	ort			
					Spil	ke	Recovery (%)	Recovery	Limits (%)			
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie		
olatile Organic	Compounds (QCLo	t: 400539)										
CG2201055-001	Anonymous	benzene	71-43-2	E611E	99.2 μg/L	100 μg/L	99.2	70.0	130			
		bromobenzene	108-86-1	E611E	111 µg/L	100 μg/L	111	70.0	130			
		bromochloromethane	74-97-5	E611E	122 µg/L	100 μg/L	122	70.0	130			
		bromodichloromethane	75-27-4	E611E	96.3 µg/L	100 μg/L	96.3	70.0	130			
		bromoform	75-25-2	E611E	83.4 µg/L	100 µg/L	83.4	70.0	130			
		bromomethane	74-83-9	E611E	96.8 µg/L	100 μg/L	96.8	60.0	140			
		butylbenzene, n-	104-51-8	E611E	99.8 μg/L	100 μg/L	99.8	70.0	130			
		butylbenzene, sec-	135-98-8	E611E	106 μg/L	100 µg/L	106	70.0	130			
		butylbenzene, tert-	98-06-6	E611E	99.7 μg/L	100 µg/L	99.7	70.0	130			
		carbon tetrachloride	56-23-5	E611E	97.5 μg/L	100 µg/L	97.5	70.0	130			
		chlorobenzene	108-90-7	E611E	109 μg/L	100 µg/L	109	70.0	130			
		chloroethane	75-00-3	E611E	104 μg/L	100 µg/L	104	60.0	140			
		chloroform	67-66-3	E611E	106 μg/L	100 µg/L	106	70.0	130			
		chloromethane	74-87-3	E611E	124 μg/L	100 μg/L	124	60.0	140			
		chlorotoluene, 2-	95-49-8	E611E	107 μg/L	100 μg/L	107	70.0	130			
		chlorotoluene, 4-	106-43-4	E611E	98.3 μg/L	100 μg/L	98.3	70.0	130			
		cymene, p-	99-87-6	E611E	104 μg/L	100 μg/L	104	70.0	130			
		dibromo-3-chloropropane, 1,2-	96-12-8	E611E	82.8 µg/L	100 μg/L	82.8	70.0	130			
		dibromochloromethane	124-48-1	E611E	92.7 μg/L	100 µg/L	92.7	70.0	130			
		dibromoethane, 1,2-	106-93-4	E611E	98.9 μg/L	100 μg/L	98.9	70.0	130			
		dibromomethane	74-95-3	E611E	110 μg/L	100 μg/L	110	70.0	130			
		dichlorobenzene, 1,2-	95-50-1	E611E	107 μg/L	100 μg/L	107	70.0	130			
		dichlorobenzene, 1,3-	541-73-1	E611E	111 µg/L	100 μg/L	111	70.0	130			
		dichlorobenzene, 1,4-	106-46-7	E611E	117 µg/L	100 μg/L	117	70.0	130			
		dichlorodifluoromethane	75-71-8	E611E	113 µg/L	100 μg/L	113	60.0	140			
		dichloroethane, 1,1-	75-34-3	E611E	101 μg/L	100 μg/L	101	70.0	130			
		dichloroethane, 1,2-	107-06-2	E611E	96.8 µg/L	100 μg/L	96.8	70.0	130			
		dichloroethylene, 1,1-	75-35-4	E611E	102 μg/L	100 μg/L	102	70.0	130			
		dichloroethylene, cis-1,2-	156-59-2	E611E	110 µg/L	100 μg/L	110	70.0	130			
		dichloroethylene, trans-1,2-	156-60-5	E611E	106 μg/L	100 μg/L	106	70.0	130			
		dichloromethane	75-09-2	E611E	119 µg/L	100 μg/L	119	70.0	130			
		dichloropropane, 1,2-	78-87-5	E611E	94.5 μg/L	100 μg/L	94.5	70.0	130			
		dichloropropane, 1,3-	142-28-9	E611E	92.8 μg/L	100 μg/L	92.8	70.0	130			
		dichloropropane, 2,2-	594-20-7	E611E	93.6 μg/L	100 μg/L	93.6	70.0	130			
		dichloropropylene, 1,1-	563-58-6	E611E	92.2 μg/L	100 μg/L	92.2	70.0	130			
		dichloropropylene, cis-1,3-	10061-01-5	E611E	76.7 μg/L	100 μg/L	76.7	70.0	130			
		dichloropropylene, trans-1,3-	10061-02-6	E611E	71.9 µg/L	100 μg/L	71.9	70.0	130			

Page : 14 of 14 Work Order : CG2201107

Client : Tetra Tech Canada Inc.
Project : SWM.SWOP04071-02.008

Sub-Matrix: Water	Analyte CAS Number Method CAS Number Method Analyte CAS Number Method An					Matrix Spike (MS) Report						
					Spi	ke	Recovery (%)	Recovery	Limits (%)			
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
	Compounds (QCLo	t: 400539) - continued										
CG2201055-001	Anonymous	ethylbenzene	100-41-4	E611E	95.9 μg/L	100 μg/L	95.9	70.0	130			
		hexachlorobutadiene	87-68-3	E611E	72.7 µg/L	100 μg/L	72.7	70.0	130			
		isopropylbenzene	98-82-8	E611E	99.2 µg/L	100 μg/L	99.2	70.0	130			
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611E	109 μg/L	100 μg/L	109	70.0	130			
		naphthalene	91-20-3	E611E	78.1 µg/L	100 μg/L	78.1	70.0	130			
		propylbenzene, n-	103-65-1	E611E	94.5 µg/L	100 μg/L	94.5	70.0	130			
		styrene	100-42-5	E611E	74.2 µg/L	100 μg/L	74.2	70.0	130			
		tetrachloroethane, 1,1,1,2-	630-20-6	E611E	100 μg/L	100 μg/L	100	70.0	130			
		tetrachloroethane, 1,1,2,2-	79-34-5	E611E	114 µg/L	100 μg/L	114	70.0	130			
		tetrachloroethylene	127-18-4	E611E	109 μg/L	100 μg/L	109	70.0	130			
		toluene	108-88-3	E611E	97.9 µg/L	100 μg/L	97.9	70.0	130			
		trichlorobenzene, 1,2,3-	87-61-6	E611E	87.2 μg/L	100 μg/L	87.2	70.0	130			
		trichlorobenzene, 1,2,4-	120-82-1	E611E	95.9 µg/L	100 μg/L	95.9	70.0	130			
		trichloroethane, 1,1,1-	71-55-6	E611E	92.6 µg/L	100 μg/L	92.6	70.0	130			
		trichloroethane, 1,1,2-	79-00-5	E611E	109 μg/L	100 μg/L	109	70.0	130			
		trichloroethylene	79-01-6	E611E	111 µg/L	100 μg/L	111	70.0	130			
		trichlorofluoromethane	75-69-4	E611E	113 µg/L	100 μg/L	113	60.0	140			
		trichloropropane, 1,2,3-	96-18-4	E611E	107 μg/L	100 μg/L	107	70.0	130			
		trimethylbenzene, 1,2,4-	95-63-6	E611E	98.1 μg/L	100 μg/L	98.1	70.0	130			
		trimethylbenzene, 1,3,5-	108-67-8	E611E	97.8 μg/L	100 μg/L	97.8	70.0	130			
		vinyl chloride	75-01-4	E611E	121 μg/L	100 μg/L	121	60.0	140			
		xylene, m+p-	179601-23-1	E611E	216 μg/L	200 μg/L	108	70.0	130			
		xylene, o-	95-47-6	E611E	95.4 μg/L	100 μg/L	95.4	70.0	130			

ALS Laboratory Group

Environmental Division

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC#	CORD Linds	say Thurber

Page __1 of __1

Report to:	Report F	ort Format / Distribution			Sei	Service Requested:									
Company: Tetra Tech Canada Inc.	∏ Stand	lard C Other			V	Reg	jular	Service	(Defa	ault)					
Contact: Darby Madalena	₩ PDF	Excel	Fax		T	Rush Service (2-3 Days)									
Address: 110, 140 Quarry Park Blvd SE, Calgary, AB T2C 3G3	Email-1⊹-	darby.madalena@	tetratech.com		Г	Priority Service (1 Day or ASAP)									
	Email 2:					Em	ergei	ncy Serv	ice (1 Day	/Wk	end) - (Conta	ct AL	.s
Phone: 403-723-6867 Fax: 403-203-3301	ALS Digit	al Crosstab results							naly	sis Re	ques	t			
Invoice To: 💆 Same as Report			Indicate Bottl	es: Filtered / Preserved (F/P) →	→				T						
Company: SAME AS REPORT	Client / P	roject Information	1:			Π			Т] !		
Contact:	Job #:		SWM.SWOP04	4071-02.008	7			1				ĺ			. 1
Address:	PO/AFE:		SWM.SWOP04	4071-02.008	7						- }			5	<u>v</u>
Sample	Legal Site	Description:			7	E				1 1	- 1			ate	Ę.
Phone: Fax:	Quote #:	Q71650			1	D-ABT				1 1				盲	Suts
Lab Work Order # (lab use only)	ALS Contact:	ALS Sampler .			VOC-8260		1						Hazardous?	Contaminated?	Number of Containers
Sample Sample Identification		Date	Time	Sample Type	7 8	ROU-MET	3-F						ard		- 유
(This description will appear on the report)		dd-mmm-yy	hh:mm	(Select from drop-down list)	19	8	NH3-						Hai	Highly	Ž
22MW05		01-Feb-22	1230	Water	X	Х	Х		Т				\prod		6
								<u> </u>	-						
								}	Εnv	ironn	nent	al Di	visio	n	
									Cal	gary		Refere			
					T	Γ			W	ork O	rder	Refere	ince	7	-
								1	(تاز	22	01	IU	1	٦
								1							7
	· · · · · ·				T				1				4 - 1	Ш	
								1			S.W		č 🔠	₩	٦
					1			Ī			W N	NΠ	₹ 🔣	1]
Guidelines / Regulations				Special Instruction	s / Ha	zard	ous	Ĺ			V.II:	1			П
								 -			1.402	407 180	in		
Failure to comple By the use of this form the user a	•		·	s. Please fill in this form				(. 403	407 105	•		4
Online with a 1	Pocelyed	Line agreed with	Date & Time		_		Jave		_		ab use	only)	1.000	A 4884	
By Marza Tebla	1 Jarse 765 da 184			1			eralur	e Sa	nples	Receive	d in Go	od			
Relinquished By: Date & Time: 1437	Received By:	10	Date & Time	2-1124	1/2		Ŧ) c		n? Y / N ided det		o .			

APPENDIX E

HISTORICAL ANALYTICAL RESULTS

Table 1
Soil Vapour and Groundwater Monitoring Wells Elevations

	Soil Vapou	Elevations				
Test	Well			ations		Screen
Location	Depth	Ground	Top of Pipe		Interval	Length
	(m)	(m)	(m)	From	To	(m)
Existing wells						
MW-01A	6.0	854.249	854.134	848.134	849.634	1.5
MW-02A	6.0	854.421	854.211	848.211	849.711	1.5
MW-02A MW-03A	6.0					1.5
	6.0	854.307	854.057	848.057	849.557	
MW-04A		854.506	854.386	848.386	849.886	1.5
MW-05A	6.0	854.463	854.243	848.243	849.743	1.5
MW-06A	3.2	854.554	854.429	851.229	853.229	2.0
MW-07A	2.1	854.546	854.381	852.281	853.181	0.9
MW-08A	6.0	854.481	854.291	848.291	851.291	3.0
MW-09A	2.3	854.673	854.523	852.223	852.523	0.3
MW-10A	2.5	854.616	854.421	851.921	853.421	1.5
MW-11A		854.743	854.548			
MW-12A		854.836	854.686			
MW-13A		854.437	854.307			
MW-14A		854.190	854.070			
MW-15A		853.941	853.871			
MW-16A		853.818	853.668			
MW-17A		854.085	853.775			
MW-18A		853.998	853.748			
MW-19A		854.039	853.819			
MW-20A		854.019	853.799			
MW-21A		853.952	853.792			
MW-22A		854.017	853.867			
MW-23A		854.061	853.991			
MW-24A		854.018	853.778			
MW-25A		854.083	853.963			
PR-5A		853.533	854.563			
PR-5M		853.566	854.492			
PR-6A		853.255	853.825			
PR-6M		853.195	853.789			
PR-7		852.870	853.869			
PR-7M		852.966	853.743			
PR-9		853.060	854.106			
PR-9A		853.008	854.044			
PR-10		852.389	853.520			
PR-10M		852.511	853.400			
PR-14A		854.020	854.636			
PR-14B		853.993	854.348			
PR-14C		854.081	854.512			
PR-16B		854.200	854.954			
PR-26		853.781	853.761			
Installed 2013						
MW-01	6.1	853.767	853.787	847.687	852.287	4.6
MW-02	6.1	853.585	854.285	848.185	851.185	3.0
MW-03	4.6	853.225	853.970	849.370	852.370	3.0
MW-04	4.6	851.781	852.544	847.944	850.944	3.0
		0.50		0.54	0.50	
VW-01	2.1	853.853	NA	851.753	852.053	0.3
VW-02	3.0	853.535	NA	850.535	850.835	0.3
VW-03	2.0	853.245	NA	851.245	851.545	0.3
VW-04	3.0	854.476	NA	851.476	851.776	0.3
VW-05	2.7	854.048	NA	851.348	851.648	0.3

- 1) Geodetic elevations are referenced to multiple ASCMs located within The City of Red Deer.
- 2) MW and PR Groundwater Monitoring Well.
- 3) VW Soil Vapour Well.
- 4) NA Not Applicable.
- 5) Well depth, screen interval derived from borehole logs by others, where avalable.
- 6) - No value established.

Table 2A
Site Monitoring Results - Existing Test Locations Installed by Others

Test		Elevation	its - Existing 1	Headspac		
Location	Ground	Top of Pipe	Groundwater	08/15		Notes
Location	(m)	(m)	(m)	Combustible	Volatile	Tiotes
MW-01A	854.249	854.134	850.736	80	ND	
MW-02A	854.421	854.211	850.756	35	ND	
MW-03A	854.307	854.057	850.762	90	10	
MW-04A	854.506	854.386	850.913	140	ND	
MW-05A	854.463	854.243	850.910	200	ND	
MW-06A	854.554	854.429	850.911	170	ND	
MW-07A	854.546	854.381	850.918	175	ND	
MW-08A	854.481	854.291	850.893	120	ND	
MW-09A	854.673	854.523	851.043	95	ND	
MW-10A	854.616	854.421	850.978	40	ND	
MW-11A	854.743	854.548	851.120	155	ND	
MW-12A	854.836	854.686	851.212	35	ND	
MW-13A	854.437	854.307	NM	170	ND	Plugged
MW-14A	854.190	854.070	850.813	250	ND	
MW-15A	853.941	853.871	850.781	260	ND	
MW-16A	853.818	853.668	NM	NM	NM	Damaged
MW-17A	854.085	853.775	850.850	60	1	
MW-18A	853.998	853.748	NM	25	1	Plugged
MW-19A	854.039	853.819	NM	105	ND	Plugged
MW-20A	854.019	853.799	NM	110	1	Plugged
MW-21A	853.952	853.792	850.810	100	ND	
MW-22A	854.017	853.867	NM	85	ND	Plugged
MW-23A	854.061	853.991	NM	15	ND	Plugged
MW-24A	854.018	853.778	NM	25	ND	Plugged
MW-25A	854.083	853.963	NM	25	ND	Plugged
DD 5A	052 522	054562	850.720	160	ND	
PR-5A	853.533	854.563			ND	Dhacad
PR-5M PR-6A	853.566	854.492 852.825	NM 851.202	>11,100	25 ND	Plugged
PR-6M	853.255 853.195	853.825 853.789		ND 5	ND ND	
			851.165			
PR-7 PR-7M	852.870 852.966	853.869 853.743	850.745 850.745	ND >11,100	ND 7	
PR-/M PR-9	852.966	853.743 854.106	850.745 850.606	>11,100 >100% LEL	7 7	
		854.106 854.044	850.606			
PR-9A	853.008 852.389	854.044 853.520	850.638 850.533	>11,100	7	
PR-10 PR-10M	852.389 852.511	853.520 853.400	850.533 850.530	>11,100	l ND	
	852.511	853.400 854.636	850.530 850.770	50	ND ND	
PR-14A	854.020 853.993	854.636 854.348	850.770 850.750	15	ND ND	
PR-14B		854.348	850.759	100	ND ND	Dlucasi
PR-14C	854.081	854.512	NM	65	ND ND	Plugged
PR-16B	854.200	854.954 852.761	850.740	10	ND ND	
PR-26	853.781	853.761	850.982	25	ND	

¹⁾ Measurement of combustible and volatile vapours by RKI Eagle 2. Units ppmv.

Combustible vapour sensor calibrated to hexane and photoionization detector calibrated to isobutylene.

²⁾ NA - Not Applicable.

³⁾ ND - Not Detected, less than the limit of instrument detection.

⁴⁾ NM - Not Measured.

Table 2B
Site Monitoring Results - Newly Installed Test Locations

Test Ground Top of Pipe Groundwater (m)	Test			ts - IVEWIY IIIs			
MW-01 853.767 853.787 850.732 100 ND MW-02 853.585 854.285 850.552 ND ND MW-03 853.225 853.970 849.687 ND ND MW-04 851.781 852.544 850.176 ND ND VW-01 853.853 NA 270 ND VW-02 853.535 NA 15 ND VW-03 853.245 NA ND ND VW-04 854.476 NA 80 ND VW-05 854.048 NA 270 ND TH-01 852.658 NA TH-02 852.786 NA TH-08 852.356 NA TH-09 853.041 NA TH-11 852.655 NA -		C 1					NT 4
MW-01 853.767 853.787 850.732 100 ND MW-02 853.585 854.285 850.552 ND ND MW-03 853.225 853.970 849.687 ND ND MW-04 851.781 852.544 850.176 ND ND VW-01 853.853 NA 270 ND VW-02 853.535 NA 15 ND VW-03 853.245 NA ND ND VW-04 854.476 NA 80 ND VW-05 854.048 NA 270 ND TH-01 852.658 NA TH-02 852.786 NA TH-08 852.356 NA TH-09 853.041 NA TH-11 852.655 NA -	Location						Notes
MW-02 853.585 854.285 850.552 ND ND MW-03 853.225 853.970 849.687 ND ND MW-04 851.781 852.544 850.176 ND ND VW-01 853.853 NA 270 ND VW-02 853.535 NA 15 ND VW-03 853.245 NA ND ND VW-04 854.476 NA 80 ND VW-05 854.048 NA 270 ND TH-01 852.658 NA TH-02 852.786 NA TH-04 851.742 NA TH-08 852.356 NA TH-10 853.574 NA TH-11 852.655 NA		(m)	(m)	(m)	Combustible	Volatile	
MW-02 853.585 854.285 850.552 ND ND MW-03 853.225 853.970 849.687 ND ND MW-04 851.781 852.544 850.176 ND ND VW-01 853.853 NA 270 ND VW-02 853.535 NA 15 ND VW-03 853.245 NA ND ND VW-04 854.476 NA 80 ND VW-05 854.048 NA 270 ND TH-01 852.658 NA TH-02 852.786 NA TH-04 851.742 NA TH-08 852.356 NA TH-10 853.574 NA TH-11 852.655 NA							
MW-03 853.225 853.970 849.687 ND ND MW-04 851.781 852.544 850.176 ND ND VW-01 853.853 NA 270 ND VW-02 853.535 NA 15 ND VW-03 853.245 NA ND ND VW-04 854.476 NA 80 ND VW-05 854.048 NA 270 ND TH-01 852.658 NA TH-02 852.786 NA TH-04 851.742 NA TH-08 852.356 NA TH-10 853.574 NA TH-11 852.65 NA TH-13 853.041 NA <	MW-01	853.767	853.787	850.732	100	ND	
MW-04 851.781 852.544 850.176 ND ND VW-01 853.853 NA 270 ND VW-02 853.535 NA 15 ND VW-03 853.245 NA ND ND VW-04 854.476 NA 80 ND VW-05 854.048 NA 270 ND TH-01 852.658 NA TH-02 852.786 NA TH-04 851.742 NA TH-08 852.356 NA TH-09 853.041 NA TH-11 852.655 NA TH-13 853.041 NA TH-14 853.574 NA	MW-02	853.585	854.285	850.552	ND	ND	
VW-01 853.853 NA 270 ND VW-02 853.535 NA 15 ND VW-03 853.245 NA ND ND VW-04 854.476 NA 80 ND VW-05 854.048 NA 270 ND TH-01 852.658 NA TH-02 852.786 NA TH-04 851.742 NA TH-08 852.356 NA TH-09 853.041 NA TH-10 853.574 NA TH-13 853.041 NA TH-14 853.574 NA TH-15 852.650 NA	MW-03	853.225	853.970	849.687	ND	ND	
VW-02 853.535 NA 15 ND VW-03 853.245 NA ND ND VW-04 854.476 NA 80 ND VW-05 854.048 NA 270 ND TH-01 852.658 NA TH-02 852.786 NA TH-04 851.742 NA TH-08 852.356 NA TH-09 853.041 NA TH-10 853.574 NA TH-13 853.041 NA TH-14 853.574 NA TH-15 852.650 NA	MW-04	851.781	852.544	850.176	ND	ND	
VW-02 853.535 NA 15 ND VW-03 853.245 NA ND ND VW-04 854.476 NA 80 ND VW-05 854.048 NA 270 ND TH-01 852.658 NA TH-02 852.786 NA TH-04 851.742 NA TH-08 852.356 NA TH-09 853.041 NA TH-10 853.574 NA TH-13 853.041 NA TH-14 853.574 NA TH-15 852.650 NA							
VW-03 853.245 NA ND ND VW-04 854.476 NA 80 ND VW-05 854.048 NA 270 ND TH-01 852.658 NA TH-02 852.786 NA TH-04 851.742 NA TH-08 852.356 NA TH-09 853.041 NA TH-10 853.574 NA TH-13 853.041 NA TH-14 853.574 NA TH-15 852.650 NA TH-15 852.650 NA	VW-01	853.853	NA		270	ND	
VW-04 854.476 NA 80 ND VW-05 854.048 NA 270 ND TH-01 852.658 NA TH-02 852.786 NA TH-04 851.742 NA TH-08 852.356 NA TH-09 853.041 NA TH-10 853.574 NA TH-11 852.65 NA TH-13 853.041 NA TH-14 853.574 NA TH-15 852.650 NA	VW-02	853.535	NA		15	ND	
VW-05 854.048 NA 270 ND TH-01 852.658 NA TH-02 852.786 NA TH-04 851.742 NA TH-08 852.356 NA TH-09 853.041 NA TH-10 853.574 NA TH-11 852.65 NA TH-13 853.041 NA TH-14 853.574 NA TH-15 852.650 NA	VW-03	853.245	NA		ND	ND	
TH-01 852.658 NA TH-02 852.786 NA TH-04 851.742 NA TH-08 852.356 NA TH-09 853.041 NA TH-11 852.65 NA TH-13 853.041 NA TH-14 853.574 NA TH-15 852.650 NA TH-15 852.650 NA TH-15 852.650 NA	VW-04	854.476	NA		80	ND	
TH-01 852.658 NA TH-02 852.786 NA TH-04 851.742 NA TH-08 852.356 NA TH-09 853.041 NA TH-11 852.65 NA TH-13 853.041 NA TH-14 853.574 NA TH-15 852.650 NA TH-15 852.650 NA TH-15 852.650 NA	VW-05	854.048	NA		270	ND	
TH-02 852.786 NA TH-04 851.742 NA TH-08 852.356 NA TH-10 853.574 NA TH-11 852.65 NA TH-13 853.041 NA TH-14 853.574 NA TH-15 852.650 NA TH-15 852.650 NA							
TH-04 851.742 NA TH-08 852.356 NA TH-10 853.574 NA TH-11 852.65 NA TH-13 853.041 NA TH-14 853.574 NA TH-15 852.650 NA TH-15 852.650 NA	TH-01	852.658	NA				
TH-04 851.742 NA TH-08 852.356 NA TH-10 853.574 NA TH-11 852.65 NA TH-14 853.574 NA TH-14 853.574 NA TH-15 852.650 NA TH-15 852.650 NA	TH-02	852.786	NA				
TH-09 853.041 NA TH-10 853.574 NA TH-11 852.65 NA TH-13 853.041 NA TH-14 853.574 NA TH-15 852.650 NA TH-15 852.650 NA	TH-04	851.742	NA				
TH-10 853.574 NA TH-11 852.65 NA TH-13 853.041 NA TH-14 853.574 NA TH-15 852.650 NA	TH-08	852.356	NA				
TH-11 852.65 NA TH-13 853.041 NA TH-14 853.574 NA TH-15 852.650 NA	TH-09	853.041	NA				
TH-13 853.041 NA TH-14 853.574 NA TH-15 852.650 NA	TH-10	853.574	NA				
TH-14 853.574 NA TH-15 852.650 NA	TH-11	852.65	NA				
TH-14 853.574 NA TH-15 852.650 NA	TH-13	853.041	NA				
TH-15 852.650 NA	TH-14						
	TH-15	852.650					
H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							

- 1) Measurement of combustible and volatile vapours by RKI Eagle 2. Units ppmv. Combustible vapour sensor calibrated to hexane and photoionization detector calibrated to isobutylene.
- 2) NA Not Applicable.
- 3) ND Not Detected, less than the limit of instrument detection.
- 4) - No applicable value.

Table 3A
Analytical Results - Soil – Drill Cuttings (Soil Bag)

Parameter	Detection	Soli – Drili Cut		Class II
Farameter			Bag	
	Limit	1 & 2 of 3	3 of 3	Acceptance Criteria
рН	0.10	8.15	8.07	2-12.5
 				
Flash Point (°C)	30.0	>75	>75	>61
Paint Filter Test	-	PASS	PASS	PASS
Total Organic Carbon	0.10	2.89	0.69	
Leachable Hydrocarbons				
Benzene	0.0050	ND	ND	0.5
Toluene	0.0050	ND	ND	0.5
Ethylbenzene	0.0050	ND	ND	0.5
Xylenes	0.0050	0.0143	ND	0.5
Leachable Metals				
Antimony (Sb)	5.0	ND	ND	500
Arsenic (As)	0.20	ND	ND	5
Barium (Ba)	5.0	ND ND	ND ND	100
ll ' '	0.50	ND ND	ND ND	5
Beryllium (Be)				-
Boron (B)	5.0	ND	ND	500
Cadmium (Cd)	0.050	ND	ND	1
Chromium (Cr)	0.50	ND	ND	5
Cobalt (Co)	5.0	ND	ND	100
Copper (Cu)	5.0	ND	ND	100
Iron (Fe)	5.0	13.5	ND	1,000
Lead (Pb)	0.50	ND	ND	5
Mercury (Hg)	0.010	ND	ND	0.2
Nickel (Ni)	0.50	ND	ND	5
Selenium (Se)	0.20	ND	ND	1
Silver (Ag)	0.50	ND	ND	5
Shver (rig)	0.50	ND	ND	3
Thallium (Tl)	0.50	ND	ND	5
Uranium (U)	1.0	ND	ND	2
Vanadium (V)	5.0	ND	ND	100
Zinc (Zn)	5.0	ND	ND	500
Zirconium (Zr)	5.0	ND	ND	500
\				

- 1) Class II Acceptance Criteria per Table 2, Part 4 Schedule to the Alberta User Guide for Waste Managers 3/95.
- 2) All units are mg/L unless otherwise stated.
- 3) ND Not Detected
- 4) Soil Bags were sampled July 14, 2013.
- 5) For further laboratory information, refer to the specific laboratory report in Appendix A.

Table 3B
Analytical Results - Soil - General Indices and Heavy Metals

Parameters	Units	Detection	TH-05	TH-04	TH-09	TH-11	Tier 1
		Limit	@ 3.7 m	@ 3.7 m	@ 2.7 m	@ 2.6 m	Guideline
			07/14/2013		07/13/2013		
Chloride (Cl)	mg/kg	6.5 - 8.5	9.7	13.0	50.9	8.2	
Nitrate-N	mg/kg	0.33 - 0.43	ND	ND	ND	ND	
Nitrite-N	mg/kg	0.33 - 0.43	ND	ND	ND	ND	
<u>Metals</u>							
Antimony (Sb)	mg/kg	0.20	0.58	0.38	0.31	0.35	20
Arsenic (As)	mg/kg	0.20	7.27	7.30	6.03	5.64	17
Barium (Ba)	mg/kg	5.0	235	352	249	201	500
Beryllium (Be)	mg/kg	1.0	ND	ND	ND	ND	5
Cadmium (Cd)	mg/kg	0.50	ND	ND	ND	ND	10
Chromium (Cr)	mg/kg	0.50	15.6	13.9	13.2	13.5	64
Cobalt (Co)	mg/kg	1.0	5.6	7.4	5.7	5.1	20
Copper (Cu)	mg/kg	2.0	11.6	11.7	9.4	11.9	63
Lead (Pb)	mg/kg	5.0	7.2	7.1	8.2	7.3	140
Mercury (Hg)	mg/kg	0.05	ND	ND	ND	ND	6.6
Molybdenum (Mo)	mg/kg	1.0	1.2	1.5	1.1	ND	4
Nickel (Ni)	mg/kg	2.0	16.7	18.7	16.4	17.1	50
Selenium (Se)	mg/kg	0.50	0.59	ND	ND	ND	1.0
Silver (Ag)	mg/kg	1.0	ND	ND	ND	ND	20
Thallium (Tl)	mg/kg	0.5	ND	ND	ND	ND	1.0
Tin (Sn)	mg/kg	2.0	ND	ND	ND	ND	5
Uranium (U)	mg/kg	2.0	ND	ND	ND	ND	23
Vanadium (V)	mg/kg	1.0	20.7	24.3	23.6	24.8	130
Zinc (Zn)	mg/kg	10	64	51	49	50	200
Hexavalent Chromium	mg/kg	0.10	ND	ND	ND	ND	0.4
Boron (B), Hot Water Ext.		0.10	0.31	0.19	0.25	0.32	2

- 1) Tier 1 Guideline Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for residential/parkland land use.
- 2) ND Not Detected, less than the limit of method detection.
- 3) -- No value established in the reference criteria.
- 4) Bold & Shaded Exceeds the referenced Alberta Tier 1 Guidelines and CCME guidelines.
- 5) For further laboratory information, refer to the specific laboratory report in Appendix A.
- 6) Testholes were renumbered subsequent to submission to the laboratory, therefore the following TH locations have changed: TH-04 is MW-01, TH-05 is TH-09, TH-09 is TH-13, TH-11 is TH-15. See Figure 2 for relative sample locations.

Table 3C

	A	nalytical Resu	lts - Soil - V	OCs			
Parameters	Units	Detection	TH-05	TH-04	TH-09	TH-11	Tier 1
		Limit	@ 3.7 m	@ 3.7 m	@ 2.7 m	@ 2.6 m	Guideline
			07/14/2013		07/13/2013	1	
Hydrocarbons							
F1 (C ₆ -C ₁₀)	mg/kg	10	ND	ND	ND	ND	24
F2 (C ₁₀ -C ₁₆)	mg/kg	25	ND	ND	ND	ND	130
F3 (C ₁₆ -C ₃₄)	mg/kg	50	ND	ND	ND	ND	300
F4 (C ₃₄ -C ₅₀)		50	ND	ND	ND	ND	2,800
	mg/kg	1	1				2,800
Total Hydrocarbons (C ₆ -C ₅₀)	mg/kg	500	ND	ND	ND	ND	
Volatile Organic Compounds							
Benzene	ma/ka	0.0050	ND	ND	0.0152	ND	0.073
Bromobenzene	mg/kg mg/kg	0.0030	ND	ND	ND	ND	0.073
Bromochloromethane	mg/kg	0.010	ND	ND	ND	ND	
Bromodichloromethane	mg/kg	0.010	ND	ND	ND	ND	
Bromoform	mg/kg	0.010	ND	ND	ND	ND	
5.0		0.010	112	112	112	1.12	
Bromomethane	mg/kg	0.10	ND	ND	ND	ND	
n-Butylbenzene	mg/kg	0.010 - 0.030	ND	ND	ND	ND	
sec-Butylbenzene	mg/kg	0.010	ND	ND	ND	ND	
tert-Butylbenzene	mg/kg	0.010	ND	ND	ND	ND	
Carbon tetrachloride	mg/kg	0.010	ND	ND	ND	ND	
Chlorobenzene	mg/kg	0.010	ND	ND	ND	ND	0.018
Dibromochloromethane	mg/kg	0.010	ND	ND	ND	ND	0.27
Chloroethane	mg/kg	0.10	ND	ND	ND	ND	
Chloroform	mg/kg	0.010	ND	ND	ND	ND	
Chloromethane	mg/kg	0.10	ND	ND	ND	ND	
	_						
2-Chlorotoluene	mg/kg	0.010 - 0.020	ND	ND	ND	ND	
4-Chlorotoluene	mg/kg	0.010	ND	ND	ND	ND	
1,2-Dibromo-3-chloropropane	mg/kg	0.010	ND	ND	ND	ND	
1,2-Dibromoethane	mg/kg	0.010	ND	ND	ND	ND	
Dibromomethane	mg/kg	0.010	ND	ND	ND	ND	
		0.010		N/Po	N.T.		0.10
1,2-Dichlorobenzene	mg/kg	0.010	ND	ND	ND	ND	0.18
1,3-Dichlorobenzene 1,4-Dichlorobenzene	mg/kg	0.010	ND	ND ND	ND ND	ND	0.098
II '	mg/kg	0.010	ND			ND	
Dichlorodifluoromethane 1,1-Dichloroethane	mg/kg mg/kg	0.010 0.010	ND ND	ND ND	ND ND	ND ND	
1,1-Dichloroethalie	mg/kg	0.010	ND	ND	ND	ND	
1,2-Dichloroethane	mg/kg	0.010	ND	ND	ND	ND	
1,1-Dichloroethene	mg/kg	0.010	ND	ND	ND	ND	0.021
cis-1,2-Dichloroethene	mg/kg	0.010	0.119	0.080	0.696	ND	
trans-1,2-Dichloroethene	mg/kg	0.010	ND	ND	0.163	ND	
Methylene chloride	mg/kg	0.010	ND	ND	ND	ND	
1,2-Dichloropropane	mg/kg	0.010	ND	ND	ND	ND	
1,3-Dichloropropane	mg/kg	0.010	ND	ND	ND	ND	
2,2-Dichloropropane	mg/kg	0.010	ND	ND	ND	ND	
1,1-Dichloropropene	mg/kg	0.010	ND	ND	ND	ND	
cis-1,3-Dichloropropene	mg/kg	0.010	ND	ND	ND	ND	
trans-1,3-Dichloropropene	mg/kg	0.010	ND	ND	ND	ND	
Ethylbenzene	mg/kg	0.015	ND	ND	0.144	ND	0.21
Hexachlorobutadiene	mg/kg	0.010	ND	ND	ND	ND	0.0067
Isopropylbenzene	mg/kg	0.010	ND	ND	ND	ND	
p-Isopropyltoluene	mg/kg	0.010	0.011	ND	0.041	ND	
n Bronylhonzess	gen co /1 ·	0.010	NID	NID	0.017	NID	
n-Propylbenzene	mg/kg	0.010	ND	ND ND	0.017	ND	0.0
Styrene	mg/kg	0.050	ND	ND ND	ND	ND	0.8
1,1,1,2-Tetrachloroethane	mg/kg	0.010	ND	ND ND	ND	ND	
1,1,2,2-Tetrachloroethane Tetrachloroethene	mg/kg	0.050	ND ND	ND ND	ND ND	ND 0.027	0.16
1 chacmorochiche	mg/kg	0.010	מאו	ND	מאו	0.02/	0.16
Toluene	mg/kg	0.050	ND	ND	ND	ND	0.49
1,2,3-Trichlorobenzene	mg/kg	0.010	ND	ND	ND	ND	0.26
1,2,4-Trichlorobenzene	mg/kg	0.010	ND	ND	ND	ND	0.23
1,1,1-Trichloroethane	mg/kg	0.010	ND	ND	ND	ND	
1,1,2-Trichloroethane	mg/kg	0.010	ND	ND	ND	ND	
Trichloroethene	mg/kg	0.010	ND	ND	ND	0.010	0.012
Trichlorofluoromethane	mg/kg	0.010	ND	ND	ND	ND	
1,2,3-Trichloropropane	mg/kg	0.020	ND	ND	ND	ND	
1,2,4-Trimethylbenzene	mg/kg	0.010	ND	ND	0.118	ND	
1,3,5-Trimethylbenzene	mg/kg	0.010	ND	ND	0.045	ND	
Vinyl chloride	mg/kg	0.050 - 0.20	ND	ND	ND	ND	0.00034
Xylenes	mg/kg	0.1	ND	ND	0.39	ND	12

Tiamat Environmental Consultants Ltd. Electronic Version 02

Notes:
1) Tier 1 Guideline - Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for residential/parkland land use.

²⁾ ND - Not Detected, less than the limit of method detection.

No value established in the reference criteria.
 Bold & Shaded - Exceeds the referenced Alberta Tier 1 Guidelines and CCME guidelines.
 For further laboratory information, refer to the specific laboratory report in Appendix A.
 Testholes were renumbered subsequent to submission to the laboratory, therefore the following TH locations have changed: TH-04 is MW-01, TH-05 is TH-09, TH-09 is TH-13, TH-11 is TH-15. See Figure 2 for relative sample locations.

12-435 Phase II ESA - Lindsay Thurber Comprehensive High School Site Historic Waste Disposal Sites, The City of Red Deer

Table 4A
Groundwater Indices Measured at Time of Sampling

Monitoring Well	pН	Electrical Conductivity (μg/cm)	Temperature (°C)	Dissolved Oxygen (mg/L)	Total Dissolved Solid (mg/L)	Redox (±mV)
MW-01	7.51	937	8.2	0.79	897.00	-16.3
MW-02	7.65	723	7.0	1.64	715.00	-90.7
MW-03	7.14	679	8.0	0.74	650.00	-103.0
MW-04	7.27	648	10.3	1.44	591.50	-94.2

- 1) Samples collected on August 15, 2013.
- 2) Groundwater indices measured by YSI Pro Plus multi-meter.

Table 4B
Analytical Results - Groundwater - Routine Water Quality

	Analytical Results - Groundwater - Routine water Quanty									
Parameter	Unit	Detection	MW-01	MW-02	MW-04	Tier 1				
		Limit		08/15/2013		Guideline				
General Water Quality										
Biochemical Oxygen Demand (BOD)	mg/L	2.0	26	3.4	3.4					
Chemical Oxygen Demand (COD)	mg/L	5.0	49	53	70					
Conductivity	μS/cm	1.0	1,400	1,100	950					
pН	Unitless	0.1	7.45	7.44	7.52	6.5-8.5				
Total Organic Carbon (C)	mg/L	0.50	13	14	20					
Dissolved Cadmium (Cd)	μg/L	0.0050	0.041	2.3	0.018					
Total Cadmium (Cd)	μg/L	0.0050	4.3	4.4	2.9	0.060*				
Alkalinity (Total as CaCO3)	mg/L	0.50	490	420	490					
Bicarbonate (HCO ₃)	mg/L	0.50	600	510	590					
Carbonate (CO ₃)	mg/L	0.50	ND	ND	ND					
	8									
Hydroxide (OH)	mg/L	0.50	ND	ND	ND					
Sulphates (SO ₄)	mg/L	1.0	96	84	4.7					
Chlorides (Cl)	mg/L	1.0 - 2.0	110	72	33					
Total Ammonia (N)	mg/L	0.050	0.18	1.6	0.64	1.37*				
Total Phosphorus (P)	mg/L	0.15	12	12	9.1					
•	C									
Total Nitrogen (N)	mg/L	0.050	15	11	16					
Total Kjeldahl Nitrogen (TKN)	mg/L	0.50	8.9	10	16					
Nitrite (as N)	mg/L	0.0030	0.91	ND	ND					
Nitrate (as N)	mg/L	0.0030	4.8	0.99	0.066					
Nitrate plus Nitrite (N)	mg/L	0.0030	5.7	0.99	0.066					
Trace Organics										
Acetic Acid	mg/L	50	ND	NT	ND					
Formic Acid	mg/L	50	ND	NT	ND					
Propionic Acid	mg/L	50	ND	NT	ND					
Adsorbable Organic Halogens	mg/L	0.05	0.35	NT	0.09					

- 1) Tier 1 Guideline Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for residential/parkland land use.
- 2) * Surface Water Quality Guidelines for Use in Alberta (AENV, 1999) on aquatic life pathway. Canadian Council of Ministers of the Environment (CCME) guidelines are referenced.
- 3) ND Not Detected, less than the limit of method detection.
- 4) NT Not Tested
- 5) -- No value established in the reference criteria.
- 6) Bold & Shaded Exceeds the referenced Alberta Tier 1 Guidelines and CCME guidelines.
- 7) For further laboratory information, refer to the specific laboratory report in Appendix A.

Table 4C Analytical Results - Groundwater - Metals

Analytical Results - Groundwater - Metals										
Parameter	Detection	MW-01	MW-02	MW-04	Tier 1					
	Limit		08/15/2013		Guideline					
Total Metals										
Aluminum (Al)	0.0030	43	21	33	0.1*					
Antimony (Sb)	0.00060	0.0018	0.00091	0.00081	0.006					
Arsenic (As)	0.00020	0.089	0.049	0.046	0.005					
Barium (Ba)	0.010	4.3	2.6	3.4	1					
Beryllium (Be)	0.0010	0.0034	0.0024	0.0048						
D (D)	0.020	0.041	0.027	0.027	1.5					
Boron (B)	0.020	0.041	0.037	0.027	1.5					
Calcium (Ca) Chromium (Cr)	0.30 - 1.5 0.0010	880 0.14	670 0.051	430 0.087	0.001*					
Cobalt (Co)	0.0010	0.14	0.031	0.065	0.001					
Copper (Cu)	0.00030	0.10	0.049	0.063	0.003*					
Copper (Cu)	0.00020	0.22	0.14	0.10	0.003					
Iron (Fe)	0.060	170	100	130	0.3					
Lead (Pb)	0.00020	0.12	0.056	0.10	0.004*					
Lithium (Li)	0.020	0.13	0.073	0.083						
Magnesium (Mg)	0.20	200	180	130						
Manganese (Mn)	0.0040	13	6.0	5.0	0.05					
Maluhdanum (Ma)	0.00020	0.0080	0.0045	0.0029						
Molybdenum (Mo) Nickel (Ni)	0.00020	0.0080	0.0043	0.0029	0.11*					
Phosphorus (P)	0.10	7.1	4.6	5.2	0.11					
Potassium (K)	0.30	14	9.8	12						
Selenium (Se)	0.00020	0.0069	0.0019	0.0028	0.001					
Scientini (Sc)	0.00020	0.000	0.0017	0.0020	0.001					
Silicon (Si)	0.10 - 0.50	100	50	75						
Silver (Ag)	0.00010	0.0015	0.00058	0.00059	0.0001*					
Sodium (Na)	0.50	50	45	55						
Strontium (Sr)	0.020	1.7	1.3	1.3						
Sulphur (S)	0.20	34	25	3.3						
Thallium (Tl)	0.00020	0.00075	0.00056	0.00066						
Tin (Sn)	0.00020	0.00073	0.00036	0.0005						
Titanium (Ti)	0.0010	0.0023	0.0014	0.38						
Uranium (U)	0.0010	0.011	0.0061	0.0070	0.02					
Vanadium (V)	0.0010	0.20	0.096	0.13						
valiadium (v)	0.0010	0.20	0.070	0.13						
Zinc (Zn)	0.0030	0.55	0.31	0.43	0.03					
Dissolved Metals										
Aluminum (Al)	0.0030	0.011	1.8	0.0034						
Antimony (Sb)	0.00060	ND	ND	ND						
Arsenic (As)	0.00020	0.0010	0.017	0.0086						
Barium (Ba)	0.010	0.36	0.055	0.90						
Beryllium (Be)	0.0010	ND	ND	ND						
Boron (B)	0.020	ND	ND	0.021						
Calcium (Ca)	0.30	170	330	110						
Chromium (Cr)	0.0010	ND	0.0038	ND						
Cobalt (Co)	0.00030	0.0041	0.027	0.0033						
Copper (Cu)	0.00020	0.0024	0.027	0.0010						
Iron (Fe)	0.060	ND	29	1.2						
Lead (Pb)	0.00020	ND	0.0037	ND						
Lithium (Li)	0.020	0.026	0.030	ND						
Magnesium (Mg)	0.20	64	93	38						
Manganese (Mn)	0.0040	1.3	4.5	1.1						
Molybdenum (Mo)	0.00020	0.0019	0.0011	0.0037						
	0.00020									
Nickel (Ni) Phosphorus (P)	0.00050	0.0079 ND	0.052 0.68	0.0046 ND						
Potassium (K)	0.10	3.9	5.1	4.2						
Selenium (Se)	0.00020	0.00071	0.00045	ND						
	0.00020	0.03071	0.00045							
Silicon (Si)	0.10	5.8	9.2	6.5						
Silver (Ag)	0.00010	ND	ND	ND						
Sodium (Na)	0.50 - 2.5	48	790	53						
Strontium (Sr)	0.020	0.80	0.87	0.70						
Sulphur (S)	0.20 -1.0	30	970	1.6						
Thallium (Tl)	0.00020	ND	0.00026	ND						
Tin (Sn)	0.0010	ND ND	0.00026 ND	ND ND						
Titanium (Ti)	0.0010	ND	0.0035	ND						
Uranium (U)	0.00010	0.0048	0.0033	0.0021						
Vanadium (V)	0.0010	ND	0.0028	ND						
Zinc (Zn)	0.0030	0.0030	0.086	0.0037						
<u> </u>		l	ı							

- 1) Tier 1 Guideline Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for residential/parkland land use.

 2) * Surface Water Quality Guidelines for Use in Alberta (AENV, 1999) on aquatic life pathway.
- 2) *Surface Water Quality Guidelines for Use in Alberta (AENY, 1999) on aquatic fire path Canadian Council of Ministers of the Environment (CCME) guidelines are referenced.

 3) ND Not Detected, less than the limit of method detection.

 4) Unless specified all units are mg/L.

 5) -- No value established in the reference criteria.

 6) Bold & Shaded Exceeds the referenced Alberta Tier 1 and CCME guidelines.

 7) For further laboratory information, refer to the specific laboratory report in Appendix A.

Table 4D
Analytical Results - Groundwater - VOCs

Analytical Results - Groundwater -VOCs											
Parameter	Detection	MW-01	MW-02	MW-04	Tier 1						
	Limit		08/15/2013		Guideline						
Volatile Organic Compounds											
Benzene	0.00040	ND	NT	ND	0.005						
Toluene	0.00040	ND	NT	ND	0.024						
Ethylbenzene	0.00040	ND	NT	ND	0.0024						
Xylenes (Total)	0.00080	ND	NT	ND	0.3						
F1 (C ₆ -C ₁₀)	0.10	ND	NT	ND	0.81						
F2 (C ₁₀ -C ₁₆)	0.10	ND	ND	ND	1.1						
Total Trihalomethanes	0.0020	ND	NT	ND	0.1						
Bromodichloromethane	0.00050	ND	NT	ND							
Bromoform	0.00050	ND	NT	ND							
Bromomethane	0.0020	ND	NT	ND							
Carbon tetrachloride	0.00050	ND	NT	ND	0.00056						
	0.0000	1,2	1,1	112	0.0000						
Chlorobenzene	0.00050	ND	NT	ND	0.0013						
Chlorodibromomethane	0.0010	ND	NT	ND							
Chloroethane	0.0010	ND	NT	ND							
Chloroform	0.00050	ND	NT	ND	0.0018						
Chloromethane			NT		0.0018						
Chioromethane	0.0020	ND	N I	ND							
1,2-dibromoethane	0.00050	ND	NT	ND							
1,2-dichlorobenzene	0.00050	ND ND	NT	ND ND	0.0007						
1,3-dichlorobenzene	0.00050	ND	NT	ND							
1,4-dichlorobenzene	0.00050	ND	NT	ND	0.001						
1,1-dichloroethane	0.00050	ND	NT	ND							
10 1:11	0.00050	NID) IT	N/D	0.005						
1,2-dichloroethane	0.00050	ND	NT	ND	0.005						
1,1-dichloroethene	0.00050	ND	NT	ND	0.014						
cis-1,2-dichloroethene	0.00050	ND	NT	ND							
trans-1,2-dichloroethene	0.00050	ND	NT	ND							
Dichloromethane	0.0020	ND	NT	ND	0.05						
1,2-dichloropropane	0.00050	ND	NT	ND							
cis-1,3-dichloropropene	0.00050	ND	NT	ND							
trans-1,3-dichloropropene	0.00050	ND	NT	ND							
Methyl methacrylate	0.00050	ND	NT	ND	0.47						
Methyl-tert-butylether (MTBE)	0.00050	ND	NT	ND	0.015						
Styrene	0.00050	ND	NT	ND	0.072						
1,1,1,2-tetrachloroethane	0.0020	ND	NT	ND							
1,1,2,2-tetrachloroethane	0.0020	ND	NT	ND							
Tetrachloroethene	0.00050	ND	NT	ND	0.03						
1,2,3-trichlorobenzene	0.0010	ND	NT	ND	0.008						
1,2,4-trichlorobenzene	0.0010	ND	NT	ND	0.015						
1,3,5-trichlorobenzene	0.00050	ND	NT	ND	0.014						
1,1,1-trichloroethane	0.00050	ND	NT	ND							
1,1,2-trichloroethane	0.00050	ND	NT	ND							
Trichloroethene	0.00050	ND	NT	ND	0.005						
Trichlorofluoromethane	0.00050	ND	NT	ND							
1,2,4-trimethylbenzene	0.00050	ND	NT	ND							
1,3,5-trimethylbenzene	0.00050	ND	NT	ND							
Vinyl chloride	0.00050	ND	NT	ND	0.0011						
<u> </u>					-						
	1	1									

- 1) Tier 1 Guideline Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for residential/parkland land use.
- 2) ND Not Detected, less than the limit of method detection.
- 3) NT Not Tested.
- 4) Unless specified all units are mg/L
- 5) -- No value established in the reference criteria.
- 6) Bold & Shaded Exceeds the referenced Alberta Tier 1 Guidelines.
- 7) For further laboratory information, refer to the specific laboratory report in Appendix A.

12-435 Phase II ESA - Lindsay Thurber Comprehensive High School Site Historic Waste Disposal Sites, The City of Red Deer

Table 5A
Summary of Field Parameters Measured During Sampling of Soil Vapour

Parameter	Well Diameter	Screen Length	Well Depth	Headspace Volume	Purge Rate	Purge Time	Pi	ressure
	(mm)	(cm)	(m)	(cm^3)	(cm ³ /min)	(min)	Ambient (psi)	Vapour Well (psi)
VW-01	25	30	2.1	1,030.8	943.3	4	15.00	15.00
VW-02	25	30	3.0	1,472.6	943.3	7	15.10	15.06
VW-03	25	30	2.0	981.75	943.3	5	15.14	15.08
VW-04	25	30	3.0	1,472.5	943.3	5	14.93	14.94
VW-05	25	30	2.7	1,325.4	943.3	5	15.01	15.00
				•				

- 1) Measurement of pressure by digital Cole-Parmer absolute pressure gauge.
- 2) Purge time is elapsed time prior to the collection of a soil vapour sample.
- 3) Screen set at base of well.
- 4) Soil vapour sampling was completed August 15, 2013.

Historic Waste Disposal Sites, The City of Red Deer

Table 5B Analytical Results - Soil Vapour - General Indices

Parameter	Unit	Detection Limit	VW-01	VW-02	VW-03	VW-04	VW-05
Gauge Pressure							
Following sampling	psi		(-3.5)	(-5.0)	(-5.0)	(-5.0)	(-4.8)
Reported by laboratory	psi		(-2.9)	(-3.6)	(-3.1)	(-4.2)	(-3.6)
Fixed Gases							
Oxygen	% v/v	0.2 - 0.3	13.4	20.9	21.6	19.2	10.8
Nitrogen	% v/v	0.2 - 0.3	81.5	76.7	77.2	77.8	85.6
Carbon monoxide	% v/v	0.2 - 0.3	ND	ND	ND	ND	ND
Methane	% v/v	0.2 - 0.3	ND	ND	ND	ND	ND
Carbon dioxide	% v/v	0.2 - 0.3	5.1	2.4	1.3	3.0	3.6

- 1) Soil vapour sample collected on Thursday, August 15, 2013.
- 2) ND Not Detected, less than the limit of method detection.
- 3) - No value established in the detection limit and reference criteria.
- 4) For further information, the reader should refer to the laboratory report in Appendix A.

Table 5C

Analytical Results - Soil Vapour - VOCs								
Parameter	Unit	Detection Limit	VW-01	VW-02	VW-03	VW-04	VW-05	
				1	08/15/2013			
Hydrocarbon Fractions								
Aliphatic >C ₅ -C ₆	μg/m ³	5.0	9.6	14.0	20.7	7.3	9.1	
Aliphatic >C ₆ -C ₈	μg/m ³	5.0	35.5	43.8	70.8	35.1	27.5	
Aliphatic >C ₈ -C ₁₀	μg/m³	5.0	54.9	59.6	48.3	53.1	21.1	
Aliphatic >C ₁₀ -C ₁₂	μg/m³	5.0	99.1	82.9	35.0	105	53.3	
Aliphatic >C ₁₂ -C ₁₆	μg/m³	5.0	27.4	20.0	ND	39.9	22.7	
Aromatic >C ₇ -C ₈ (TEX Excluded)	$\mu g/m^3$	5.0	ND	ND	ND	ND	ND	
Aromatic >C ₈ -C ₁₀	μg/m³	5.0	18.8	18.8	18.5	16.5	7.0	
Aromatic >C ₁₀ -C ₁₂	μg/m ³	5.0	18.9	17.8	8.5	18.9	7.6	
Aromatic >C ₁₂ -C ₁₆	μg/m ³	5.0	ND	ND	ND	ND	ND	
Colord Walterly Comm								
Select Volatile Gases Acetylene	ppm	0.17-0.25	ND	ND	ND	ND	ND	
Ethane	ppm	0.17-0.25	ND	ND	ND	ND	ND	
Ethylene	ppm	0.17-0.25	ND	ND	ND	ND	ND	
Methane	ppm	3.5-5.0	ND ND	ND ND	ND ND	ND ND	ND ND	
n-Butane	ppm	0.35-0.5	ND	ND	ND	ND	ND	
n-Pentane	ppm	0.17-0.25	ND	ND	ND	ND	ND	
Propane	ppm	0.17-0.25 0.17-0.25	ND ND	ND ND	ND ND	ND ND	ND ND	
Propene Propyne	ppm ppm	0.35-0.5	ND	ND	ND ND	ND	ND	
Volatile Organic Compounds Dichlorodifluoromethane (FREON 12)	ppbv	0.20	1.42	1.01	0.84	225	1.07	
1,2-Dichlorotetrafluoroethane	ppbv	0.17	ND	ND	ND	ND	ND	
Chloromethane	ppbv	0.30	0.95	1.00	0.59	1.34	ND	
Vinyl chloride	ppbv	0.18	ND	ND	ND ND	ND 0.20	ND	
Chloroethane	ppbv	0.30	ND	ND	ND	0.39	ND	
1,3-Butadiene	ppbv	0.50	ND	ND	ND	ND	ND	
Trichlorofluoromethane (FREON 11)	ppbv	0.20	0.21	0.46	0.44	0.64	0.53	
Ethanol (ethyl alcohol) Trichlorotrifluoroethane	ppbv ppbv	2.3 0.15	31.4 ND	44.9 ND	26.8 ND	31.9 ND	18.1 0.24	
2-propanol	ppbv	3.0	ND	ND	ND	ND	ND	
		0.00	22.7	21.4	24.0	25.2	27.0	
2-Propanone Methyl ethyl ketone (MEK) (2-Butanone)	ppbv ppbv	0.80 3.0	22.7 ND	31.4 ND	24.8 ND	35.3 3.4	37.8 4.3	
Methyl isobutyl ketone	ppbv	3.2	ND	ND	ND	ND	ND	
Methyl butyl ketone (MBK) (2-Hexanone)	ppbv	2.0	ND	ND	ND	ND	ND	
Methyl t-butyl ether (MTBE)	ppbv	0.20	ND	ND	ND	ND	ND	
Ethyl acetate	ppbv	2.2	ND	ND	ND	ND	ND	
1,1-Dichloroethylene	ppbv	0.25	ND	ND	ND	ND	ND	
cis-1,2-Dichloroethylene	ppbv	0.19	0.26	1.51	ND	ND	0.38	
trans-1,2-Dichloroethylene Methylene chloride(Dichloromethane)	ppbv ppbv	0.20 0.80	ND ND	ND ND	ND 0.90	ND 0.88	ND 0.84	
Chloroform	ppbv	0.15	ND	ND	ND	1.26	0.31	
Carbon tetrachloride 1,1-Dichloroethane	ppbv ppbv	0.30 0.20	ND ND	ND ND	ND ND	ND ND	ND ND	
1,2-Dichloroethane	ppbv	0.20	ND	ND	ND	ND	ND	
Ethylene dibromide	ppbv	0.17	ND	ND	ND	ND	ND	
1,1,1-Trichloroethane	ppbv	0.30	ND	ND	ND	ND	ND	
1,1,2-Trichloroethane	ppbv	0.15	ND	ND	ND	ND	ND	
1,1,2,2-Tetrachloroethane	ppbv	0.20	ND	ND	ND	ND	ND	
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ppbv ppbv	0.18 0.17	ND 1.82	ND ND	ND ND	ND ND	ND ND	
	ppov							
1,2-Dichloropropane	ppbv	0.40	ND	ND	ND	ND	ND	
Bromomethane Bromoform	ppbv ppbv	0.18 0.20	ND ND	ND ND	ND ND	ND ND	ND ND	
Bromodichloromethane	ppbv	0.20	ND	ND	ND ND	ND	ND	
Dibromochloromethane	ppbv	0.20	ND	ND	ND	ND	ND	
Trichloroethylene (TCE)	ppbv	0.30	ND	ND	ND	ND	8.05	
Tetrachloroethylene (PCE)	ppbv	0.20	ND	ND	ND	0.25	0.83	
Benzene	ppbv	0.18	1.09	0.62	0.90	1.43	1.07	
Toluene Ethylbenzene	ppbv	0.20 0.20	2.66 0.70	2.57 0.83	2.44 0.86	1.95 0.56	1.31 0.21	
-	ppbv							
p+m-xylene	ppbv	0.37	2.99	3.70	4.10	2.40	0.71	
o-xylene Styrene	ppbv ppbv	0.20 0.20	1.24 0.25	1.45 ND	1.34 ND	1.03 ND	0.34 ND	
4-ethyltoluene	ppbv	2.2	ND	ND	ND ND	ND	ND	
1,3,5-Trimethylbenzene	ppbv	0.50	ND	ND	ND	ND	ND	
1,2,4-Trimethylbenzene	ppbv	0.50	0.70	0.68	ND	0.60	ND	
Chlorobenzene	ppbv	0.20	ND	ND	ND	ND	ND	
Benzyl chloride	ppbv	1.0	ND	ND	ND	ND	ND	
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ppby	0.40 0.40	ND ND	ND ND	ND ND	ND ND	ND ND	
Î.	ppbv							
1,2-Dichlorobenzene	ppbv	0.40	ND	ND	ND ND	ND	ND	
1,2,4-Trichlorobenzene Hexachlorobutadiene	ppbv ppbv	2.0 3.0	ND ND	ND ND	ND ND	ND ND	ND ND	
Hexane	ppbv	0.30	2.70	5.07	13.4	1.74	0.72	
Heptane	ppbv	0.30	0.88	0.61	0.74	0.80	0.56	
Cyclohexane	ppbv	0.20	0.64	0.27	1.19	0.41	0.28	
Tetrahydrofuran	ppbv	0.40	ND	ND	ND	4.78	2.93	
1,4-Dioxane	ppbv	2.0	ND	ND	2.6	ND	ND	
Xylene (Total)	ppbv	0.60	4.23	5.15	5.44	3.43	1.05	
Vinyl bromide	ppbv	0.20	ND	ND	ND	ND	ND	
Propene	ppbv	0.30	ND	ND	ND	ND	ND	
2,2,4-Trimethylpentane	ppbv	0.20	ND	0.32	0.29	ND 8 20	ND	
Carbon disulfide Vinyl acetate	ppbv ppbv	0.50 0.20	15.2 ND	3.55 ND	4.65 ND	8.29 ND	11.2 ND	
I	1.1.0	1			1		- 125	

Results are from sampling performed on Thursday, August 15, 2013.
 ND - Not Detected, less than the limit of method detection.
 - No value established in the detection limit and reference criteria.
 For further information, the reader should refer to the laboratory report in Appendix A.

Tiamat Environmental Consultants Ltd. Electronic Version 02

12-435 Phase II ESA - Lindsay Thurber Comprehensive High School Site Historic Waste Disposal Sites, The City of Red Deer

Table 5D Analytics Results - Soil Vapour - Siloxanes

		VW-01 VW-02 VW-03 VW-04 VW-05								V- 05	
Parameter	Detection					08/15	5/2013				
	Limit	mg/m³	ppm	mg/m³	ppm	mg/m³	ppm	mg/m³	ppm	mg/m3	ppm
Trimethylsilyl Fluoride		0.0070	0.0019	0.0047	0.0012	0.0032	0.0009	0.0018	0.0005	0.0012	0.0003
Tetramethylsilane	0.0001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methoxytrimethylsilane	0.0004 - 0.0020	0.0012	0.0003	ND	ND						
Ethoxytrimethylsilane	0.0004 - 0.0020	0.0018	0.0004	ND	ND						
Trimethylsilanol		0.2608	0.0709	0.1962	0.0533	0.1470	0.0400	0.0916	0.0249	0.0677	0.0184
Isopropoxytrimethylsilane	0.0001 - 0.0008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trimethoxymethyl Silane #		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexamethyl Disiloxane - L2		0.0040	0.0006	0.0033	0.0005	0.0028	0.0004	0.0021	0.0003	0.0012	0.0002
Propoxytrimethylsilane	0.0004 - 0.0022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-Methylbutoxytrimethylsilane *		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Butoxytrimethylsilane *		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trimethoxyvinyl Silane #		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexamethyl Cyclotrisiloxane - D3		0.0810	0.0089	0.0173	0.0019	0.0188	0.0021	0.0121	0.0013	0.0129	0.0014
Octamethyl Trisiloxane - L3	0.0001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Triethoxyvinyl Silane #		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Triethoxyethyl Silane #		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Octamethyl Cyclotetrasiloxane - D4		0.0472	0.0039	0.0183	0.0015	0.0138	0.0011	0.0090	0.0007	0.0194	0.0016
Decamethyl Tetrasiloxane - L4	0.0001 - 0.0002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetraethylsilicate #		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Decamethyl Cyclopentasiloxane - D5		0.0213	0.0014	0.0244	0.0016	0.0202	0.0013	0.0172	0.0011	0.0229	0.0015
Dodecamethyl Pentasiloxane - L5	0.0001 - 0.0019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dodecamethyl Cyclohexasiloxane - D6		0.2271	0.0125	0.2499	0.0137	0.2449	0.0135	0.2453	0.0135	0.1538	0.0085
Sum		0.6567	0.1014	0.5227	0.0753	0.4595	0.0608	0.3886	0.0440	0.2872	0.0333

- 1) Soil vapour samples collected on Thursday, August 15, 2013.
- 2) ND Not Detected, less than the limit of method detection.
- 3) - No value established in the detection limit and reference criteria.
- 4) V=200 mL, where V is volume of air/gas sampled.
- 5) * Semiquanititative (response factor set at 5).
- 6) # Unstable, poor detectability, commercial standards tested.
- 7) For further information, the reader should refer to the laboratory report in Appendix A.

APPENDIX F

BOREHOLE LOGS

PRO	JECT: Phase II ESA Historic Waste Disposal Sites	_			E No.:			VW-01
PRO	JECT No.: 12-435	DR	ILL	TYP	E:			SS Auger
LOC	ATION: Lindsay Thurber Comprehensive High School	GR	OUN	ID E	LEVA	TION:		853.853 m
CLIE	CNT: The City of Red Deer	CO	MPI	LET]	ION D	ATE:		06/22/2013
Samp	ole Type: Shelby Tube Split Spoon Core Disturbed			o Rec	overy			
Back	fill Type: Bentonite 🗓 Silica Sand 🧱 Grout 🗓 Pea Gravel		∏ D	rill C	uttings	Bento	nite : Sand	
Notes	Located on east side of 42A Avenue. ~ 5 m east of curb fence							ı
Depth (m)	Soil Description	Sample Type	Sample No.	SPT (N)	Combustible Soil Vapours (ppm)		Well Details	
0.0	Grass/loam - soft, silty, some clay, trace sand, moist, dark olive (~ 0.5 m thick).							
	Clay (fill) - firm, silty, some sand, trace gravel, trace organics, moist, dark olive.							
1.0	Sand & gravel (fill) - compact, some silt, moist, olive brown.							
2.0	Clay (fill) - soft, silty, trace gravel, moist, olive brown. becomes wet at 2.3 m.							
3.0	Sand (fill) - loose, silty, trace clay, wet, olive.							
4.0	Sand & gravel (native) - compact, trace silt, wet, olive. End of hole at 4.6 m. 25 mm diameter 0.3 m 020 PVC screen.	-						
5.0	Flush mount bolt-down steel casing set in concrete.							
6.0								
7.0								
8.0								
9.0								
10.0								
11.0								,
12.0								,
	Tiamat Environmental Consultants Ltd.	Slough					Completion Depth	
	Tamat Environmental Consultants Ltu.	Depth	to Grou	ındwate	er:	I TM	Checked By:	LTM 1 of 1

PRO	JECT: Phase II ESA Historic Waste Disposal Sites	ВО	REH	[OL]	E No.:			VW-02
PRO	JECT No.: 12-435	DR	ILL	TYF	E:			SS Auger
LOC	ATION: Lindsay Thurber Comprehensive High School	GR	OUN	ND E	LEVA	TION:		853.535 m
CLIE	ENT: The City of Red Deer	CO	MPI	ET	ION D	ATE:		07/14/2013
Samp	ole Type: Shelby Tube Z Split Spoon Core Disturbed		N	o Rec	overy			
Back	fill Type: Bentonite 💹 Silica Sand 🧱 Grout 🔃 Pea Gravel		Ⅲ D	rill C	uttings	Benton	nite : Sand	
Notes	~ 2.0 m north of MW-02 along east fense of the Riverglen Sch	ool y	ard					
Depth (m)	Soil Description	Sample Type	Sample No.	SPT (N)	Combustible Soil Vapours (ppm)		Well Details	
0.0	Loam - sandy, silty, trace rootlets, trace clay, moist, light olive (~ 0.2 m thick). Sand (fill) - compact, trace silts, moist, olive.							
	some gravels at 0.8 m.							
1.0	No obvious waste material.							
2.0								
3.0	End of hole at 3.0 m. 25 mm diameter 020 PVC screen. Aboveground lockable steel casing.							
4.0								
5.0								
6.0								
7.0								
8.0								
9.0								
10.0								
11.0								
12.0								
	Tiamat Environmental Consultants Ltd.	Slough		•			Completion Depth	
	Tramat Environmental Consultants Ltu.	Depth	to Grou	undwat	er:	I TM	Checked By:	LTM

PRO	JECT: Phase II ESA Historic Waste Disposal Sites	BO	REH	[OL]	E No.:			VW-03
	JECT No.: 12-435	DR	ILL	TYP	E:			Marouka
LOC	ATION: Lindsay Thurber Comprehensive High School	GR	OUN	ID E	LEVA	TION:		853.245 m
CLIF	NT: The City of Red Deer	CO	MPI	ET	ION D	ATE:	(07/13/2013
Samp	ole Type: Shelby Tube Z Split Spoon Core Disturbed			o Rec	overy			
Back	fill Type: Bentonite 💹 Silica Sand 🧱 Grout 🗓 Pea Gravel		■ D	rill C	uttings	Benton	nite : Sand	
Notes	: West of MW-03							
<u> </u>		, be	0.		Combustible Soil Vapours (ppm)		ails	
Depth (m)	Soil Description	e T	Sample No.	SPT (N)	stible rs (p		Well Details	
Dep		Sample Type	Sam	SP	mbu		Well	
0.0	Grass/loam/sand - loose, silty, moist, dark olive (~ 0.2 m thick).	· ·			Co			
0.0	Sand (fill) - compact, trace silts, moist, olive.	1						
1.0								
1.0							H0000000 H0000000	
							_	
2.0								
2.0	Sand & gravel (fill) - compact, silty, wet, olive.	i						
3.0	End of hole at 3.0 m.	-						
5.0	25 mm diameter 0.30 m 020 PVC screen.							
	Aboveground lockable steel casing.							
4.0								
5.0								
6.0								
7.0								
8.0								
9.0								
10.0								
11.0								
12.0								
		Slough	1:				Completion Depth	(m): 3.0
	Tiamat Environmental Consultants Ltd.		to Grou	ındwat	er:			LTM
		11	d Dyn			LTM	D	1 - 6 1

PROJECT No.: 12-435 LOCATION: Lindsay Thurber Comprehensive High School CLIENT: The City of Red Deer Sample Type: Shelby Tube Shelby Tu	E: 06/22/2013
CLIENT: The City of Red Deer Sample Type: Shelby Tube Split Spoon Core Disturbed No Recovery Backfill Type: Rentonite Silica Sand Grout Pea Gravel Notes: Near northeast corner of school Soil Description On Asphalt pavement (~0.1 m thick). Sand & gravel (fill) - subbase, some silt, damp to moist, olive. Sand (fill) - loose, trace silts, damp to moist, light olive. Silt (fill) - liose, trace silts, damp to moist, olive. Silt (fill) - firm, sandy, some clay, trace organics, moist, olive. 2.0 Silt (fill) - firm, sandy, some clay, trace organics, moist, olive. 3.0 End of hole at 3.0 m. 25 mm diameter 020 PVC screen. Flush mount bolt-down steel casing set in concrete.	Bentonite: Sand
Sample Type: Bentonite Silica Sand Crout Pea Gravel Notes: Near northeast corner of school Soil Description Soil Description Asphalt pavement (-0.1 m thick). Sand & gravel (fill) - slobes, some silt, damp to moist, light clive. Sand & gravel (fill) - loose, trace silts, damp to moist, light clive. Silt (fill) - firm, sandy, some clay, trace organics, moist, olive. Silt (fill) - firm, sandy, some clay, trace organics, moist, olive. Silt (fill) - firm, sandy, some clay, trace organics, moist, olive. Silt (fill) - firm, sandy, some clay, trace organics, moist, olive.	Mell Details Well Details
Soil Description Soil Description Desc	Well Details
Notes: Near northeast corner of school Soil Description	Well Details
Soil Description Soil Descri	
Asphalt pavement (~ 0.1 m thick).	
Sand & gravel (fill) - subbase, some silt, damp to moist, olive. Sand (fill) - loose, trace silts, damp to moist, light olive. 2.0 Silt (fill) - liose, moist, olive. Silt (fill) - firm, sandy, some clay, trace organics, moist, olive. Silt (fill) - firm, sandy, some clay, trace organics, moist, olive. 2.1 Silt (fill) - firm, sandy, some clay, trace organics, moist, olive. Silt (fill) - firm, sandy, some clay, trace organics, moist, olive. Silt (fill) - firm, sandy, some clay, trace organics, moist, olive. Silt (fill) - firm, sandy, some clay, trace organics, moist, olive. Silt (fill) - firm, sandy, some clay, trace organics, moist, olive. Silt (fill) - firm, sandy, some clay, trace organics, moist, olive. Silt (fill) - firm, sandy, some clay, trace organics, moist, olive. Silt (fill) - firm, sandy, some clay, trace organics, moist, olive.	
2.0 Silt (fill) - loose, moist, olive. Silt (fill) - firm, sandy, some clay, trace organics, moist, olive. 3.0 End of hole at 3.0 m. 2.5 mm diameter 020 PVC screen. Flush mount bolt-down steel casing set in concrete. 4.0 5.0 6.0	
Silt (fill) - firm, sandy, some clay, trace organics, moist, olive. 3.0 End of hole at 3.0 m. 25 mm diameter 020 PVC screen. Flush mount bolt-down steel casing set in concrete. 4.0 5.0 7.0	
25 mm diameter 020 PVC screen. Flush mount bolt-down steel casing set in concrete. 4.0 5.0 6.0 7.0	
5.0 6.0 7.0	
7.0	
8.0	
9.0	
10.0	
11.0	
12.0	
Tiamat Environmental Consultants Ltd. Slough: Depth to Groundwater:	
I lamat Environmental Consultants Ltd. Depth to Groundwater: Logged By: JA	Completion Depth (m): 3.0 Checked By: LTM

	JECT: Phase II ESA Historic Waste Disposal Sites				E No.:			VW-05
	JECT No.: 12-435		ILL '				SS Auger	
	ATION: Lindsay Thurber Comprehensive High School					TION:		854.046 m
	NT: The City of Red Deer		_		ON D	ATE:	(06/22/2013
	ole Type: Shelby Tube Split Spoon Core Disturbed				overy			
	fill Type: Bentonite Silica Sand Grout Pea Gravel		D	rill Cı	uttings	Benton	nite : Sand	
Notes	:				= 1			
Depth (m)	Soil Description	Sample Type	Sample No.	SPT (N)	Combustible Soil Vapours (ppm)		Well Details	
0.0	Asphalt pavement (~ 0.1 m thick).							
	Subbase gravel. Silt (fill) - firm, sandy, trace clay, moist, olive.							
1.0	Organic loam (fill) - firm, fine sand, silty, trace clay, moist, dark olive.							
2.0	becomes clayey at 2.6 m							
3.0	End of hole at 2.7 m. 25 mm diameter 020 PVC screen. Flush mount bolt-down steel casing set in concrete.							
4.0								
5.0								
6.0								
7.0								
8.0								
9.0								
10.0								
11.0								
12.0								
	Tiamat Environmental Consultants Ltd.	Slough		•		0.30 m	Completion Depth	
	Tamat Environmental Consultants Ltu.	Depth Logge	to Grou d By:	ındwate	er:	JAL/LTM	Checked By: Page:	LTM 1 of 1

PRO	JECT: Phase II ESA Historic Waste Disposal Sites	BO	REH	(OL)	E No.:			MW-01	
PRO	JECT No.: 12-435	DR	ILL	TYP	E:		SS Auger/ODEX		
LOC	ATION: Lindsay Thurber Comprehensive High School	GR	OUN	ID E	LEVA	TION:		853.767 m	
CLIE	ENT: The City of Red Deer	CO	MPI	ET	ION D	ATE:		06/22/2013	
Samp	ole Type: Shelby Tube Z Split Spoon Core Disturbed		N	o Rec	overy				
Back	fill Type: Bentonite 💹 Silica Sand 🧱 Grout 🗓 Pea Gravel		∏ D	rill C	uttings	Benton	nite : Sand		
Notes	Located near 42A Avenue ~ 5 m. East of the curb and ~ 2 m. V	Vest	of V	W-0	1				
=		/pe			Combustible Soil Vapours (ppm)		sils		
Depth (m)	Soil Description	le T	Sample No.	SPT (N)	stible rs (p		Well Details		
Dep		Sample Type	Sam	SP	mbu		Well		
0.0	Grass/loam - soft, silty, some clay, trace sand, moist, dark olive (~ 0.5 m thick).	o.			Co				
0.0									
	Clay (fill) - firm, silty, moist, olive brown. some gravel at 0.6 m.								
1.0	plastic at 0.8 m.								
1.0									
2.0	Sand (fill) - compact, silty, some clay, moist, olive brown.								
2.0	1								
	becomes wet at 2.4 m.								
3.0	Clay (fill) - soft, wet, olive brown.	-							
	Sand (native) - loose, some clay, wet, olive brown.								
4.0									
-	trace gravels at 4.3 m. Sand & gravel (native) - loose, wet, olive brown.								
5.0									
-	Sandstone (bedrock) - weak, highly weathered, damp, light olive grey.	-							
6.0		1							
	End of hole at 6.1 m. 51 mm diameter 010 PVC screen.								
	1.5 m solid PVC pipe. Flush mount bolt-down steel casing set in concrete.								
7.0									
8.0									
9.0									
10.0									
11.0									
11.0									
12.0									
12.0									
			L						
	Tiomat Environmental Consultanta I tal	Slougl					Completion Depth		
	Tiamat Environmental Consultants Ltd.	Depth	to Grou	ındwat	er:	IAL/ITM	Checked By:	LTM	

PRO	JECT: Phase II ESA Historic Waste Disposal Sites	BO	REH	(OL)	E No.:			MW-02
PRO	JECT No.: 12-435	DR	ILL	TYP	E:			SS Auger
LOC	ATION: Lindsay Thurber Comprehensive High School	GR	OUN	ID E	LEVA	TION:		853.585 m
CLIE	CNT: The City of Red Deer	CO	MPI	ET	ION D	ATE:		07/14/2013
	ole Type: Shelby Tube Z Split Spoon Core Disturbed			o Rec	overy			
Back	fill Type: Bentonite 📗 Silica Sand 🧱 Grout 🗓 Pea Gravel		■ D	rill C	uttings	Bento	nite : Sand	
Notes	East side of bike/pedestrian pathway							
Depth (m)	Soil Description	Sample Type	Sample No.	SPT (N)	Combustible Soil Vapours (ppm)		Well Details	
0.0	Loam - sand, silty, trace rootlets, trace clay, moist, light olive brown (~ 0.2 m thick). Sand & gravel (fill) - compact, trace silts, damp to moist, olive.							
	Sain to grave (mi) compact, auto site, damp to moist, office.							
1.0	No obvious waste material.							
2.0								
3.0								
5.0								
4.0								
5.0								
6.0	End of hole at 6.1 m. 51 mm diameter 010 PVC screen. Aboveground lockable steel casing.							
7.0								
8.0								
9.0								
9.0								
10.0								
11.0								
11.0								
12.0								
		Slough	1:				Completion Depth	(m): 6.1
	Tiamat Environmental Consultants Ltd.		to Grou	ındwate	er:			LTM
		Loggo	d Dyn			LTM	Dagge	1 of 1

PRO.	JECT: Phase II ESA Historic Waste Disposal Sites	BOREHOLE No.: MW-(
PRO	JECT No.: 12-435	DR	ILL '		SS Auger				
LOC.	ATION: Lindsay Thurber Comprehensive High School	GR	OUN	ID E	LEVA	TION:		853.225 m	
	NT: The City of Red Deer	CO	MPI	ET	ION D	ATE:		07/13/2013	
	le Type: Shelby Tube Split Spoon Core Disturbed			o Rec	overy				
	fill Type: Bentonite Silica Sand Grout Pea Gravel		■ D	rill C	uttings	Benton	nite : Sand		
Notes	:	1			_		1		
Depth (m)	Soil Description	Sample Type	Sample No.	SPT (N)	Combustible Soil Vapours (ppm)		Well Details		
0.0	Loam - soft to firm, silty, some sand, trace rootlets, moist, olive (~ 0.2 m thick). Sand (fill) - compact, silty, some gravel, damp to moist, olive.								
	some gravels at 0.6 m.								
1.0									
2.0	becomes wet at 1.8 m.								
2.0	No obvious waste material.								
3.0									
4.0									
	End of hole at 4.6 m. 51 mm diameter 010 PVC screen.								
5.0	Aboveground lockable steel casing.						·		
6.0									
7.0									
7.0									
8.0									
9.0									
10.0									
11.0							ļ		
11.0									
12.0									
	Tiamat Environmental Consultants Ltd.	Slough		ındı	or.		Checked By:		
	Tamat Phynodinental Consultants Liu.	Depth	to Grou	undwate	er:	I TM	Checked By:	LTM	

PRO	JECT: Phase II ESA Historic Waste Disposal Sites	BOREHOLE No.: MV								
	JECT No.: 12-435	DRILL TYPE:						SS Auger		
	ATION: Lindsay Thurber Comprehensive High School	GROUND ELEVATION:						851.781 m		
	NT: The City of Red Deer		_	ETI	ON D	(07/13/2013			
	ole Type: Shelby Tube Split Spoon Core Disturbed		-	o Rec						
	fill Type: Bentonite Silica Sand Grout Pea Gravel			rill Cı	ıttings	Benton	nite : Sand			
Notes	Adjacent to Riverglen School yard fence, east of the basketball	cour	rt.		=		1 1			
Depth (m)	Soil Description	Sample Type	Sample No.	SPT (N)	Combustible Soil Vapours (ppm)		Well Details			
1.0	Loam (~ 0.2 m thick) - soft, silt, some sand, moist, olive brown. Sand & gravel (fill) - compact, some loam, moist, olive.									
2.0	becomes silty at 1.2 m. becomes wet at 1.8 m.									
3.0										
4.0										
5.0	End of hole at 4.6 m. 51 mm diameter 010 PVC screen. Aboveground lockable steel casing.									
6.0										
7.0										
8.0										
9.0										
10.0										
11.0										
12.0							· · · · · · · · · · · · · · · · · · ·			
"L'amost Environmental Consultants I tal				Slough: Completion Depth (m) Depth to Groundwater: Checked By: LTN						
Tiamat Environmental Consultants Ltd.				muwate	.i .	Checked By: Page:				

	EER PUBLIC SCHOOL DISTRICT	SOLID STEM AUGER						BOREHOLE NO: 8								
	AY THURBER LANDFILL ASSESSM	EVERGREEN DRILLING						PROJECT NO: RD1181 ELEVATION: 852.27 m								
	-38-27-W4M, RED DEER, AB	Ma	en T							П	Пелін	TO MESSAULE AS LOS SES	Core Sampl	0	-	
SAMPLE TYPE TUBE BULK			⊠s IIII s		00			Grab Split				1	L CUTTINGS	SAND	С	
BACK	FILL TYPE BENTONITE	PEA GRAVEL	∭s	LOUG	Н		4.10	ROUI	-1	T	4	Ankir	L COTTINGS	ETT ONIND	1	
Depth(m)	Soil Descript	tion	SOIL SYMBOL	PLA I	STIC	M.C ◆	60	LIQI 80		SAMPLE TYPE	SAMPLE NO	SPT(N)		nts/Other Oata	WELL	ELEVATION(m)
0.0	TOPSOIL: silty, organic, black	r. moist.	1111	1	20	40	ou	UG							M	-
- 1.0 - 2.0	SAND: course grained, well g silt, dense, brown, damp. — wet.	raded, some		*												
- 3.0₹	1100		7					**********								- 7
- 4.0 -	GRAVEL: pitrun, well graded,	dense, wet.														849.
- 5.0																- - - - - - - - - -
- 6.0	End at 6.0 m. Well installed to 6.0 m. Trace water at completion. Water at 3.07 m on March 2 Water at 2.78 m on June 21	27, 2004. 1, 2004.		•												846.
8.0 Pa	rkland Geotechn	ical Con	sultin	g	Ltd	LC RE) BY: ED BY						.etion Depth: 6 .ete; 03/17/04	m Page 1	of 1

Borehole No: 22MW05

Project: LTCHS Monitoring Well Installation Project No: SWM.SWOP04071-02.008

Location: Lindsay Thurber Composite High School

			Red Deer, Alberta	UTM: E; N; Z 12	
(m)	Method		Soil Description	Notes and Comments	Depth
)		TOPSOIL AND PEAT - rootlets, dark brown, frozen, (30	00 mm thick)		
		CAND, some group! fine grained cond, dark brown			ш
		SAND - some gravel, fine grained sand, dark brown			
		- wet			
		SAND AND GRAVEL - rounded gravel, very wet, dark to	orown		
	auger				
	Solid stem auger				
	Solic				
¥					
	-	GRAVEL - some sand, rounded gravel, fine grained sar	nd, very wet		1
					1
					1
-		END OF BOREHOLE (4.5 metres) water - 2.9 metres Monitoring well installed to 4.0 metres			1
			Contractor: CP Drilling	Completion Depth: 4.5 m	
		TETRATECH	Equipment Type: Track mounted	Start Date: 2022 February 1	

Tt	TETRA TECH
----	------------

Contractor: CP Drilling	Completion Depth: 4.5 m
Equipment Type: Track mounted	Start Date: 2022 February 1
Logged By: MS	Completion Date: 2022 February 1
Reviewed By: FH	Page 1 of 1