

2022 Groundwater Monitoring Report McKenzie Trails Recreation Area NE and SE Portions of Section 28-038-27 W4M

PRESENTED TO City of Red Deer

JUNE 16, 2023 ISSUED FOR USE FILE: 704-SWM.SWOP04071-03.003

> Tetra Tech Canada Inc. Suite 110, 140 Quarry Park Blvd SE Calgary, AB T2C 3G3 CANADA Tel 403.203.3355 Fax 403.203.3301

This page intentionally left blank.

EXECUTIVE SUMMARY

The City of Red Deer (The City) retained Tetra Tech Canada Inc. (Tetra Tech) to conduct the 2022 groundwater and vapour monitoring program at the former landfill located beneath the McKenzie Trails Recreation Area (McKenzie Trails), located within the NE and SE Section of 28-038-27 W4M in Red Deer, Alberta, hereafter referred to as the site. The objective of the monitoring program is to identify potential environmental concerns related to former operations at the site.

Tetra Tech's scope of work for the 2022 monitoring and sampling program at the McKenzie Trails site included conducting an annual groundwater monitoring and sampling event, reviewing, and updating previous recommendations for the site, and preparing an annual report. Soil vapour monitoring or sampling was not proposed for 2022.

The groundwater monitoring network at the site consists of six monitoring wells (MW-01 to MW-05 and MW-203). MW-03 (deep) and MW-04 (shallow) are a nested pair located in the northeast section of the site. Most of the wells are screened within the native sand and gravel. MW-05 is screened within the municipal solid waste (MSW) to bedrock. The vapour monitoring network consists of one vapour monitoring well (VW-01) near the southeast corner of the site.

Based upon the results of the groundwater monitoring and sampling conducted in 2022 and previous years, Tetra Tech has developed the following conclusions:

- The groundwater elevations in 2022 indicated that the inferred groundwater flow direction was to the north-northeast, following the flow direction of the Red Deer River. The average horizontal hydraulic gradient at the site in December 2022 was approximately 0.004 m/m, which is consistent with previous findings.
- Routine groundwater chemistry parameters and dissolved metals that exceeded the Tier 1 Guidelines at one
 or more monitoring wells in 2022 included total dissolved solids, ammonia, and the dissolved metals iron,
 manganese, and selenium. The measured concentrations of one or more of these parameters suggest leachate
 has impacted the groundwater quality at MW-03, MW-04, and MW-203, each hydraulically down-gradient of
 the waste disposal area.
- In 2022, monitoring wells MW-04 and MW-203 contained ammonia that exceeded the guideline value derived in accordance with the Environmental Quality Guidelines for Alberta Surface Waters. The calculated guideline value for MW-04 was 8.50 mg-N/L and for MW-203 was 9.21 mg-N/L (Government of Alberta 2018), while the measured concentrations were 11.0 mg-N/L and 14.1 mg-N/L, respectively. Groundwater near MW-203 and MW-04 is expected to ultimately discharge into the Red Deer River, as the monitoring wells are located approximately 30 m and 90 m from the river, respectively. Based on the measured concentrations and the expected dilution effect when groundwater discharges, the environmental risk is considered low.
- Concentrations of benzene, toluene, ethylbenzene, and xylene (BTEX) and petroleum hydrocarbon (PHC) fractions F1 to F2, were less than the analytical detection limits at most locations in 2022. MW-203 had a detectable concentration of benzene (0.00079 mg/L), marginally greater than the analytical detection limit (0.00050 mg/L). Concentrations of BTEX and PHC fractions F1 and F2 were less than the Tier 1 Guidelines at all locations.
- Concentrations of vinyl chloride were greater than the Tier 1 Guideline in the groundwater samples collected from MW-03, MW-04, and MW-203. Additionally, concentrations of cis-1,2-dichloroethene (cis -1,2-DCE) were detected at MW-03, MW-04, and MW-203. The concentrations of vinyl chloride and cis-1,2-DCE measured are indicators of MSW leachate impacting the groundwater below the site. However, the concentrations of both Volatile Organic Compounds (VOCs) have been consistent since 2019, the concentrations are considered low, and the VOC concentrations are not interpreted to impose a significant risk to the freshwater quality in the nearby Red Deer River.

 During the December 2022 monitoring event and in May 2023, a site walkover was conducted to assess the thin soil cover identified in the earlier work by Tiamat Environmental Consultants Ltd., to evaluate for exposed wastes and/or seepage along the riverbank. No potential exposed waste and/or seepage was identified during the site walkover in December 2022 or May 2023. Future site walkovers should be conducted in the Spring/Summer to ensure the site is not snow covered.

Based upon the results of the groundwater monitoring program in 2022 and previous years, there are residual impacts in the groundwater and buried waste remains beneath the site; therefore, ongoing risk management is required including ongoing monitoring and administrative actions. The following recommendations are made according to these risk management elements:

- Ongoing Monitoring:
 - The groundwater results in 2022 remained consistent with previous results from 2019 and 2021. Consequently, Tetra Tech recommends following the table below that was originally proposed in the 2021 Groundwater and Soil Vapour Monitoring Report (Tetra Tech 2022a) and conducting the next annual groundwater monitoring and sampling event in 2024. The proposed frequency should be re-evaluated at the time of each event based on ongoing results evaluation.
 - It is recommended that the annual site walkover take place during the Spring/Summer to adequately assess the soil cover and riverbank.

Activity	2023	2024	2025	2026	2027	2028	2029	2030	2031
Annual Groundwater Monitoring (six wells; MW-01, MW-02, MW03, MW-04, MW-05, and MW-203)		х			х				х
Annual Groundwater Sampling (three wells; MW-03, MW-04, and MW-203)		Х			Х				х
Annual Site Walkover in Spring/Summer		Х			Х				Х

Proposed Groundwater Monitoring Program

- Administrative Actions:
 - Utilize the revised generic mitigative measures (when evaluating applications for development within the setback).
 - Ensure that the site is clearly identified within The City's Land Use Bylaw and appropriate administrative requirements are met for the site in accordance with City policies.

Further to the above recommendations, as noted the site remains an historical landfill. It presently appears to be well maintained and capped. The City should review this status on an ongoing basis to ensure that the cover remains intact and drainage remains positive; repairs or maintenance should be undertaken as required to maintain the site.

TABLE OF CONTENTS

EXE	CUTI	VE SUN	MMARY	I
1.0	INTE	RODUC	CTION	1
	1.1		Report – Key Findings and Recommendations	
	1.2		of Work	
2.0	PAC	KCDO		2
2.0	2.1		al Information	
	2.1		eptual Site Model Summary	
	2.2 2.3		prual Site Model Summary	
	2.3	MOHILC		
3.0	MON	NITORI	NG AND SAMPLING METHODOLOGY	5
	3.1	Groun	dwater Monitoring and Sampling	5
		3.1.1	Groundwater Monitoring and Sampling Methodology	5
		3.1.2	Groundwater Sampling Analytical Program	6
4.0	RES		AND DISCUSSION	6
	4.1		/alkover	
	4.2		dwater Elevations	
	4.3		dwater Field Parameters	
	4.4		dwater Analytical Results	
		4.4.1	Background Groundwater Quality	
		4.4.2	Routine Water Chemistry Parameters	
		4.4.3	Dissolved Metals	
		4.4.4	Organic Parameters	
	4.5	Quality	y Assurance/Quality Control	
		4.5.1	Methods	
		4.5.2	Results	9
5.0	EVA	LUATI	ON OF SITE CONDITIONS	10
6.0	CON	ICLUSI	IONS AND RECOMMENDATIONS	10
7.0	CLO	SURE		13
REF	EREN	ICES		14

APPENDIX SECTIONS

TABLES

- Table 1 Monitoring Results Groundwater Wells
- Table 2Groundwater Analytical Results
- Table 3 Groundwater Quality Assurance/Quality Control Analytical Results

FIGURES

- Figure 1 Site Location Plan
- Figure 2 Site Plan and Surrounding Land Use
- Figure 3 Groundwater Monitoring Well Hydrographs
- Figure 4 Groundwater Elevation Contours December 2022

APPENDICES

- Appendix A Tetra Tech's Limitations on the Use of this Document
- Appendix B Site History, Historical Information, Site Setting, 2019 Hazard Quotients, and 2014 Risk Management Plan Review
- Appendix C Cross-sections (Tiamat 2014A)
- Appendix D Laboratory Analytical Report
- Appendix E Historical Analytical Data
- Appendix F Borehole Logs

LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of The City of Red Deer and their agents. Tetra Tech Canada Inc. (Tetra Tech) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than The City of Red Deer, or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this document is subject to the Limitations on the Use of this Document attached in Appendix A or Contractual Terms and Conditions executed by both parties.

1.0 INTRODUCTION

The City of Red Deer (The City) retained Tetra Tech Canada Inc. (Tetra Tech) to conduct the 2022 groundwater monitoring program at the former landfill located beneath the McKenzie Trails Recreation Area (McKenzie Trails), located within the NE and SE Sections of 28-038-27 W4M, hereafter referred to as the site.

Tetra Tech previously undertook groundwater and soil vapour monitoring at the site in 2019 and 2021 based on a broader program for The City's pre-1972 landfill sites. The results of that monitoring program identified indications of leachate impacts related to the former landfill operations at several monitoring wells. Based on these findings, Tetra Tech recommended conducting an additional year of groundwater monitoring to confirm the concentrations of leachate related parameters.

This report presents the results of the 2022 groundwater monitoring and sampling program at the site, which was undertaken based on the document 2022 Work Scope and Cost Estimate – Red Deer Pre-1972 Landfills, submitted to The City on October 21, 2022 (Tetra Tech 2022b).

1.1 2021 Report – Key Findings and Recommendations

The scope of work for the 2021 monitoring program was based on the proposal submitted by Tetra Tech on March 2, 2021, to The City to conduct environmental monitoring services for the pre-1972 landfill sites.

The objectives of the project outlined in the 2021 proposal were to:

- Consult with the regulator on amendments to the program, as required.
- Conduct environmental monitoring and sampling for each of the eight sites, as recommended in the 2019/2020 reports.
- Update the hazard quotients for sites with additional vapour samples in 2021, where applicable.
- Prepare an annual monitoring report for each of the eight sites.

The 2021 groundwater and vapour monitoring report (Tetra Tech 2022a) identified that there was no evidence of significant concerns related to the former landfill operations at McKenzie Trails. However, there was evidence of residual impacts by leachate and the site does contain buried landfill waste; therefore, some risk management measures were recommended to be required. Key findings of the report included the following:

- The groundwater elevations in 2022 could not be contoured as there were no clear elevation differences in the central portion of the site, while elevations at wells away from the centre may have been influenced by water level fluctuations in the nearby Red Deer River and adjacent channel sediments. However, the inferred groundwater flow direction based on historical results was overall northerly, which is consistent with the flow direction in the Red Deer River.
- Routine groundwater chemistry parameters and dissolved metals that exceeded the Tier 1 Guidelines at one
 or more monitoring wells in 2021 included total dissolved solids (TDS), sodium, ammonia, and the dissolved
 metals arsenic, iron, manganese, and selenium. The measured concentrations of one or more of these
 parameters suggested leachate has impacted the groundwater quality at MW-03, MW-04, and MW-203, each
 hydraulically down-gradient of the waste disposal area.
- Concentrations of dissolved benzene, toluene, ethylbenzene, and xylenes (BTEX) and petroleum hydrocarbon (PHC) fractions F1 to F2, were less than the analytical detection limits at most locations in 2021. MW-203 had a detectable concentration of benzene (0.00058 mg/L), marginally greater than the analytical detection limit (0.00050 mg/L). Concentrations of BTEX and PHC fractions F1 and F2 were less than the Tier 1 Guidelines at all locations.

- Concentrations of vinyl chloride were greater than the Tier 1 Guideline in the groundwater samples collected from MW-03, MW-04, and MW-203. Additionally, concentrations of 1,2-dichloroethene (cis) (cis-1,2-DCE) were detected at MW-03, MW-04, and MW-203. The concentrations of vinyl chloride and cis-1,2-DCE measured are indicators of municipal solid waste (MSW) leachate impacting the groundwater below the site. However, the concentrations of both volatile organic compounds (VOCs) have been consistent since 2019, the concentrations are considered low, and the VOC concentrations are not interpreted to impose a significant risk to the freshwater quality in the nearby Red Deer River.
- In 2021, methane was not detected at vapour well VW-01. The methane concentrations from the groundwater monitoring well headspaces were also measured and were all relatively low ranging from less than the instrument detection limit (5 parts per million [ppm]) at several wells in July and November to 190 ppm at MW-01 and MW-03 in July. For methane, 50,000 ppm, or 5% gas, is equivalent to the lower explosive limit (LEL). Additionally, methane concentrations in the on-site bathrooms were monitored, and the concentrations ranged from 10 ppm in November 2021 to 90 ppm in July 2021. The likelihood of methane accumulating in the outdoor bathrooms is low as they are open to atmospheric air along the base of the roofline.
- During the 2021 monitoring events, a site walkover was conducted to assess the thin soil cover identified in the earlier work by Tiamat Environmental Consultants Ltd. (Tiamat), to evaluate for exposed waste and/or seepage along the riverbank. No potential exposed waste and/or seepage were identified during the site walkovers in July 2021 and November 2021.

Based on these findings, recommendations in the 2021 monitoring report were as follows:

 Reduce the groundwater monitoring and sampling program to annually at the site for another year to confirm concentrations measured to date and to monitor trends. If groundwater results remain consistent, Tetra Tech proposed to reduce the monitoring events over time, as illustrated in the table below. However, if groundwater quality drastically changes, adjustments should be made to the monitoring program accordingly.

Proposed Groundwater and Vapour Monitoring Program

Activity	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
Annual Groundwater Monitoring (six wells) and Sampling (three wells)	x		х			х				х

- The groundwater monitoring and sampling program going forward should consist of water level monitoring at the six on-site monitoring wells (MW-01, MW-02, MW-03, MW-04, MW-05, and MW-203) and sampling of the three down-gradient monitoring wells (MW-03, MW-04, and MW-203) as per the proposed schedule.
- Based on the 2021 results, the risk of vapour migration was interpreted to be low and soil vapour headspace monitoring of all wells (groundwater and vapour) and on-site bathrooms was not recommended to continue.

1.2 Scope of Work

Based on the 2021 findings and recommendations, the 2022 monitoring program scope of work included the following activities:

 Conducting an annual groundwater monitoring event, including measuring groundwater levels within each monitoring well and observing monitoring well integrity.

- Conducting annual groundwater sampling of monitoring wells MW-03, MW-04, and MW-203 by:
 - Purging shallow groundwater monitoring wells and deep groundwater monitoring wells until practically dry
 or until a minimum of three well volumes had been removed and allowing the water levels in the wells to
 recover.
 - Measuring field parameters (pH, electrical conductivity [EC], and water temperature) at the time of sampling.
 - Collecting groundwater samples from each well and submitting the samples for laboratory chemical analyses.
- Conducting an annual site walkover along the riverbank to evaluate the potential for waste exposure and seepage due to bank erosion.
- Conducting monitoring well repairs, as required.
- Preparing an annual report summarizing the field activities undertaken for the year and interpreting the groundwater monitoring and analytical results and soil vapour monitoring results.

The project was completed under Tetra Tech's Limitations on the Use of this Document for conducting environment work. A copy of these conditions is provided in Appendix A.

2.0 BACKGROUND INFORMATION

2.1 General Information

The site is located within the NE and SE portions of 28-038-27 W4M, within Plan 4086EO and 3081MC. The site is zoned P1 – Parks and Recreation and is located within the McKenzie Trails Recreation Area. The site is located on the east bank of the Red Deer River, north of 67 Street and east of Riverside Drive. The Red Deer River is adjacent to the west boundary of the site and flows in a northeasterly direction. A site location plan is shown on Figure 1. The site has been redeveloped, and includes a picnic shelter, man-made pond, playground, paved walking trails, surface parking, and two year-round washroom facilities. The Phase I environmental site assessment (ESA) by Tiamat (Tiamat 2013) identified a non-potable water well as providing water for the public washroom facilities. Based on further discussions with The City, the water for the public washroom facilities is supplied by tanks, which are filled periodically by a water truck. The surrounding land use consists of Environmental Preservation District, Future Urban Development District, and Parks and Recreation District. A residential subdivision is located on the east side of the park. Natural areas of the site consist of grasses, trees, and wetlands. Figure 2 shows the site location with surrounding land use.

Additional information on the site history, historical groundwater monitoring investigations, site setting, 2019 hazard quotient calculations, and 2014 risk management plan (RMP) review can be found in Appendix B. Cross-sections that were prepared using the wells previously installed at the site in 2013 are included in Appendix C (from Tiamat 2014a). The available borehole logs for the vapour and groundwater monitoring wells are attached in Appendix F.

2.2 Conceptual Site Model Summary

The selection of comparative guidelines is based on the conceptual site model (CSM), which outlines the rationale for the selection of applicable exposure pathways and receptors at the site. This evaluation is based on guidance presented in the Alberta Tier 1 Guidelines (Alberta Environment and Protected Areas [Alberta EPA] 2022). The CSM that was developed for the site in the 2019 groundwater and soil vapour monitoring report (Tetra Tech 2020) included the following items:

- Description of identified environmental issues including a description of processes or activities undertaken at or near the site and a listing of chemicals of potential concern (COPCs) identified in earlier investigations.
- Description of known and reported historical releases, including locations and status of any subsequent ESAs and remediation.
- Identification of applicable exposure pathways and receptors.

The following table presents a summary of the relevant exposure pathways and receptors identified in the CSM.

Release Mechanism	СОРС	Migration/Exposure Pathway	Potential Receptor		
	Inorganic parameters and	Direct soil contact.	Human users of the parkland; ecological plants and soil invertebrates.		
Leachate infiltration from buried waste into foundation or	nutrients, metals, PHCs, VOCs, and other indicator parameters (i.e., biological oxygen demand [BOD] and	Groundwater ingestion (drinking water).	Domestic use aquifer (DUA) drinking water; freshwater aquatic life in the Red Deer River.		
through cover.	chemical oxygen demand [COD]).	Off-site surface migration (wind or water erosion).	Adjacent sites of more sensitive land use.		
		Nutrient and energy cycling.	Microbial functioning of the soil.		
Landfill gas (LFG) emissions from	VOCs, methane, BTEX and PHC fractions, and siloxanes.	Vapour inhalation.	Human users of the parkland.		
buried waste.	Methane.	Accumulation to explosive levels in presence of an ignition source.	Enclosed spaces.		

Summary of Conceptual Site Model

As recommended by Alberta EPA, the soil vapour results obtained during the 2019 investigation were evaluated using the Canadian Council of Minister of the Environment's (CCME's) document A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures Via Inhalation of Vapours (CCME 2014). To determine the appropriate vapour guidelines, indoor air risk calculations were undertaken and hazard quotients were calculated. Potential explosive risk was evaluated through relative comparison of the measured concentrations to the LEL for methane (5% Gas by volume).

The CSM determined that the most applicable guidelines for groundwater and vapour results for the site were as follows:

- Groundwater concentrations at the site were compared to the Alberta Tier 1 Guidelines under residential and parkland land use for coarse-grained soils (Alberta EPA 2022).
- Soil vapour analytical results were compared to A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures Via Inhalation of Vapours under residential land use for both slab-on-grade and basement for coarse-grained soils (CCME 2014).

2.3 Monitoring Well Network

The groundwater monitoring network at the site consists of six monitoring wells (MW-01 to MW-05 and MW-203). MW-03 (deep) and MW-04 (shallow) are a nested pair located in the northeast section of the site. Most of the wells are screened to the bottom of the well within the native sand and gravel. MW-05 is screened within MSW to bedrock. Monitoring well completion details are summarized in Table 1. All monitoring wells were reported to be in good condition in 2022. The vapour monitoring network consists of one vapour monitoring well (VW-01) near the southeast corner of the site. The vapour well was reported to be in good condition in 2022.

Groundwater and vapour monitoring well locations are shown on Figure 2.

3.0 MONITORING AND SAMPLING METHODOLOGY

3.1 Groundwater Monitoring and Sampling

A discussion of the methods used for the fieldwork and laboratory testing is presented in the following sections. In 2022, Tetra Tech conducted groundwater monitoring on December 6, 2022. Groundwater sampling was conducted on December 8, 2022.

3.1.1 Groundwater Monitoring and Sampling Methodology

Monitoring at the groundwater monitoring wells (51 mm diameter) consisted of measuring static groundwater levels in each monitoring well annually (December).

The methodology for monitoring and sampling at the groundwater monitoring wells included the following:

- Observing the integrity of each well and noting drainage and site conditions near the well that may have an effect on monitoring results or groundwater quality.
- Measuring liquid levels in each monitoring well with an interface probe and recording total depths confirming absence of non-aqueous phase liquids (NAPL).
- Recording of field data on standardized forms as documented in Tetra Tech standard operating practices.
- Purging each monitoring well requiring sampling using dedicated polyethylene bailers or Waterra tubing with inertial pump foot valves of at least three well volumes of water, or until the well was practically dry.

Following the completion of groundwater monitoring and purging, groundwater samples were collected from the required wells using the procedures identified below:

- Groundwater samples were collected from three monitoring wells (MW-03, MW-04, and MW-203). Samples
 were collected and placed into appropriate laboratory supplied, sterile glass and plastic vials and bottles for the
 required analytical package. Samples were filtered and/or preserved in the field, as required.
- Field measurements were taken for pH, EC, and temperature at the time of sampling.
- Samples were submitted in coolers with ice to ALS Laboratory Group (ALS) in Calgary, Alberta for laboratory analysis under a chain-of-custody (COC) documentation.

3.1.2 Groundwater Sampling Analytical Program

The analytical program for the groundwater monitoring wells was developed based on the recommendations in Section 1.1 and is summarized below:

- Routine water chemistry.
- Dissolved metals.
- VOCs.

4.0 RESULTS AND DISCUSSION

This section presents the results of the fieldwork conducted in 2022 at the site and discussions of these results.

4.1 Site Walkover

During the December 2022 monitoring event, a site walkover was conducted to assess the thin soil cover identified in the earlier work by Tiamat, to evaluate for exposed waste and/or seepage along the riverbank. No potential exposed waste and/or seepage was identified during the site walkover in December; however, the site was snow covered during the walkover. An additional site walkover was conducted in May 2023 to conduct a site walkover when the ground and riverbank were visible. No potential exposed waste and/or seepage was identified in May 2023.

4.2 Groundwater Elevations

The measured groundwater levels and calculated groundwater elevations for 2022 are presented in Table 1.

Figure 3 presents the groundwater elevation trends (hydrographs) for the groundwater monitoring wells. This figure shows the groundwater elevations in 2013, 2019, 2021, and 2022. Overall, groundwater elevations increased at most monitoring wells from those measured in 2021, with the exception of MW-03 and MW-05.

In December 2022, the average depth to groundwater in the monitoring wells was 2.49 m below grade (mbg). The groundwater elevations for December 2022 are shown on Figure 4. The groundwater elevations in 2022 indicated that the inferred groundwater flow direction was to the north-northeast, following the flow direction of the Red Deer River. The horizontal hydraulic gradient was relatively flat across a majority of the site (0.001 m/m), steepening at the north end (0.006 m/m) resulting in an average of 0.004 m/m, which is consistent with previous findings. The nested wells MW-03 and MW-04 demonstrate a modest upward hydraulic gradient.

4.3 Groundwater Field Parameters

Field measurements for temperature, pH, and EC in December 2022 are shown in Table 2. A discussion of the results of the field tests is summarized in this section.

In 2022, groundwater temperatures ranged from 5.69°C (MW-203) to 6.68°C (MW-04).

In 2022, field pH values ranged from 7.08 (MW-04) to 7.33 (MW-03). The field pH measurements were generally less than the laboratory pH at all monitoring wells. The difference between field recorded and laboratory pH values may be due to limitations of the field equipment and differences in sample temperature.

In 2022, field EC measurements ranged from 876 µS/cm (MW-203) to 1,130 µS/cm (MW-03). The field EC measurements were less than the laboratory measured EC results, which may also be due to limitations of field equipment or temperature differences.

4.4 Groundwater Analytical Results

The groundwater analytical data for 2022 is summarized in Table 2. The 2022 laboratory analytical reports are included in Appendix D. Historical data from the 2013 Phase II ESA are included in Appendix E.

4.4.1 Background Groundwater Quality

Monitoring wells MW-01 and MW-02 are hydraulically up-gradient of the site and may represent background groundwater quality. MW-01 and MW-02 were not sampled in 2022. The 2019 results at MW-01 and MW-02 suggest that both up-gradient wells had low concentrations of chloride (17.0 mg/L and 7.67 mg/L, respectively), MW-01 had guideline exceedances of dissolved arsenic, dissolved iron, and dissolved manganese and MW-02 contained concentrations of dissolved copper and dissolved manganese greater than the Tier 1 Guidelines. Concentrations of BTEX, PHC fractions F1 and F2, and VOCs were less than the analytical detection limits at MW-01 and MW-02 in 2019.

4.4.2 Routine Water Chemistry Parameters

In 2022, TDS concentrations ranged from 858 mg/L (MW-203) to 1.080 mg/L (MW-03). TDS concentrations at monitoring wells MW-03, MW-04, and MW-203 were greater than the Tier 1 Guidelines (500 mg/L) in 2022. TDS concentrations measured in 2022 were consistent with the results from 2019. Elevated TDS concentrations often occur in groundwater as a result of the dissolution of naturally occurring salts and minerals, and do not necessarily indicate groundwater quality impact related to the former landfill. Monitoring wells MW-03, MW-04, and MW-203 exhibited elevated concentrations of hardness (calcium and magnesium combined) and alkalinity with respect to the other site wells in 2019 and reported similar concentrations in 2022. Elevated concentrations of hardness and alkalinity are often observed when the groundwater quality is affected by leachate.

In 2022, concentrations of chloride at the site ranged from 22.9 mg/L at MW-203 to 41.4 mg/L at MW-03. The concentrations at all wells were less than the Tier 1 Guidelines (120 mg/L). Concentrations of chloride in 2022 were consistent with concentrations measured in 2013, 2019, and 2021.

In 2022, sodium concentrations decreased at monitoring wells MW-03 and MW-04 and increased at MW-203. The highest sodium concentration measured on site is at monitoring well MW-03. In 2021, the sodium concentration at MW-03 (207 mg/L) increased to marginally above the Tier 1 Guideline (200 mg/L), in 2022 the sodium concentration at MW-03 (190 mg/L) decreased below the guideline. The elevated sodium concentration at MW-03 may be from variations in natural salinity of the deeper groundwater and is not interpreted to be indicative of site impacts.

Ammonia concentrations at several monitoring wells adjacent to the former waste footprint have been elevated relative to monitoring wells outside the waste (e.g., MW-01 and MW-02), and often near or greater than the referenced guideline values. In 2022, monitoring wells MW-04 and MW-203 exceeded the guideline value derived in accordance with the Environmental Quality Guidelines for Alberta Surface Waters. The calculated guideline values for MW-04 was 8.50 mg-N/L and MW-203 was 9.21 mg-N/L (Government of Alberta 2018), while the measured concentrations were 11.0 mg-N/L and 14.1 mg-N/L, respectively. Groundwater near MW-203 and MW-04 is expected to ultimately discharge into the Red Deer River, as the monitoring wells are located approximately 30 m and 90 m from the river, respectively. Based on the measured concentration and the expected dilution effect when groundwater discharges, the environmental risk is considered low. The ammonia concentrations at all wells were consistent with historically measured values. Concentrations of nitrate and nitrite were less than the analytical

detection limits at most monitoring wells, except for nitrate at MW-03 (0.152 mg-N/L), which was less than the Tier 1 Guideline.

4.4.3 Dissolved Metals

Iron and manganese are redox-sensitive parameters that also naturally occur in groundwater under anaerobic conditions and can help determine whether the groundwater quality is affected by biodegradation reactions, for instance related to landfill leachate. The dissolved manganese and iron concentrations were greater than the Tier 1 Guidelines at most monitoring wells during the sampling event in 2022, with the exception of dissolved iron at MW-03.

In 2022, the concentration of dissolved selenium at MW-203 (0.00360 mg/L) was greater than the Tier 1 Guideline (0.002 mg/L). Dissolved selenium previously exceeded the Tier 1 Guideline for selenium at MW-203 in November 2021 (0.00254 mg/L). The selenium exceedance at MW-203 in 2022 is marginal, may be natural occurring, and is not considered to be of concern.

4.4.4 Organic Parameters

Concentrations of BTEX and PHC fractions F1 to F2, were less than the analytical detection limits at most locations in 2022. MW-203 had a detectable concentration of benzene in 2022 (0.00079 mg/L), marginally greater than the analytical detection limit (0.00050 mg/L). The concentration was less than the Tier 1 Guideline (0.005 mg/L) and similar to the concentration measured in 2019 and 2021.

In 2022, VOC concentrations were less than the analytical detection limits for most parameters, except for cis-1,2-dichloroethene (cis-1,2-DCE) and vinyl chloride at MW-03, MW-04, and MW-203. A Tier 1 Guideline value has not been established for cis-1,2-DCE. Vinyl chloride exceeded the Tier 1 Guideline at MW-03 (0.0016 mg/L), MW-04 (0.0037 mg/L), and MW-203 (0.0062 mg/L); however, the concentrations were within the same order of magnitude as the guideline (0.0011 mg/L). It should be noted that the Tier 1 Guideline for vinyl chloride is based off human vapour inhalation and there is currently no guideline pertaining to freshwater aquatic life. The VOC concentrations measured in 2022 are consistent with the concentrations measured in 2019 and 2021.

Cis-1,2-DCE is a known breakdown product of dry-cleaning liquids (i.e., tetrachloroethene [PCE] or trichloroethene [TCE]). It typically further degrades to form vinyl chloride. PCE or TCE were not detected in 2019, 2021, or 2022; however, in 2013, a PCE concentration of 0.0033 mg/L was measured at MW-05. MW-05 also contained a trace concentration (0.0007 mg/L) of vinyl chloride in 2013. As stated in Section 2.3, the well is completed within an area with MSW and was not sampled in either 2019, 2021, or 2022.

The measured concentrations of vinyl chloride and cis-1,2-DCE are indicators of MSW leachate impacting the groundwater hydraulically down-gradient from the site. Although both VOCs have consistently been detected since 2019, the concentrations are relatively low. Vinyl chloride and cis-1,2-DCE exhibit distinctly different properties. Vinyl chloride is gaseous substance with a boiling point of -13.4°C and a relatively low water solubility. Although there is evidence of carcinogenicity of vinyl chloride, owing to its high volatility, vinyl chloride has rarely been detected in surface water (World Health Organization [WHO] 2004). There is limited information on the toxicity of cis-1,2-DCE; however, the data suggest the compound has less toxicological concerns than vinyl chloride (WHO 2003). Cis-1,2-DCE is a dense liquid and when released to surface water, volatilization is expected to be the primary fate process, with a published estimated half-life of less than one day (Agency for Toxic Substances and Disease Registry [ATSDR] 1996). Based on the measured concentrations, and the published information on the properties and environmental fate of both VOCs, they are not interpreted to present a significant risk to the freshwater quality in the nearby Red Deer River.

4.5 Quality Assurance/Quality Control

4.5.1 Methods

Tetra Tech's groundwater quality assurance/quality control (QA/QC) procedures include reviewing the data collected for precision and accuracy and following the appropriate field protocols.

The field procedures for QA/QC involved:

- Changing nitrile gloves between sample collections;
- Using sample containers provided by the laboratory;
- Cleaning monitoring and sampling tools between sample locations;
- Filling sample containers for PHC analysis with no headspace (air) when the containers were closed;
- Conducting leak testing at vapour wells prior to the collection of vapour samples;
- Collecting a duplicate vapour sample during the vapour sampling event; and
- Documenting field procedures and sampling activities.

4.5.2 Results

The QA/QC results are included in Table 3. In December 2022, a duplicate sample taken at monitoring well MW-03 was submitted for analysis of the same parameters as the original sample.

The duplicate analysis is compared by relative percent difference (RPD). The RPD is calculated using the following equation:

$$\text{RPD} = \frac{(V_1 - V_2)}{(V_1 + V_2)} * 100\%$$

Where:

V₁ = Parent Sample

V₂ = Duplicate Sample

Chemical parameters were considered as having passed the QA/QC reproducibility procedure if the RPD was less than or equal to 20%, indicating a close correlation between the sample-duplicate pair.

RPD values were not calculated if one or both of the sample-duplicate concentrations were between the reportable detection limit (RDL) and five times the RDL. In these cases, chemical parameters were still considered as having passed the QA/QC reproducibility procedure if the sample duplicate concentration difference was less than one RDL value.

Duplicate RPDs were less than 20% for all the reportable concentrations. Based on the QA/QC results, the sample methods and results are considered acceptable.

5.0 EVALUATION OF SITE CONDITIONS

Based on the 2022 and historical data for the site, there is no evidence that there are significant concerns related to the former landfill operations at McKenzie Trails. However, there is evidence of residual impacts by leachate and the site does contain buried landfill waste; therefore, some risk management measures are required. Further, there are several elements of the site assessment data requiring further monitoring as detailed below.

The groundwater quality appears to be affected by leachate at several monitoring wells. Most obvious are elevated ammonia concentrations at MW-03, MW-04, and MW-203. Chloride and boron, which are often elevated in MSW leachate, did not exceed the referenced guidelines at the monitoring wells that were sampled. Two chlorinated VOCs were detected in 2022 at the down-gradient monitoring wells. One VOC compound (vinyl chloride) exceeded the referenced Tier 1 Guidelines at MW-03, MW-04, and MW-203.

The site only contains one vapour well (VW-01), which is located between the waste footprint and the building to the southeast. Methane concentrations were measured in 2019 and 2021 from VW-01 and headspace monitoring at the on-site monitoring wells. The methane concentrations measured were determined to not be of concern as methane was measured below the instrument's detection limit (0.0% Gas) at VW-01 from 2019 to 2021 and a maximum headspace concentration of 190 ppm (equivalent to 0.02% Gas) was measured at the monitoring wells (July 2021). Subsequently, headspace vapour measurements at VW-01 and the groundwater wells were removed from the 2022 annual monitoring program.

During the December 2022 monitoring event, a site walkover was conducted to assess the thin soil cover identified in the earlier work by Tiamat, to evaluate for exposed waste and/or seepage along the riverbank. No potential exposed waste and/or seepage was identified during the site walkover in December; however, the site was snow covered during the walkover. An additional site walkover was conducted in May 2023 to conduct a site walkover when the ground and riverbank were visible. No potential exposed waste and/or seepage was identified in May 2023.

The proximity of the Red Deer River warrants the groundwater flow pattern and trends in groundwater quality to continue to be monitored as outlined in Section 6.0 below.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Based upon the results of the groundwater and soil vapour monitoring and sampling conducted in 2022 and previous years, Tetra Tech has developed the following conclusions:

- The groundwater elevations in 2022 indicated that the inferred groundwater flow direction was to the north-northeast, following the flow direction of the Red Deer River. The average horizontal hydraulic gradient at the site in December 2022 was approximately 0.004 m/m, which is consistent with previous findings.
- Routine groundwater chemistry parameters and dissolved metals that exceeded the Tier 1 Guidelines at one
 or more monitoring wells in 2022 included TDS, ammonia, and the dissolved metals iron, manganese, and
 selenium. The measured concentrations of one or more of these parameters suggest leachate has impacted
 the groundwater quality at MW-03, MW-04, and MW-203, each hydraulically down-gradient of the waste
 disposal area.

- In 2022, monitoring wells MW-04 and MW-203 contained ammonia that exceeded the guideline value derived in accordance with the Environmental Quality Guidelines for Alberta Surface Waters. The calculated guideline value for MW-04 was 8.50 mg-N/L and for MW-203 was 9.21 mg-N/L (Government of Alberta 2018), while the measured concentrations were 11.0 mg-N/L and 14.1 mg-N/L, respectively. Groundwater near MW-203 and MW-04 is expected to ultimately discharge into the Red Deer River, as the monitoring wells are located approximately 30 m and 90 m from the river, respectively. Based on the measured concentrations and the expected dilution effect when groundwater discharges, the environmental risk is considered low.
- Concentrations of BTEX and PHC fractions F1 to F2, were less than the analytical detection limits at most locations in 2022. MW-203 had a detectable concentration of benzene (0.00079 mg/L), marginally greater than the analytical detection limit (0.00050 mg/L). Concentrations of BTEX and PHC fractions F1 and F2 were less than the Tier 1 Guidelines at all locations.
- Concentrations of vinyl chloride were greater than the Tier 1 Guideline in the groundwater samples collected from MW-03, MW-04, and MW-203. Additionally, concentrations of cis-1,2-DCE were detected at MW-03, MW-04, and MW-203. The concentrations of vinyl chloride and cis-1,2-DCE measured are indicators of MSW leachate impacting the groundwater below the site. However, the concentrations of both VOCs have been consistent since 2019, the concentrations are considered low, and the VOC concentrations are not interpreted to impose a significant risk to the freshwater quality in the nearby Red Deer River.
- During the December 2022 monitoring event and in May 2023, a site walkover was conducted to assess the thin soil cover identified in the earlier work by Tiamat Environmental Consultants Ltd., to evaluate for exposed wastes and/or seepage along the riverbank. No potential exposed wastes and/or seepage was identified during the site walkover in December 2022 or May 2023. Future site walkovers should be conducted in the Spring/Summer to ensure the site is not snow covered.

Based upon the results of the groundwater monitoring program in 2022 and previous years, there are residual impacts in the groundwater and buried waste remains beneath the site; therefore, ongoing risk management is required including ongoing monitoring and administrative actions. The following recommendations are made according to these risk management elements:

- Ongoing Monitoring:
 - The groundwater results in 2022 remained consistent with previous results from 2019 and 2021. Consequently, Tetra Tech recommends following the table below that was originally proposed in the 2021 Groundwater and Soil Vapour Monitoring Report (Tetra Tech 2022a) and conducting the next annual groundwater monitoring and sampling event in 2024. The proposed frequency should be re-evaluated at the time of each event based on ongoing results evaluation.
 - It is recommended that the annual site walkover take place during the Spring/Summer to adequately assess the soil cover and the riverbank.

Activity	2023	2024	2025	2026	2027	2028	2029	2030	2031
Annual Groundwater Monitoring (six wells; MW-01, MW-02, MW-03, MW-04, MW-05, and MW-203)		х			х				х
Annual Groundwater Sampling (three wells; MW-03, MW-04, and MW-203)		Х			Х				Х
Annual Site Walkover in Spring/Summer		х			х				х

Proposed Groundwater Monitoring Program

- Administrative Actions:
 - Utilize the revised generic mitigative measures (when evaluating applications for development within the setback).
 - Ensure that the site is clearly identified within The City's Land Use Bylaw and appropriate administrative requirements are met for the site in accordance with City policies.

Further to the above recommendations, as noted the site remains an historical landfill. It presently appears to be well maintained and capped. The City should review this status on an ongoing basis to ensure that the cover remains intact and drainage remains positive; repairs or maintenance should be undertaken as required to maintain the site.

7.0 CLOSURE

We trust this report meets your present requirements. If you have any questions or comments, please contact Frans Hettinga at our Calgary office.

Respectfully submitted, Tetra Tech Canada Inc.

Prepared by: Ryan Miller, B.Sc. Project Scientist Solid Waste Management Practice Direct Line: 403.998.4609 Ryan.Miller@tetratech.com

Reviewed by: Frans Hettinga, B.Sc. Principal Specialist Solid Waste Management Practice Direct Line: 403.723.6860 Frans.Hettinga@tetratech.com

PERMIT TO PRACTICE TETRA TECH CANADA INC.

RM SIGNATURE:

RM APEGA ID #: _____

PERMIT NUMBER: P013774 The Association of Professional Engineers and Geoscientists of Alberta (APEGA)

FILE: 704-SWM.SWOP04071-03.003 FILE: 704-SWM.SWOP04071-03.003 FILE: 704-SWM.SWOP04071-03.003

Reviewed by: Sean Buckles, M.Sc., P.Eng. Senior Project Engineer – Team Lead Solid Waste Management Practice Direct Line: 403.723.6876 Sean.Buckles@tetratech.com

/as

REFERENCES

Agency for Toxic Substances and Disease Registry. 1996. Toxicology Profile for 1,2-dichloroethene. Atlanta, GA.

- Alberta Environment and Parks. 2022. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Government of Alberta. August 26, 2022. ISBN 978-1-4601-5501-1.
- Canadian Council of Ministers of the Environment. 2014. A Protocol for the Derivation of Soil Vapour Quality Guidelines for Exposure Protection of Human Exposures via Inhalation of Vapours. Available online: http://ceqg-rcqe.ccme.ca/en/index.html#void.
- Government of Alberta. 2018. Environmental Quality Guidelines for Alberta Surface Waters. Water Policy Branch, Alberta Environment and Parks. Edmonton, Alberta.
- Tetra Tech Canada Inc. 2020. 2019 Groundwater and Soil Vapour Monitoring Report McKenzie Trails Recreation Area. Prepared for The City of Red Deer. October 2020. Project Number: 704-SWM.SWOP04071-01.003.
- Tetra Tech Canada Inc. 2021. 2021 Work Scope and Cost Estimate. Prepared for The City of Red Deer. March 2021. Project Number: 704-SWM.SWOP04071-01.
- Tetra Tech Canada Inc. 2022a. 2021 Groundwater and Soil Vapour Monitoring Report McKenzie Trails Recreation Area. Prepared for The City of Red Deer. June 2022. Project Number: 704-SWM.SWOP04071-02.003.
- Tetra Tech Canada Inc. 2022b. 2022 Work Scope and Cost Estimate. Prepared for The City of Red Deer. October 2022. Project Number: 704-SWM.SWOP04071-02.
- Tiamat Environmental Consultants Ltd. 2013. Phase I Environmental Site Assessment, Historic Waste Disposal Site, McKenzie Trails Recreation Area, The City of Red Deer. September 24, 2013.
- Tiamat Environmental Consultants Ltd. 2014a. Phase II Environmental Site Assessment, Historic Waste Disposal Site, McKenzie Trails Recreation Area, The City of Red Deer. February 12, 2014.
- Tiamat Environmental Consultants Ltd. 2014b. Environmental Risk Management Plan, Historic Waste Disposal Sites, McKenzie Trails Recreation Area, The City of Red Deer. November 26, 2014.
- World Health Organization. 2003. 1,2-dichloroethene in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality. https://www.who.int/water_sanitation_health/waterquality/guidelines/chemicals/1-2-dichloroethene-background.pdf [accessed March 14, 2021].
- World Health Organization. 2004. Vinyl Chloride in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality. https://www.who.int/water_sanitation_health/dwq/chemicals/ vinylchloride.pdf [accessed March 14, 2021].

TABLES

- Table 1
 Monitoring Results Groundwater Wells
- Table 2 Groundwater Analytical Results
- Table 3
 Groundwater Quality Assurance/Quality Control Analytical Results

Monitoring Well		MW-01	MW-02	MW-03	MW-04	MW-05	MW-203
Total Drilled Depth (m)		5.5	10.6	9.1	3.8	6.1	5.3
Top of Screened Interval (mbg)		0.9	6.9	-	-	3.1	-
Bottom of Screened Interval (mbg)		5.5	10.6	9.1	3.8	6.1	4.8
Stick up (m)		0.79	0.92	0.87	0.77	0.86	0.51
Ground Elevation (m)		848.29	849.75	847.47	847.48	849.38	848.61
TPC Elevation (m)		849.09	850.67	848.34	848.25	850.24	849.17
	Aug-13	1.71	3.10	1.56	1.55	3.69	4.12
	May-19	2.59	4.18	2.55	2.46	4.10	3.46
	Jun-19	2.63	4.01	2.40	2.29	4.11	2.96
Depth to Groundwater (mBTPC)	Sep-19	2.89	4.27	2.72	2.67	4.12	3.52
Depth to Groundwater (INBTPC)	Dec-19	2.75	3.35	2.50	2.38	4.12	2.52
	Jul-21	2.78	4.12	2.58	2.17	3.74	3.38
	Nov-21	3.15	4.38	2.59	2.51	3.78	3.70
	Dec-22	2.90	4.14	2.65	2.73	3.91	3.34
	Aug-13	847.38	847.57	846.78	846.70	846.55	845.05
	May-19	846.50	846.49	845.79	845.79	846.15	845.72
	Jun-19	846.46	846.66	845.94	845.96	846.14	846.22
Groundwater Elevation (m)	Sep-19	846.19	846.40	845.62	845.58	846.13	845.65
Groundwater Elevation (III)	Dec-19	846.34	847.32	845.84	845.87	846.12	846.65
	Jul-21	846.31	846.55	845.76	845.76	846.50	845.79
	Nov-21	845.93	846.29	845.75	845.33	846.46	845.47
	Dec-22	846.19	846.53	845.69	845.52	846.33	845.83
Valatila Onnania Oanna ann dat	May-19	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds* (VOCs)	Jun-19	ND	ND	ND	ND	ND	ND
(ppm)	Sep-19	ND	ND	ND	ND	ND	ND
(ppin)	Dec-19	ND	1	1	1	1	1
Combustible Vancur	May-19	ND	ND	ND	ND	ND	ND
Combustible Vapour Concentrations* (CVCs)	Jun-19	ND	ND	ND	ND	ND	ND
(ppm)	Sep-19	35	15	ND	ND	170	100
	Dec-19	ND	20	ND	ND	5	20
Methane Concentrations** (ppm)	Jul-21	190	15	190	ND	45	ND
	Nov-21	5	10	ND	ND	50	ND

Table 1: Monitoring Results - Groundwater Wells

Notes:

mbg - Metres below grade.

 mBTPC - Metres below top of plastic pipe casing.

ppm - Parts per million.

ND - Non-detect.

- Unavailable.

*- Measured using an RKI Eagle II calibrated to hexane (CVCs) and isobutylene (VOCs) and operated in methane elimination mode.

**- Measured using an RKI Eagle II calibrated to methane.

Table 2: Groundwater Analytical Results

Table 2: Groundwater Analyti			MW-01	MW-02	N	/W-03 (Deep We	ell)		MW-04			MW-203	
Parameter	Unit	Tier 1 Guideline ^{1,2}	4-Dec-2019	4-Dec-2019		· · ·		4-Dec-2019	21-Nov-2021	08-Dec-2022	5-Dec-2019	21-Nov-2021	08-Dec-2022
Field													
Field Temperature	°C	-	2.90	5.42	2.64	7.88	5.98	2.67	6.63	6.68	1.15	5.72	5.69
Field Electric Conductivity	µS/cm	-	434	381	1,017	1,564	1,130	973	1,521	1,043	510	1,062	876
Field pH	pH Units	6.5 to 8.5	8.53	7.98	7.48	7.22	7.33	7.25	7.04	7.08	7.64	6.76	7.11
Routine						·		· I					
pН	pH Units	6.5 to 8.5	8.13	8.22	7.77	7.85	7.77	7.53	7.71	7.62	8.03	7.79	7.71
Electrical Conductivity (EC)	μS/cm	-	617	559	1,680	1,690	1,660	1,660	1,700	1,610	1,030	1,410	1,350
Total Dissolved Solids (TDS)	mg/L	500	378	333	1,090	1,100	1,080	1,010	1,080	1,040	633	803	858
Hardness as CaCO ₃	mg/L	-	289	269	646	537	544	664	714	668	437	421	529
Alkalinity (total as CaCO ₃)	mg/L	-	337	255	934	937	934	872	939	920	510	743	735
Bicarbonate	mg/L	-	411	311	1,140	1,140	1,140	1,060	1,140	1,120	622	906	896
Carbonate	mg/L	-	<5.0	<5.0	<5.0	<1.0	<1.0	<5.0	<1.0	<1.0	<5.0	<1.0	<1.0
Hydroxide	mg/L	-	<5.0	<5.0	<5.0	<1.0	<1.0	<5.0	<1.0	<1.0	<5.0	<1.0	<1.0
Calcium	mg/L	-	71.7	72.2	168	144	134	168	185	162	119	110	130
Magnesium	mg/L	-	26.8	21.6	55.0	43.0	50.8	59.3	61.1	64.0	33.9	35.5	49.7
Potassium	mg/L	-	4.27	2.70	9.68	8.04	8.49	20.7	18.9	19.3	13.8	13.0	13.7
Sodium	mg/L	200	40.1	16.4	174	207	190	96.6	113	110	47.1	64.8	80.2
Chloride	mg/L	120	17.0	7.67	49.6	43.2	41.4	42.9	29.4	28.1	19.5	24.0	22.9
Fluoride	mg/L	1.5	0.094	0.086	<0.10	<0.100	0.157	<0.10	<0.100	0.233	<0.10	<0.100	0.218
Phosphorus - Total	mg/L	-	0.412	0.0202	0.273	-	-	0.568	-	-	0.35	-	-
Sulphate	mg/L	429 ³	16.0	59.6	69.5	64.4	69.6	94.7	71.4	64.8	93.2	78.3	85.3
Anions Total (Filtered)	meq/L	-	-	-	-	21.3	21.3	-	21.1	20.5	-	17.2	17.1
Cations Total (Filtered)	meq/L	-	-	-	-	20.4	19.8	-	20.7	19.6	-	12.5	15.5
Ionic Balance	N/A	-	102	94.0	98.6	104.4	93.0	91.1	102	95.6	95.2	138	90.6
Nutrients					-			ļļ					
Ammonia as N	mg/L	0.309 to 15.73 ⁶	0.477	<0.050	7.00	5.51	5.57	10.4	11.2	11.0	13.3	12.9	14.1
Nitrate (as NO ₃ -N)	mg/L	3	<0.020	< 0.020	<0.10	<0.100	0.152	0.17	0.301	<0.100	<0.10	0.121	<0.100
Nitrite (as NO ₂ -N)	mg/L	0.08 to 0.20 ⁴	< 0.010	< 0.010	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Nitrate and Nitrite (as N)	mg/L	-	<0.022	< 0.022	<0.11	-	0.152	0.17	-	<0.112	<0.11	-	<0.112
Total Kjeldahl Nitrogen (TKN)	mg/L	-	1.29	0.23	8.2	-		13.3	-		15	-	
Carbon						· I	I						
Dissolved Organic Carbon (DOC)	mg/L	-	5.4	4.6	11.4			20.7	-	-	9.5	-	-
Dissolved Metals			0.1				I	2011			0.0		
Aluminum	mg/L	0.050 5	0.0033	0.0074	<0.0050	0.0069	0.0036	0.0348	<0.0050	0.0036	0.0035	0.0080	0.0060
Antimony	mg/L	0.006	0.00014	0.00013	<0.00050	<0.00050	<0.00010	<0.00050	<0.00050	0.00012	<0.00010	<0.00050	<0.00010
Arsenic	mg/L	0.005	0.00828	0.00029	0.00137	0.00158	0.00130	0.00440	0.00618	0.00398	0.00796	0.00209	0.00396
Barium	mg/L	2	0.421	0.152	0.309	0.371	0.360	0.253	0.278	0.277	0.188	0.211	0.243
Beryllium	mg/L	-	-	-	-	<0.000100	-	-	<0.000100	-	-	<0.000100	-
Bismuth	mg/L	-	-	-	-	< 0.000250	-	-	<0.000250	-	-	<0.000250	_
Boron	mg/L	1.5	0.004		1				0.000200				
Cadmium	mg/L		1 00/4	0.016	0 875	0.907	0 791	0.977	1 47	1 06	0 494	0.617	0.534
Chromium		0 00036 to 0 00037 ³	0.024	0.016	0.875	0.907	0.791	0.977	1.47	1.06	0.494	0.617	0.534
	-	0.00036 to 0.00037 ³	<0.000050	0.000148	<0.000025	0.0000286	0.0000830	0.0000830	0.000120	0.0000098	0.0000408	<0.0000250	<0.0000050
Cobalt	mg/L	0.05				0.0000286 <0.00250			0.000120 <0.00250			<0.000250 <0.00250	
Cobalt Copper	mg/L mg/L	0.05	<0.000050 <0.00010 -	0.000148 <0.00010 -	<0.000025 <0.00050 -	0.0000286 <0.00250 0.00225	0.0000830 <0.00050 -	0.0000830 <0.00050 -	0.000120 <0.00250 0.00444	0.0000098 <0.00050 -	0.0000408 0.00015 -	<0.0000250 <0.00250 <0.00050	<0.000050 <0.00050 -
Copper	mg/L mg/L mg/L	0.05 - 0.007	<0.000050 <0.00010 - <0.00020	0.000148 <0.00010 - 0.00719	<0.000025 <0.00050 - 0.0052	0.0000286 <0.00250 0.00225 <0.00100	0.0000830 <0.00050 - 0.00051	0.0000830 <0.00050 - <0.0010	0.000120 <0.00250 0.00444 <0.00100	0.0000098 <0.00050 - 0.00134	0.0000408 0.00015 - <0.00020	<0.0000250 <0.00250 <0.00050 <0.00100	<0.000050 <0.00050 - <0.00020
Copper Iron	mg/L mg/L mg/L mg/L	0.05 - 0.007 0.3	<0.0000050 <0.00010 - <0.00020 3.09	0.000148 <0.00010 - 0.00719 0.041	<0.000025 <0.00050 - 0.0052 0.123	0.0000286 <0.00250 0.00225 <0.00100 0.534	0.0000830 <0.00050 - 0.00051 0.029	0.0000830 <0.00050 - <0.0010 3.85	0.000120 <0.00250 0.00444 <0.00100 5.34	0.0000098 <0.00050 - 0.00134 3.70	0.0000408 0.00015 - <0.00020 2.23	<0.0000250 <0.00250 <0.00050 <0.00100 0.680	<0.000050 <0.00050 - <0.00020 0.753
Copper Iron Lead	mg/L mg/L mg/L mg/L mg/L	0.05 - 0.007 0.3 0.0070 ³	<0.000050 <0.00010 - <0.00020 3.09 <0.000050	0.000148 <0.00010 - 0.00719 0.041 0.000219	<0.000025 <0.00050 - 0.0052 0.123 <0.00025	0.0000286 <0.00250 0.00225 <0.00100 0.534 <0.000250	0.0000830 <0.00050 - 0.00051 0.029 <0.000050	0.0000830 <0.00050 - <0.0010 3.85 <0.00025	0.000120 <0.00250 0.00444 <0.00100 5.34 <0.000250	0.0000098 <0.00050 - 0.00134 3.70 <0.000050	0.0000408 0.00015 - <0.00020 2.23 <0.000050	<0.0000250 <0.00250 <0.00050 <0.00100 0.680 <0.000250	<0.000050 <0.00050 - <0.00020
Copper Iron Lead Lithium	mg/L mg/L mg/L mg/L mg/L mg/L	0.05 - 0.007 0.3 0.0070 ³ -	<0.0000050 <0.00010 - <0.00020 3.09 <0.000050 -	0.000148 <0.00010 - 0.00719 0.041 0.000219 -	<0.000025 <0.00050 - 0.0052 0.123 <0.00025 -	0.0000286 <0.00250 <0.00100 0.534 <0.000250 0.0499	0.0000830 <0.00050 - 0.00051 0.029 <0.000050 -	0.0000830 <0.00050 - <0.0010 3.85 <0.00025 -	0.000120 <0.00250 0.00444 <0.00100 5.34 <0.000250 0.0304	0.000098 <0.00050 - 0.00134 3.70 <0.000050 -	0.0000408 0.00015 - <0.00020 2.23 <0.000050 -	<0.000250 <0.00250 <0.00050 <0.00100 0.680 <0.000250 0.0169	<0.0000050 <0.00050 - <0.00020 0.753 <0.000050
Copper Iron Lead Lithium Manganese	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.05 - 0.007 0.3 0.0070 ³ - 0.02	<0.0000050 <0.00010 - <0.00020 3.09 <0.000050 - 0.861	0.000148 <0.00010 - 0.00719 0.041 0.000219 - 0.0843	<0.000025 <0.00050 - 0.0052 0.123 <0.00025 - 1.02	0.0000286 <0.00250 0.00225 <0.00100 0.534 <0.000250 0.0499 0.780	0.0000830 <0.00050 - 0.029 <0.000050 - 0.796	0.0000830 <0.00050 - <0.0010 3.85 <0.00025 - - 1.16	0.000120 <0.00250 0.00444 <0.00100 5.34 <0.000250 0.0304 1.16	0.000098 <0.00050 - 0.00134 3.70 <0.000050 - 1.06	0.0000408 0.00015 - <0.00020 2.23 <0.000050 - 0.303	<0.000250 <0.00250 <0.00050 <0.00100 0.680 <0.000250 0.0169 0.297	<0.0000050 <0.00050 - <0.00020 0.753 <0.000050 - 0.358
Copper Iron Lead Lithium Manganese Mercury	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.05 - 0.007 0.3 0.0070 ³ -	<0.0000050 <0.00010 - <0.00020 3.09 <0.000050 - 0.861 <0.000050	0.000148 <0.00010 - 0.041 0.000219 - 0.0843 <0.000050	<0.000025 <0.00050 - 0.123 <0.00025 - 1.02 <0.000050	0.0000286 <0.00250 0.00225 <0.00100 0.534 <0.000250 0.0499 0.780 <0.000050	0.0000830 <0.00050 - 0.029 <0.000050 - 0.796 <0.000050	0.0000830 <0.00050 - <0.0010 3.85 <0.00025 - 1.16 <0.000050	0.000120 <0.00250 0.00444 <0.00100 5.34 <0.000250 0.0304 1.16 <0.000050	0.000098 <0.00050 - 0.00134 3.70 <0.000050 - 1.06 <0.000050	0.0000408 0.00015 - <0.00020 2.23 <0.000050 - 0.303 <0.000050	<0.000250 <0.00250 <0.00050 <0.00100 0.680 <0.000250 0.0169 0.297 <0.000050	<0.0000050 <0.00050 - <0.00020 0.753 <0.000050
Copper Iron Lead Lithium Manganese Mercury Molybdenum	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.05 - 0.007 0.3 0.0070 ³ - 0.02 0.000005 -	<0.0000050 <0.00010 - <0.00020 3.09 <0.000050 - 0.861 <0.000050 -	0.000148 <0.00010 - 0.041 0.000219 - 0.0843 <0.000050	<0.000025 <0.00050 - 0.123 <0.00025 - 1.02 <0.000050 -	0.0000286 <0.00250 0.00225 <0.00100 0.534 <0.000250 0.0499 0.780 <0.0000050 0.00100	0.0000830 <0.00050 - 0.029 <0.000050 - 0.796 <0.000050 -	0.0000830 <0.00050 - <0.0010 3.85 <0.00025 - 1.16 <0.000050 -	0.000120 <0.00250 0.00444 <0.00100 5.34 <0.000250 0.0304 1.16 <0.000050 0.00259	0.000098 <0.00050 - 0.00134 3.70 <0.000050 - 1.06 <0.000050	0.000408 0.00015 - <0.00020 2.23 <0.000050 - 0.303 <0.000050 -	<0.000250 <0.00250 <0.00100 0.680 <0.000250 0.0169 0.297 <0.000050 <0.000250	<0.000050 <0.00050 - <0.00020 0.753 <0.000050 - 0.358 <0.000050
Copper Iron Lead Lithium Manganese Mercury Molybdenum Nickel	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.05 - 0.007 0.3 0.0070 ³ - 0.02	<0.0000050 <0.00010 - <0.00020 3.09 <0.000050 - 0.861 <0.000050 - 0.00192	0.000148 <0.00010 - 0.041 0.000219 - 0.0843 <0.000050 - 0.00099	<0.000025 <0.00050 - 0.123 <0.00025 - 1.02 <0.000050 - 0.0171	0.0000286 <0.00250 0.00225 <0.00100 0.534 <0.000250 0.0499 0.780 <0.0000050 0.00100 0.00532	0.0000830 <0.00050 - 0.029 <0.000050 - 0.796 <0.000050 - 0.00467	0.0000830 <0.00050 - <0.0010 3.85 <0.00025 - 1.16 <0.000050 - 0.0093	0.000120 <0.00250 0.00444 <0.00100 5.34 <0.000250 0.0304 1.16 <0.000050 0.00259 0.00910	0.0000098 <0.00050 - 0.00134 3.70 <0.000050 - 1.06 <0.000050 - 0.0112	0.000408 0.00015 - <0.00020 2.23 <0.000050 - 0.303 <0.000050 - 0.00054	<0.000250 <0.00250 <0.00100 0.680 <0.000250 0.0169 0.297 <0.000050 <0.000250 0.000250	<0.0000050 <0.00050 - <0.00020 0.753 <0.000050 - 0.358
Copper Iron Lead Lithium Manganese Mercury Molybdenum Nickel Phosphorus	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.05 - 0.007 0.3 0.0070 ³ - 0.02 0.000005 - 0.120 to 0.275 ³ -	<0.0000050 <0.00010 - <0.00020 3.09 <0.000050 - 0.861 <0.0000050 - 0.00192 -	0.000148 <0.00010 - 0.041 0.00219 - 0.0843 <0.000050 - 0.00099 -	<0.000025 <0.00050 - 0.123 <0.00025 - 1.02 <0.0000050 - 0.0171	0.0000286 <0.00250 0.00225 <0.00100 0.534 <0.000250 0.0499 0.780 <0.0000050 0.00100 0.00532 <0.250	0.0000830 <0.00050 - 0.029 <0.000050 - 0.796 <0.000050 - 0.000467 -	0.0000830 <0.00050 - <0.0010 3.85 <0.00025 - 1.16 <0.000050 - 0.0093 -	0.000120 <0.00250 0.00444 <0.00100 5.34 <0.000250 0.0304 1.16 <0.000050 0.00259 0.00910 <0.250	0.0000098 <0.00050 - 0.00134 3.70 <0.000050 - 1.06 <0.000050 - 0.0112 -	0.000408 0.00015 - <0.00020 2.23 <0.000050 - 0.000050 - 0.000054 -	<0.000250 <0.00250 <0.00100 0.680 <0.000250 0.0169 0.297 <0.000050 <0.000250 0.000250 0.00307 0.977	<0.000050 <0.00050 - 0.753 <0.000050 - 0.358 <0.000050 - 0.000182 -
Copper Iron Lead Lithium Manganese Mercury Molybdenum Nickel Phosphorus Selenium	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.05 - 0.007 0.3 0.0070 ³ - 0.02 0.000005 - 0.120 to 0.275 ³ - 0.002	<0.0000050 <0.00010 - <0.00020 - 0.000050 - 0.000050 - 0.000050 - 0.00192 - 0.000104	0.000148 <0.00010 - 0.041 0.00219 - 0.0843 <0.000050 - 0.00099 - 0.00099	<0.000025 <0.00050 - 0.123 <0.00025 - 1.02 <0.000050 - 0.0171 - <0.00025	0.0000286 <0.00250 0.00225 <0.00100 0.534 <0.000250 0.0499 0.780 <0.0000050 0.00100 0.00532 <0.250 <0.000250	0.0000830 <0.00050 - 0.029 <0.000050 - 0.796 <0.000050 - 0.00467 - 0.000063	0.0000830 <0.00050 - <0.0010 3.85 <0.00025 - 1.16 <0.000050 - 0.0093 - <0.0093	0.000120 <0.00250 0.00444 <0.00100 5.34 <0.000250 0.0304 1.16 <0.000050 0.00259 0.00910 <0.250 <0.000250	0.0000098 <0.00050 - 0.00134 3.70 <0.000050 - 1.06 <0.0000050 - 0.0112 - 0.00112	0.000408 0.00015 - <0.00020 2.23 <0.000050 - 0.303 <0.000050 - 0.00054	<0.000250 <0.00250 <0.00100 0.680 <0.000250 0.0169 0.297 <0.000050 <0.000250 0.00307 0.977 0.00254	<0.000050 <0.00050 - 0.753 <0.000050 - 0.358 <0.000050 - 0.00182 - 0.00182
Copper Iron Lead Lithium Manganese Mercury Molybdenum Nickel Phosphorus Selenium Silicon	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.05 - 0.007 0.3 0.0070 ³ - 0.02 0.000005 - 0.120 to 0.275 ³ - 0.0002 -	<0.0000050 <0.00010 - <0.00020 - 0.000050 - 0.000050 - 0.000050 - 0.00192 - 0.000104 -	0.000148 <0.00010 - 0.041 0.00219 - 0.0843 <0.000050 - 0.00099 - 0.000132 -	<0.000025 <0.00050 - 0.123 <0.00025 - 1.02 <0.000050 - 0.0171 - <0.00025 -	0.0000286 <0.00250 0.00225 <0.00100 0.534 <0.000250 0.0499 0.780 <0.0000050 0.00100 0.00532 <0.250 <0.000250 6.45	0.0000830 <0.00050 - 0.029 <0.000050 - 0.796 <0.000050 - 0.00467 - 0.000063 -	0.0000830 <0.00050 - <0.0010 3.85 <0.00025 - 1.16 <0.000050 - 0.0093 - <0.00025 -	0.000120 <0.00250 0.00444 <0.00100 5.34 <0.000250 0.0304 1.16 <0.000050 0.00259 0.00910 <0.250 <0.000250 7.02	0.000098 <0.00050 - 0.00134 3.70 <0.000050 - 1.06 <0.000050 - 0.0112 - 0.00112 -	0.000408 0.00015 - <0.00020 2.23 <0.000050 - 0.000050 - 0.000054 - 0.000242 -	 <0.000250 <0.00250 <0.00100 <0.000250 <0.000250 <0.0169 <0.297 <0.000050 <0.000250 <0.00307 <0.977 <0.00254 	<0.000050 <0.00050 - 0.753 <0.000050 - 0.358 <0.000050 - 0.00182 - 0.000182
Copper Iron Lead Lithium Manganese Mercury Molybdenum Nickel Phosphorus Selenium Silicon Silver	mg/L	0.05 - 0.007 0.3 0.0070 ³ - 0.02 0.000005 - 0.120 to 0.275 ³ - 0.002 - 0.002 - 0.002 - 0.002 - 0.002 - 0.002 - 0.007 - 0.007 - 0.007 - 0.02 - 0.007 - 0.007 - 0.02 - 0.007 - 0.007 - 0.007 - 0.007 - 0.007 - 0.007 - 0.002 - 0.0000 - 0.007 - 0.002 - 0.0000 - 0.002 - 0.0000 - 0.002 - 0.002 - 0.002 - 0.002 - 0.002 - 0.002 - 0.002 - 0.002 - 0.002 - 0.002 - 0.002 - 0.002 - 0.002 - 0.002 - 0.002 - 0.002 - 0.000 - 0.002 - 0.002 - 0.002 - 0.002 - 0.00000 - 0.00000 - 0.0000 - 0.00000 - 0.0000 - 0.000000 - 0.000000 - 0.000000 - 0.000000000 - 0.0000000000	<0.0000050 <0.00010 - 3.09 <0.000050 - 0.861 <0.000050 - 0.00192 - 0.000104 - <0.000010	0.000148 <0.00010 - 0.041 0.00219 - 0.0843 <0.000050 - 0.00099 - 0.000132 - - 0.000132 -	<0.000025 <0.00050 - 0.123 <0.00025 - 1.02 <0.000050 - 0.0171 - <0.00025 - - <0.00025	0.0000286 <0.00250 0.00225 <0.00100 0.534 <0.000250 0.0499 0.780 <0.0000050 0.00100 0.00532 <0.250 <0.000250 6.45 <0.000050	0.0000830 <0.00050 - 0.029 <0.000050 - 0.796 <0.000050 - 0.00467 - 0.000063 - <0.000063 - <0.000010	0.0000830 <0.00050 -	0.000120 <0.00250 0.00444 <0.00100 5.34 <0.000250 0.0304 1.16 <0.000050 0.00259 0.00910 <0.250 <0.000250 7.02 <0.000050	0.0000098 <0.00050 - 0.00134 3.70 <0.000050 - 1.06 <0.000050 - 0.0112 - 0.00112 - 0.000064 - -	0.000408 0.00015 - <0.00020 2.23 <0.000050 - 0.000050 - 0.000054 - 0.000242 - - <0.000010	<0.0000250 <0.00250 <0.00100 0.680 <0.000250 0.0169 0.297 <0.0000250 <0.000250 0.00307 0.977 0.00254 4.84 <0.000050	<0.000050 <0.00050 - 0.753 <0.000050 - 0.358 <0.000050 - 0.00182 - 0.00182 - 0.00360 - - 0.00360
Copper Iron Lead Lithium Manganese Mercury Molybdenum Nickel Phosphorus Selenium Silicon Silver Strontium	mg/L	0.05 - 0.007 0.3 0.0070 ³ - 0.02 0.000005 - 0.120 to 0.275 ³ - 0.0002 - 0.0001 -	<0.0000050 <0.00010 - - <0.00020 3.09 <0.000050 - 0.861 <0.000050 - 0.00192 - 0.00192 - - 0.000104 - -	0.000148 <0.00010 - 0.041 0.000219 - 0.000050 - 0.000099 - 0.0000132 - - 0.0000132 - -	<0.000025 <0.00050 - 0.123 <0.00025 - 1.02 <0.000050 - 0.0171 - <0.00025 - <0.00025 -	0.0000286 <0.00250 0.00225 <0.00100 0.534 <0.000250 0.0499 0.780 <0.0000050 0.00100 0.00532 <0.250 <0.000250 6.45 <0.000050 1.80	0.0000830 <0.00050 - 0.029 <0.000050 - 0.796 <0.0000050 - 0.00467 - 0.000467 - 0.000063 - - 0.000063 - -	0.0000830 <0.00050 -	0.000120 <0.00250 0.00444 <0.00100 5.34 <0.000250 0.0304 1.16 <0.0000050 0.00259 0.00910 <0.250 <0.000250 7.02 <0.000050 1.81	0.000098 <0.00050 - 0.00134 3.70 <0.000050 - - 0.00112 - 0.000064 - <0.000064 - -	0.0000408 0.00015 - <0.00020 - 0.00050 - 0.00050 - 0.00054 - 0.000242 - 0.000242 - 0.000242 -	 <0.000250 <0.00250 <0.00100 0.680 <0.000250 0.0169 0.297 <0.000050 <0.000250 0.00307 0.977 0.00254 4.84 <0.00050 1.21 	<0.0000050 <0.00050 - - - - - - 0.00050 - - - 0.000050 - - - 0.00182 - - - 0.00182 - - - - 0.00360 - - - - - - - - - - - - - - - - - - -
Copper Iron Lead Lithium Manganese Mercury Molybdenum Nickel Phosphorus Selenium Silicon Silver Strontium Sulphur	mg/L	0.05 - 0.007 0.3 0.0070 ³ - 0.02 0.000005 - 0.120 to 0.275 ³ - 0.0002 - 0.0001 - - - 0.0001 - -	<0.0000050 <0.00010 - - - - - - 0.000050 - - - 0.00192 - - 0.000104 - - 0.000104 - - - 0.000104 - - - - - - - - - - - - - - - - - - -	0.000148 <0.00010 - 0.041 0.000219 - 0.00843 <0.000050 - 0.000099 - 0.0000132 - <0.0000132 - -	<0.000025 <0.00050 - 0.123 <0.00025 - 1.02 <0.000050 - - 0.0171 - <0.00025 - - <0.00025 - -	0.0000286 <0.00250 0.00225 <0.00100 0.534 <0.000250 0.0499 0.780 <0.0000050 0.000100 0.00532 <0.250 <0.000250 6.45 <0.000050 1.80 27.6	0.0000830 <0.00050 - 0.029 <0.000050 - 0.796 <0.000050 - 0.00467 - 0.000467 - 0.000063 - <0.000010 - -	0.0000830 <0.00050 - <0.0010 3.85 <0.00025 - 1.16 <0.000050 - 0.0093 - <0.00025 - <0.00025 - <0.000050 - - <0.000050	0.000120 <0.00250 0.00444 <0.00100 5.34 <0.000250 0.0304 1.16 <0.0000050 0.00259 0.00910 <0.250 <0.000250 7.02 <0.000050 1.81 29.7	0.0000098 <0.00050 - 0.00134 3.70 <0.000050 - - 0.000050 - - 0.0112 - 0.000064 - - <0.000064 - -	0.000408 0.00015 - <0.00020 - 0.303 <0.00050 - 0.00054 - 0.00054 - 0.000242 - <0.000242 - <0.000010	<0.0000250 <0.00250 <0.00100 0.680 <0.000250 0.0169 0.297 <0.000050 <0.000250 0.00307 0.977 0.00254 4.84 <0.000050 1.21 19.1	<0.0000050 <0.00050 - <0.00020 0.753 <0.000050 - 0.358 <0.000050 - 0.00182 - 0.00182 - 0.00360 -
Copper Iron Lead Lithium Manganese Mercury Molybdenum Nickel Phosphorus Selenium Silicon Siliver Strontium Sulphur Thallium	mg/L	$\begin{array}{c} 0.05 \\ - \\ 0.007 \\ 0.3 \\ 0.0070^{3} \\ - \\ 0.02 \\ 0.000005 \\ - \\ 0.120 \text{ to } 0.275^{3} \\ - \\ 0.120 \text{ to } 0.275^{3} \\ - \\ 0.002 \\ - \\ 0.0001 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	<0.0000050 <0.00010 - - - - - - 0.000050 - - - 0.000050 - - - 0.00192 - - 0.000192 - - 0.000104 - - 0.000104 - - - 0.00010 - - - - - - - - - - - - - - - - -	0.000148 <0.00010 - 0.041 0.000219 - 0.000050 - 0.000099 - 0.0000132 - 0.0000132 - - 0.000010 - -	<0.000025 <0.00050 - 0.123 <0.00025 - - - 0.0171 - - <0.000050 - - <0.000050 - - - <0.000050 - -	0.0000286 <0.00250 0.00225 <0.00100 0.534 <0.000250 0.0499 0.780 <0.000050 0.00100 0.00532 <0.250 <0.000250 6.45 <0.000050 1.80 27.6 <0.000050	0.0000830 <0.00050 - 0.029 <0.000050 - 0.796 <0.0000050 - 0.00467 - 0.000467 - 0.000063 - - 0.000063 - -	0.0000830 <0.00050 - <0.0010 3.85 <0.00025 - 1.16 <0.000050 - <0.00093 - <0.00025 - <0.00025 - <0.000050 - <0.000050 - <0.000050 - <0.000050 - <0.000050 - <0.000050 - <0.000050 - <0.000050 - <0.000050 - <0.000050 - <0.000050 - <0.000050 - <0.000050 - <0.000050 - <0.000050 - <0.000050 - <0.000050 - <0.000050 - <0.000050 - <0.000050 - <0.000050 - <0.000050 - <0.000050 - <0.000050 - <0.000050 - <0.000055 - <0.000055 - <0.000055 - <0.000055 - <0.000055 - <0.000055 - <0.000055 - <0.000055 - <0.000055 - <0.000055 - <0.000055 - <0.000055 - <0.000055 - <0.000055 - <0.000055 - <0.000055 - <0.000055 - <0.000055 - <0.000055 - <0.000055 - <0.000055 - <0.000055 - <0.000055 - - <0.000055 - - <0.00055 - - - - - - - - - - - - -	0.000120 <0.00250 0.00444 <0.00100 5.34 <0.000250 0.0304 1.16 <0.000050 0.00259 0.00910 <0.250 <0.000250 7.02 <0.000050 1.81 29.7 <0.000050	0.0000098 <0.00050 - 0.00134 3.70 <0.000050 - - 0.000050 - - 0.00112 - 0.000064 - - <0.000064 - -	0.000408 0.00015 - <0.00020 - 0.303 <0.000050 - 0.00054 - 0.00054 - 0.000242 - <0.000242 - <0.000010 -	 <0.000250 <0.00250 <0.00100 <0.00100 <0.000250 <0.000250 <0.000050 <0.000250 <0.000250 <0.000254 <0.000050 <1.21 <0.000050 	<0.000050 <0.00050 - <0.00020 - 0.0050 -
Copper Iron Lead Lithium Manganese Mercury Molybdenum Nickel Phosphorus Selenium Silicon Silicon Siliver Strontium Sulphur Thallium	mg/L mg/L	0.05 - 0.007 0.3 0.0070 ³ - 0.02 0.000005 - 0.120 to 0.275 ³ - 0.0002 - 0.0002 - 0.0001 - - - - - - - - - - - - -	<0.0000050 <0.00010 - - - - - - 0.000050 - - - 0.00192 - - 0.000104 - - 0.000104 - - - 0.000104 - - - - - - - - - - - - - - - - - - -	0.000148 <0.00010 - 0.041 0.000219 - 0.0843 <0.0000050 - 0.000099 - 0.0000132 - - <0.0000132 - - <0.000010 - - -	<0.000025 <0.00050 - 0.123 <0.00025 - 1.02 <0.0000050 - - <0.00025 - <0.000050 - - <0.000050 - -	0.0000286 <0.00250 0.00225 <0.00100 0.534 <0.000250 0.0499 0.780 <0.000050 0.00100 0.00532 <0.250 <0.000250 6.45 <0.000250 1.80 27.6 <0.00050 <0.00050	0.0000830 <0.00050 - 0.029 <0.000050 - 0.796 <0.000050 - 0.00467 - 0.000467 - 0.000063 - - 0.000063 - - - 0.000010 - - - - - - - - - - - - -	0.0000830 <0.00050 - <0.0010 3.85 <0.00025 - 1.16 <0.000050 - <0.00033 - <0.00025 - <0.00025 - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - - - - - - - - - - - -	0.000120 <0.00250 0.00444 <0.00100 5.34 <0.000250 0.0304 1.16 <0.000050 0.00259 0.00910 <0.250 <0.000250 7.02 <0.000250 1.81 29.7 <0.000050 <0.00050	0.0000098 <0.00050 - 0.00134 3.70 <0.000050 - - 0.00112 - 0.000064 - - <0.000064 - - <0.000010 -	0.000408 0.00015 - <0.00020 - 0.00050 - 0.000050 - 0.000054 - 0.000242 - 0.000242 - <0.000010 - - <0.000010	 <0.000250 <0.00250 <0.00100 <0.00100 <0.00250 <0.00250 <0.000050 <0.000250 <0.000250 <0.000250 <0.000254 <0.000050 <1.21 <0.000050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 	<0.0000050 <0.00050 - <0.00020 0.753 <0.000050 - 0.358 <0.000050 - 0.00182 - 0.00182 - 0.00360 -
Copper Iron Lead Lithium Manganese Mercury Molybdenum Nickel Phosphorus Selenium Silicon Silicon Silicon Sitortium Strontium Sulphur Thallium Tin	mg/L mg/L	0.05 - 0.007 0.3 0.0070 ³ - 0.02 0.000005 - 0.120 to 0.275 ³ - 0.002 - 0.0002 - 0.0001 - - - - - - - - - - - - -	<0.0000050 <0.00010 - <0.00020 3.09 <0.000050 - 0.861 <0.000050 - 0.000192 - 0.000104 - <0.0000104 - <0.000010 - - 0.000010 - - 0.000010 - - 0.000010 - - - - - - - - - - - - -	0.000148 <0.00010 - 0.041 0.000219 - 0.000050 - 0.000099 - 0.0000132 - 0.0000132 - <0.000010 - - - - - - - - - - - - - - - - -	<0.000025 <0.00050 - 0.123 <0.00025 - 1.02 <0.000050 - 0.0171 - <0.00025 - <0.00025 - <0.000050 - - <0.000050 - -	0.0000286 <0.00250 0.00225 <0.00100 0.534 <0.000250 0.0499 0.780 <0.000050 0.00100 0.00532 <0.250 <0.000250 6.45 <0.000050 1.80 27.6 <0.000050 <0.00050 <0.00050	0.0000830 <0.00050 - 0.029 <0.000050 - 0.796 <0.000050 - 0.000467 - 0.000063 - <0.000063 - <0.000010 - - - - - - - - - - - - -	0.0000830 <0.00050 - 3.85 <0.00025 - 0.000050 - 0.0093 - <0.00025 - <0.00025 - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050	0.000120 <0.00250 0.00444 <0.00100 5.34 <0.000250 0.0304 1.16 <0.000050 0.00259 0.00910 <0.250 7.02 <0.000250 7.02 <0.000050 1.81 29.7 <0.000050 <0.00050 <0.00050	0.0000098 <0.00050 - 0.00134 3.70 <0.000050 - 0.0112 - 0.000064 - <0.000064 - - <0.000010 - - - - - - - - - - - - - - - - -	0.000408 0.00015 - <0.00020 - 0.000050 - 0.000050 - 0.0000242 - 0.0000242 - <0.000010 - - <0.000010 - -	 <0.000250 <0.00250 <0.00100 <0.00100 <0.00250 <0.00250 <0.000050 <0.000250 <0.000250 <0.000254 <4.84 <0.000050 1.21 19.1 <0.000050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00150 	<0.0000050 <0.00020 0.753 <0.000050 - 0.358 <0.000050 - 0.00182 - 0.00360 - <0.000010 - <0.000010 - - - - - - - - - - - - -
Copper Iron Lead Lithium Manganese Mercury Molybdenum Nickel Phosphorus Selenium Silicon Silicon Siliver Strontium Suphur Thallium Tin Titanium Uranium	mg/L mg/L	0.05 - 0.007 0.3 0.0070 ³ - 0.02 0.00005 - 0.120 to 0.275 ³ - 0.002 - 0.0001 - - - 0.0001 - - - 0.0001 - - - 0.0001 - - 0.0001 - - - 0.0001 - - 0.00005 - - - - - - - - - - - - -	<0.0000050 <0.00010 - <0.00020 3.09 <0.000050 - 0.000050 - 0.000192 - 0.000104 - <0.0000104 - - 0.000010 - - 0.000010 - - 0.000010 - - 0.000010 - - 0.000010 - - 0.00010 - - 0.00010 - - 0.000050 - - 0.000050 - - 0.000050 - - 0.000050 - - 0.000050 - - 0.000050 - - 0.000050 - - 0.000192 - 0.000010 - - 0.000010 - - 0.000010 - - 0.000192 - - 0.000010 - - 0.000010 - - 0.000010 - - 0.000010 - - 0.000010 - - - 0.0000104 - - - 0.000010 - - - 0.000010 - - - 0.0000104 - - - - - - - - - - - - -	0.000148 <0.00010 - 0.041 0.000219 - 0.0843 <0.000050 - 0.00099 - 0.000132 - 0.000132 - <0.0000132 - - 0.000010 - - - 0.000010	<0.000025 <0.00050 - 0.123 <0.00025 - 1.02 <0.000050 - - <0.00025 - <0.00025 - - <0.000050 - - <0.000050 - - <0.000050	0.0000286 <0.00250 0.00225 <0.00100 0.534 <0.000250 0.0499 0.780 <0.000050 0.00100 0.00532 <0.000250 6.45 <0.000250 6.45 <0.000050 1.80 27.6 <0.00050 <0.00050 <0.00050 <0.00050 <0.00150 0.00238	0.0000830 <0.00050 - 0.029 <0.000050 - 0.796 <0.000050 - 0.000467 - 0.000063 - <0.000063 - - 0.000010 - - - 0.000010 - - - 0.000010 - - - 0.000010 - - - 0.000010 - - - - - - - - - - - - -	0.0000830 <0.00050 - 3.85 <0.00025 - 0.000050 - 0.0093 - <0.00025 - <0.000250 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - - <0.000055 - - - <0.000055 - - - <0.000055 - - - <0.000055 - - - - <0.000055 - - - - - - - - - - - - - - - - -	0.000120 <0.00250 0.00444 <0.00100 5.34 <0.000250 0.0304 1.16 <0.000050 0.00259 0.00910 <0.250 <0.000250 7.02 <0.000050 1.81 29.7 <0.000050 <0.00050 <0.00050 <0.00050 <0.00150 0.00351	0.0000098 <0.00050 - 0.00134 3.70 <0.000050 - 0.000050 - 0.0112 - 0.000064 - <0.000064 - - <0.000010 - - - - - - - - - - - - - - - - -	0.000408 0.00015 - <0.00020 - 0.00050 - 0.00050 - 0.00054 - 0.00054 - 0.000010 - - 0.000010 - - 0.000010 - 0.00059	 <0.000250 <0.00250 <0.00100 0.680 <0.000250 0.0169 0.297 <0.000050 <0.000250 <0.000254 4.84 <0.000050 1.21 19.1 <0.000050 <0.00150 <0.00150 <0.00150 <0.00150 <0.00150 <0.000228 	<0.000050 <0.00050 - <0.00020 - 0.0050 -
Copper Iron Lead Lithium Manganese Mercury Molybdenum Nickel Phosphorus Selenium Silicon Silorn Silver Strontium Sulphur Thallium Tin Titanium Uranium	mg/L mg/L	0.05 - 0.007 0.3 0.0070^3 - 0.02 0.00005 - $0.120 \text{ to } 0.275^3$ - $0.120 \text{ to } 0.275^3$ - 0.0002 - - 0.0001 - - - - - - - -	<0.0000050 <0.00010 - <0.00020 3.09 <0.000050 - 0.861 <0.000050 - 0.00192 - 0.000104 - <0.0000104 - - 0.000010 - - 0.000010 - - 0.000104 - - 0.000010 - - 0.00010 - - 0.00010 - - - 0.00010 - - - - - - - - - - - - -	0.000148 <0.00010 - 0.041 0.000219 - 0.000050 - 0.000099 - 0.0000132 - <0.0000132 - <0.000010 - - <0.000010 - - <0.000010 - - <0.000010 - - <0.000010 - - <0.000010 - - <0.000010 - - <0.000010 - - <0.000010 - - <0.000010 - - <0.000010 - - <0.000010 - - <0.0000050 - - <0.000010 - - <0.0000050 - - <0.000010 - - <0.000010 - - <0.000010 - - <0.000010 - - <0.000010 - - <0.000010 - - <0.000010 - - <0.0000050 - - <0.000010 - - <0.000010 - - <0.000010 - - <0.000010 - - <0.000010 - - <0.000010 - - <0.000010 - - <0.00000050 - - <0.000010 - - <0.000010 - - <0.000010 - - - <0.000010 - - - <0.000010 - - - <0.000010 - - - <0.000010 - - - - <0.0000010 - - - <0.000010 - - - - - - - - - - - - - - - - -	<0.000025 <0.00050 - 0.123 <0.00025 - (0.000050 - 0.0171 - <0.00025 - <0.00025 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.00025 - - <0.00025 - - - - - - - - - - - - - - - - - - -	0.0000286 <0.00250 0.00225 <0.00100 0.534 <0.000250 0.0499 0.780 <0.000050 0.00100 0.00532 <0.050 <0.000250 6.45 <0.000050 1.80 27.6 <0.000050 <0.00050 <0.00050 <0.00050 <0.00150 0.00238 <0.00250	0.0000830 <0.00050 - 0.029 <0.000050 - 0.796 <0.000050 - 0.00467 - 0.000063 - - 0.000063 - - 0.000010 - - - 0.000010 - - - 0.000010 - - - 0.000010 - - - - - - - - - - - - -	0.0000830 <0.00050 - 3.85 <0.00025 - 0.000050 - 0.0093 - <0.00025 - <0.00025 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - - <0.000055 - - - <0.000055 - - - <0.000055 - - - - <0.000055 - - - - - - - - - - - - - - - - -	0.000120 <0.00250 0.00444 <0.00100 5.34 <0.000250 0.0304 1.16 <0.000050 0.00259 0.00910 <0.250 <0.000250 7.02 <0.000050 1.81 29.7 <0.000050 <1.81 29.7 <0.000050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050	0.0000098 <0.00050 - 0.00134 3.70 <0.000050 - 0.0112 - 0.000064 - <0.000064 - - <0.000010 - - - - - - - - - - - - - - - - -	0.000408 0.00015 - - 0.00050 - 0.00050 - 0.00054 - 0.00054 - 0.000010 - - - - - - - - - - - - - - - - -	 <0.000250 <0.00250 <0.00100 0.680 <0.000250 0.0169 0.297 <0.000050 <0.000250 0.00307 0.977 0.00254 4.84 <0.000050 1.21 19.1 <0.000050 <0.21 19.1 <0.00050 <0.00150 <0.00150 <0.00150 <0.00150 <0.00228 <0.00254 <0.00228 <0.00250 	<0.0000050 <0.00020 0.753 <0.000050 - 0.358 <0.000050 - 0.00182 - 0.00182 - 0.00060 - - 0.00060 - - 0.000010 - - 0.000010 - - 0.000010 - - - 0.000010 - - - 0.000010 - - - - 0.000010 - - - - - - - - - - - - -
Copper Iron Lead Lithium Manganese Mercury Molybdenum Nickel Phosphorus Selenium Silicon Silicon Siliver Strontium Suphur Thallium Tin Titanium Uranium	mg/L mg/L	0.05 - 0.007 0.3 0.0070 ³ - 0.02 0.00005 - 0.120 to 0.275 ³ - 0.002 - 0.0001 - - - 0.0001 - - - 0.0001 - - - 0.0001 - - 0.0001 - - - 0.0001 - - 0.00005 - - - - - - - - - - - - -	<0.0000050 <0.00010 - <0.00020 3.09 <0.000050 - 0.000050 - 0.000192 - 0.000104 - <0.0000104 - - 0.000010 - - 0.000010 - - 0.000010 - - 0.000010 - - 0.000010 - - 0.00010 - - 0.00010 - - 0.000050 - - 0.000050 - - 0.000050 - - 0.000050 - - 0.000050 - - 0.000050 - - 0.000050 - - 0.000192 - 0.000010 - - 0.000010 - - 0.000010 - - 0.000192 - - 0.000010 - - 0.000010 - - 0.000010 - - 0.000010 - - 0.000010 - - - 0.0000104 - - - 0.000010 - - - 0.000010 - - - 0.0000104 - - - - - - - - - - - - -	0.000148 <0.00010 - 0.041 0.000219 - 0.0843 <0.000050 - 0.00099 - 0.000132 - 0.000132 - <0.0000132 - - 0.000010 - - - 0.000010	<0.000025 <0.00050 - 0.123 <0.00025 - 1.02 <0.000050 - - <0.00025 - <0.00025 - - <0.000050 - - <0.000050 - - <0.000050	0.0000286 <0.00250 0.00225 <0.00100 0.534 <0.000250 0.0499 0.780 <0.000050 0.00100 0.00532 <0.000250 6.45 <0.000250 6.45 <0.000050 1.80 27.6 <0.00050 <0.00050 <0.00050 <0.00050 <0.00150 0.00238	0.0000830 <0.00050 - 0.029 <0.000050 - 0.796 <0.000050 - 0.000467 - 0.000063 - <0.000063 - - 0.000010 - - - 0.000010 - - - 0.000010 - - - 0.000010 - - - 0.000010 - - - - - - - - - - - - -	0.0000830 <0.00050 - 3.85 <0.00025 - 0.000050 - 0.0093 - <0.00025 - <0.000250 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000050 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - <0.000055 - - - <0.000055 - - - <0.000055 - - - <0.000055 - - - <0.000055 - - - - <0.000055 - - - - - - - - - - - - - - - - -	0.000120 <0.00250 0.00444 <0.00100 5.34 <0.000250 0.0304 1.16 <0.000050 0.00259 0.00910 <0.250 <0.000250 7.02 <0.000050 1.81 29.7 <0.000050 <0.00050 <0.00050 <0.00050 <0.00150 0.00351	0.0000098 <0.00050 - 0.00134 3.70 <0.000050 - 0.000050 - 0.0112 - 0.000064 - <0.000064 - - <0.000010 - - - - - - - - - - - - - - - - -	0.000408 0.00015 - <0.00020 - 0.00050 - 0.00050 - 0.00054 - 0.00054 - 0.000010 - - 0.000010 - - 0.000010 - 0.00059	 <0.000250 <0.00250 <0.00100 0.680 <0.000250 0.0169 0.297 <0.000050 <0.000250 <0.000254 4.84 <0.000050 1.21 19.1 <0.000050 <0.00150 <0.00150 <0.00150 <0.00150 <0.00150 <0.000228 	<0.0000050 <0.00020 0.753 <0.000050 - 0.358 <0.000050 - 0.00182 - 0.00360 - <0.000010 - <0.000010 - - - - - - - - - - - - -

Notes:

¹ Alberta Environment and Protected Areas (AEPA). 2022. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 198 pp. Referenced guidelines are for coarse-textured soils under Residential/Parkland land use.

² Alberta Environment and Parks (AEP). Environmental Quality Guidelines for Alberta Surface Waters. March 2018. Table 1 Surface water quality guidelines for the protection of freshwater aquatic life (FAL). Most conservative values applied (chronic or acute).

 3 Guideline varies with hardness. Values shown based on site hardness range of 269 mg/L to 714 mg/L.

 4 Guideline varies with chloride. Values shown based on site chloride range of 7.70 mg/L to 49.6 mg/L.

 $^{\rm 5}$ Guideline varies with pH. Values shown based on site pH range of 6.76 to 8.53.

⁶ Guideline varies with pH and temperature. Values shown based on pH range of 6.76 to 8.53 and temperature range of 1.15°C to 7.88°C.

"-" No applicable guideline or not analyzed.

"ND" Non-detected.

BOLD - Greater than Tier 1 Guideline.

N/A - Not applicable.

Table 2: Groundwater Analytical Results

Parameter	Unit	Tier 1 Guideline ^{1,2}	MW-01	MW-02		IW-03 (Deep W	,	ļ	MW-04			MW-203	
	onit	Tier T Guideime	4-Dec-2019	4-Dec-2019	4-Dec-2019	21-Nov-2021	08-Dec-2022	4-Dec-2019	21-Nov-2021	08-Dec-2022	5-Dec-2019	21-Nov-2021	08-Dec-2022
Drganics													
AOX	mg/L	-	ND	ND	ND	-	-	ND	-	-	ND	-	-
Hydrocarbons													,
Benzene	mg/L	0.005	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00053	0.00058	0.00079
Toluene	mg/L	0.021	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Ethylbenzene	mg/L	0.0016	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Xylenes (m & p)	mg/L	-	<0.00050	<0.00050	<0.00050	<0.00030	<0.00030	<0.00050	<0.00030	<0.00030	<0.00050	<0.00030	<0.00030
Xylene (o)	mg/L	-	<0.00050	<0.00050	<0.00050	<0.00040	<0.00040	<0.00050	<0.00040	<0.00040	<0.00050	<0.00040	<0.00040
Xylenes Total	mg/L	0.02	<0.00071	<0.00071	<0.00071	<0.00050	<0.00050	<0.00071	<0.00050	<0.00050	<0.00071	<0.00050	<0.00050
Styrene	mg/L	0.072	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
F1 (C ₆ -C ₁₀)	mg/L	-	<0.10	<0.10	<0.10	-	-	<0.10	-	-	<0.10	-	-
F1 (C ₆ -C ₁₀) - BTEX	mg/L	0.81	<0.10	<0.10	<0.10	-	-	<0.10	-	-	<0.10	-	-
F2 (C ₁₀ -C ₁₆)	mg/L	1.1	<0.10	<0.10	<0.10	-	-	<0.10	-	-	<0.10	-	-
Total BTEX	mg/L	-	-	-	-	<0.0010	<0.0010	-	<0.0010	<0.0010	-	<0.0010	<0.0010
Volatile Fatty/Carboxylic Acids													
Acetic Acid	mg/L	-	<10	<10	<10	-	-	<10	-	-	<10	-	-
Butyric Acid	mg/L	-	<1.0	<1.0	<1.0	-	-	<1.0	-	-	<1.0	-	-
Formic Acid	mg/L	-	<50	<50	<50	-	-	<50	-	-	<50	-	-
Hexanoic Acid	mg/L	-	<1.0	<1.0	<1.0	-	-	<1.0	-	-	<1.0	-	-
iso-Butyric Acid	mg/L	-	<1.0	<1.0	<1.0	-	-	<1.0	-	-	<1.0	-	-
Isovaleric Acid	mg/L	-	<1.0	<1.0	<1.0	-	-	<1.0	-	-	<1.0	-	-
Propanoic Acid	mg/L	-	<5.0	<5.0	<5.0	-	-	<5.0	-	-	<5.0	-	-
Valeric Acid	mg/L	-	<1.0	<1.0	<1.0	-	-	<1.0	-	-	<1.0	-	-
Polycyclic Aromatic Hydrocarb	ons (PAHs)												
Naphthalene	mg/L	0.001	-	-	-	<0.0010	-	-	<0.0010	-	-	<0.0010	-
Volatile Organic Compounds (V	OCs)												
Bromobenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Bromochloromethane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Bromodichloromethane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010
Bromoform	mg/L	-	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010
Bromomethane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
n-Butylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
sec-Butylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
tert-Butylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Carbon tetrachloride	mg/L	0.00029	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Chlorobenzene	mg/L	0.0013	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010
Chloroethane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Chloroform	mg/L	0.018	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010
Chloromethane	mg/L	-	<0.0010	<0.0010	<0.0010	< 0.0050	< 0.0050	<0.0010	<0.0050	< 0.0050	<0.0010	< 0.0050	< 0.0050
2-Chlorotoluene	mg/L	-	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	<0.0010	<0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
4-Chlorotoluene	mg/L	-	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	<0.0010	<0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Dibromochloromethane	mg/L	0.19	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010
1,2-Dibromo-3-chloropropane	mg/L	-	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	<0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
1,2-Dibromoethane	mg/L	-	<0.00050	<0.00050	< 0.00050	< 0.0010	< 0.0010	<0.00050	<0.0010	<0.0010	< 0.00050	< 0.0010	< 0.0010
Dibromomethane	mg/L	-	< 0.00050	<0.00050	< 0.00050	< 0.0010	< 0.0010	<0.00050	<0.0010	< 0.0010	< 0.00050	< 0.0010	< 0.0010
1,2-Dichlorobenzene	mg/L	0.0007	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	<0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050
1,3-Dichlorobenzene	mg/L	-	< 0.00050	< 0.00050	< 0.00050	< 0.0010	< 0.0010	< 0.00050	<0.0010	< 0.0010	< 0.00050	< 0.0010	< 0.0010
1,4-Dichlorobenzene	mg/L	0.001	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010
1,1-Dichloroethane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010
1.2-Dichloroethane	mg/L	0.005	<0.00030	<0.00000	<0.00030	<0.0010	<0.0010	<0.00030	<0.0010	<0.0010	<0.00030	<0.0010	<0.0010
1,1-Dichloroethene	-	0.005	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,2-Dichloroethene (cis)	mg/L		<0.00050		0.0036	0.0010	0.0049	0.00050	0.0077	0.0102	0.0083	0.0098	0.0106
1,2-Dichloroethene (trans)	mg/L	-		<0.0010									
Dichlorodifluoromethane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010
	mg/L	-	<0.00050	< 0.00050	<0.00050	<0.0010	<0.0010	< 0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010
1,2-Dichloropropane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010

Notes:

¹ Alberta Environment and Protected Areas (AEPA). 2022. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 198 pp. Referenced guidelines are for coarse-textured soils under Residential/Parkland land use. 2 Alberta Environment and Parks (AEP). Environmental Quality Guidelines for Alberta Surface Waters. March 2018. Table 1 Surface water quality guidelines for the protection of freshwater aquatic life (FAL). Most conservative values applied (chronic or acute).

 3 Guideline varies with hardness. Values shown based on site hardness range of 269 mg/L to 714 mg/L.

 4 Guideline varies with chloride. Values shown based on site chloride range of 7.70 mg/L to 49.6 mg/L.

 $^{\rm 5}$ Guideline varies with pH. Values shown based on site pH range of 6.76 to 8.53.

⁶ Guideline varies with pH and temperature. Values shown based on pH range of 6.76 to 8.53 and temperature range of 1.15°C to 7.88°C.

"-" No applicable guideline or not analyzed.

"ND" Non-detected.

BOLD - Greater than Tier 1 Guideline.

N/A - Not applicable.

Table 2: Groundwater Analytical Results

Parameter	Unit	Tion 1 Quideline 1,2	MW-01	MW-02	N	W-03 (Deep W	ell)		MW-04		MW-203		
Parameter	Unit	Tier 1 Guideline ^{1,2}	4-Dec-2019	4-Dec-2019	4-Dec-2019	21-Nov-2021	08-Dec-2022	4-Dec-2019	21-Nov-2021	08-Dec-2022	5-Dec-2019	21-Nov-2021	08-Dec-2022
Volatile Organic Compounds (VOC	s)	·											
1,3-Dichloropropane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
2,2-Dichloropropane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,1-Dichloropropene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,3-Dichloropropene	mg/L	-	-	-	-	<0.0015	<0.0015	-	<0.0015	<0.0015	-	<0.0015	<0.0015
1,3-Dichloropropene [cis]	mg/L	-	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010
1,3-Dichloropropene [trans]	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Hexachlorobutadiene	mg/L	0.0013	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
p-Isopropyltoluene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Methyl t-Butyl Ether (MTBE)	mg/L	0.015	-	-	-	<0.00050	<0.00050	-	<0.00050	<0.00050	-	<0.00050	<0.00050
Methylene Chloride	mg/L	0.05	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
iso-Propylbenzene (cumene)	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
n-Propylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,1,1,2-Tetrachloroethane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,1,2,2-Tetrachloroethane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010
Tetrachloroethene	mg/L	0.01	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010
1,2,3-Trichlorobenzene	mg/L	0.008	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,2,4-Trichlorobenzene	mg/L	0.015	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,1,1-Trichloroethane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010
1,1,2-Trichloroethane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010
Trichloroethene	mg/L	0.00032	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010
Trichlorofluoromethane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Trihalomethanes	mg/L	0.1	-	-	-	<0.0020	<0.0020	-	<0.0020	<0.0020	-	<0.0020	<0.0020
1,2,3-Trichloropropane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010
1,2,4-Trimethylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,3,5-Trimethylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Vinyl chloride	mg/L	0.0011	<0.00050	<0.00050	0.00070	0.0021	0.0016	0.00643	0.0032	0.0037	0.00289	0.0046	0.0062

Notes:

¹ Alberta Environment and Protected Areas (AEPA). 2022. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 198 pp. Referenced guidelines are for coarse-textured soils under Residential/Parkland land use. ² Alberta Environment and Parks (AEP). Environmental Quality Guidelines for Alberta Surface Waters. March 2018. Table 1 Surface water quality guidelines for the protection of freshwater aquatic life (FAL). Most conservative values applied (chronic or acute).

 3 Guideline varies with hardness. Values shown based on site hardness range of 269 mg/L to 714 mg/L.

 4 Guideline varies with chloride. Values shown based on site chloride range of 7.70 mg/L to 49.6 mg/L.

 5 Guideline varies with pH. Values shown based on site pH range of 6.76 to 8.53.

⁶ Guideline varies with pH and temperature. Values shown based on pH range of 6.76 to 8.53 and temperature range of 1.15°C to 7.88°C.

"-" No applicable guideline or not analyzed.

"ND" Non-detected.

BOLD - Greater than Tier 1 Guideline.

N/A - Not applicable.

Table 3: Groundwater Quality	loourant	Joi Quanty		-	
Parameter	Unit	RDL	MW-03 08-Dec-2022	(Deep Well) 08-Dec-2022 DUP	RPD (%
Routine			00-Dec-2022	00-Dec-2022 DOF	
pH	pH Units	0.1	7.77	7.75	0.3
Electrical Conductivity (EC)	μS/cm	1	1,660	1,650	1
Total Dissolved Solids (TDS)	mg/L	1	1,080	1,100	2
Hardness as CaCO ₃	mg/L	0.5	544	570	5
Alkalinity (total as CaCO ₃)	mg/L	1	934	937	0.3
Bicarbonate	mg/L	1	1,140	1,140	0
Carbonate	mg/L	1	<1.0	<1.0	-
Hydroxide	mg/L	1	<1.0	<1.0	-
Calcium	mg/L	0.05	134	145	8
Magnesium	mg/L	0.005	50.8	50.4	1
Potassium	mg/L	0.05	8.49	8.8	4
Sodium	mg/L	0.05	190	192	1
Chloride	mg/L	2.5	41.4	40.2	3
Fluoride	mg/L	0.1	0.157	0.123	-
Sulphate	mg/L	1.5	69.6	69.2	1
Anions Total (Filtered)	meq/L	0.1	21.3	21.3	0
Cations Total (Filtered)	meq/L	0.1	19.8	20.4	3
onic Balance	N/A	0.01	93	95.8	3
Nutrients					
Ammonia as N	mg/L	0.125	5.57	5.52	1
Nitrate (as NO ₃ -N)	mg/L	0.1	0.152	<0.100	-
Nitrite (as NO ₂ -N)	mg/L	0.05	< 0.050	<0.050	-
Nitrate and Nitrite (as N)	mg/L	0.112	0.152	<0.112	-
Dissolved Metals	H	0.004	0.0000	0.0000	
Aluminum	mg/L	0.001	0.0036	0.0039	-
Antimony	mg/L	0.0001	< 0.00010	< 0.00010	-
Arsenic	mg/L	0.0001	0.0013	0.0012	8
Barium	mg/L	0.0001	0.36	0.366	2
Boron	mg/L	0.01	0.791	0.818	3
	mg/L	0.000005	0.000083	0.0000861	4
Chromium Connor	mg/L	0.0005	<0.00050 0.00051	<0.00050 0.00041	-
Copper	mg/L	0.0002	0.00051	0.00041	-
Lead	mg/L mg/L	0.00005	<0.00050	<0.000050	-
	-	0.00003	0.796	0.81	- 2
Manganese Mercury	mg/L mg/L	0.000005	<0.0000050	<0.000050	2
Nickel	mg/L	0.0005	0.00467	0.00466	0.2
Selenium	mg/L	0.00005	0.000063	0.000285	-
Silver	mg/L	0.00000	< 0.0000000	< 0.000203	
Uranium	mg/L	0.00001	0.00212	0.00234	10
Zinc	mg/L	0.0001	0.00212	0.0013	-
Hydrocarbons	mg/E	0.001	0.0021	0.0010	
Benzene	mg/L	0.0005	<0.00050	<0.00050	_
Toluene	mg/L	0.0005	<0.00050	< 0.00050	_
Ethylbenzene	mg/L	0.0005	< 0.00050	< 0.00050	_
Xylenes (m & p)	mg/L	0.0003	< 0.00030	< 0.00030	_
Xylene (o)	mg/L	0.0004	< 0.00040	< 0.00040	-
Xylenes Total	mg/L	0.0005	<0.00050	< 0.00050	_
Styrene	mg/L	0.0005	<0.00050	< 0.00050	-
Total BTEX	mg/L	0.001	< 0.0010	<0.0010	-
Volatile Organic Compounds (VOCs)	-		-	1	
Bromobenzene	mg/L	0.001	<0.0010	<0.0010	-
Bromochloromethane	mg/L	0.001	<0.0010	<0.0010	-
Bromodichloromethane	mg/L	0.001	<0.0010	<0.0010	-
Bromoform	mg/L	0.001	<0.0010	<0.0010	-
Bromomethane	mg/L	0.001	<0.0010	<0.0010	-
n-Butylbenzene	mg/L	0.001	<0.0010	<0.0010	-
sec-Butylbenzene	mg/L	0.001	<0.0010	<0.0010	-
ert-Butylbenzene	mg/L	0.001	<0.0010	<0.0010	-
Carbon tetrachloride	mg/L	0.0005	<0.00050	<0.00050	-
Chlorobenzene	mg/L	0.001	<0.0010	<0.0010	-
Chloroethane	mg/L	0.001	<0.0010	<0.0010	-
Chloroform	mg/L	0.001	<0.0010	<0.0010	-
Chloromethane	mg/L	0.005	<0.0050	<0.0050	-
2-Chlorotoluene	mg/L	0.001	<0.0010	<0.0010	-
4-Chlorotoluene	mg/L	0.001	<0.0010	<0.0010	-
Dibromochloromethane	mg/L	0.001	<0.0010	<0.0010	-
1,2-Dibromo-3-chloropropane	mg/L	0.001	<0.0010	<0.0010	-
1,2-Dibromoethane	mg/L	0.001	<0.0010	<0.0010	-

Table 3: Groundwater Quality Assurance/Quality Control Analytical Results

Parameter	Unit	RDL	MW-03	(Deep Well)	RPD (%)
Parameter	Unit	RUL	08-Dec-2022	08-Dec-2022 DUP	RPD (%)
1,2-Dichlorobenzene	mg/L	0.0005	<0.00050	<0.00050	-
1,3-Dichlorobenzene	mg/L	0.001	<0.0010	<0.0010	-
1,4-Dichlorobenzene	mg/L	0.001	<0.0010	<0.0010	-
1,1-Dichloroethane	mg/L	0.001	<0.0010	<0.0010	-
1,2-Dichloroethane	mg/L	0.001	<0.0010	<0.0010	-
1,1-Dichloroethene	mg/L	0.001	<0.0010	<0.0010	-
1,2-Dichloroethene (cis)	mg/L	0.001	0.0049	0.0053	-
1,2-Dichloroethene (trans)	mg/L	0.001	<0.0010	<0.0010	-
Dichlorodifluoromethane	mg/L	0.001	<0.0010	<0.0010	-
1,2-Dichloropropane	mg/L	0.001	<0.0010	<0.0010	-
1,3-Dichloropropane	mg/L	0.001	<0.0010	<0.0010	-
2,2-Dichloropropane	mg/L	0.001	<0.0010	<0.0010	-
1,1-Dichloropropene	mg/L	0.001	<0.0010	<0.0010	-
1,3-Dichloropropene	mg/L	0.0015	<0.0015	<0.0015	-
1,3-Dichloropropene [cis]	mg/L	0.001	<0.0010	<0.0010	-
1,3-Dichloropropene [trans]	mg/L	0.001	<0.0010	<0.0010	-
Hexachlorobutadiene	mg/L	0.001	<0.0010	<0.0010	-
p-Isopropyltoluene	mg/L	0.001	<0.0010	<0.0010	-
Methyl t-Butyl Ether (MTBE)	mg/L	0.0005	<0.00050	<0.00050	-
Methylene Chloride	mg/L	0.001	<0.0010	<0.0010	-
iso-Propylbenzene (cumene)	mg/L	0.001	<0.0010	<0.0010	-
n-Propylbenzene	mg/L	0.001	<0.0010	<0.0010	-
1,1,1,2-Tetrachloroethane	mg/L	0.001	<0.0010	<0.0010	-
1,1,2,2-Tetrachloroethane	mg/L	0.001	<0.0010	<0.0010	-
Tetrachloroethene	mg/L	0.001	<0.0010	<0.0010	-
1,2,3-Trichlorobenzene	mg/L	0.001	<0.0010	<0.0010	-
1,2,4-Trichlorobenzene	mg/L	0.001	<0.0010	<0.0010	-
1,1,1-Trichloroethane	mg/L	0.001	<0.0010	<0.0010	-
1,1,2-Trichloroethane	mg/L	0.001	<0.0010	<0.0010	-
Trichloroethene	mg/L	0.001	<0.0010	<0.0010	-
Trichlorofluoromethane	mg/L	0.001	<0.0010	<0.0010	-
Trihalomethanes	mg/L	0.002	<0.0020	<0.0020	-
1,2,3-Trichloropropane	mg/L	0.001	<0.0010	<0.0010	-
1,2,4-Trimethylbenzene	mg/L	0.001	<0.0010	<0.0010	-
1,3,5-Trimethylbenzene	mg/L	0.001	<0.0010	<0.0010	-
Vinyl chloride	mg/L	0.001	0.0016	0.0016	-

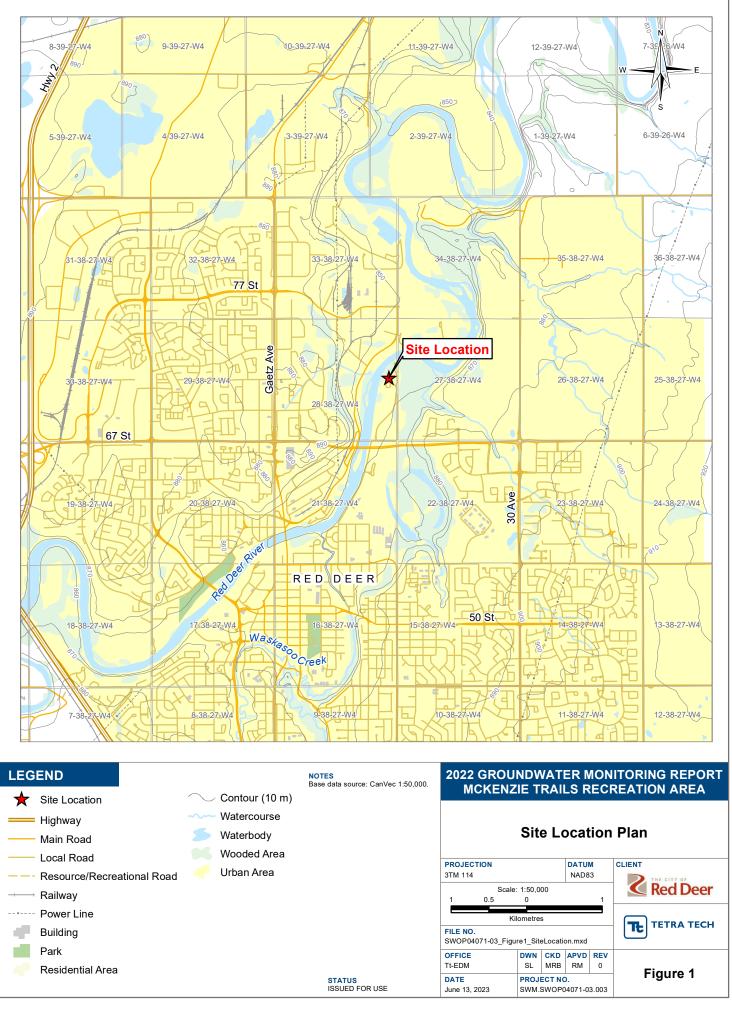
Table 3: Groundwater Quality Assurance/Quality Control Analytical Results

Notes:

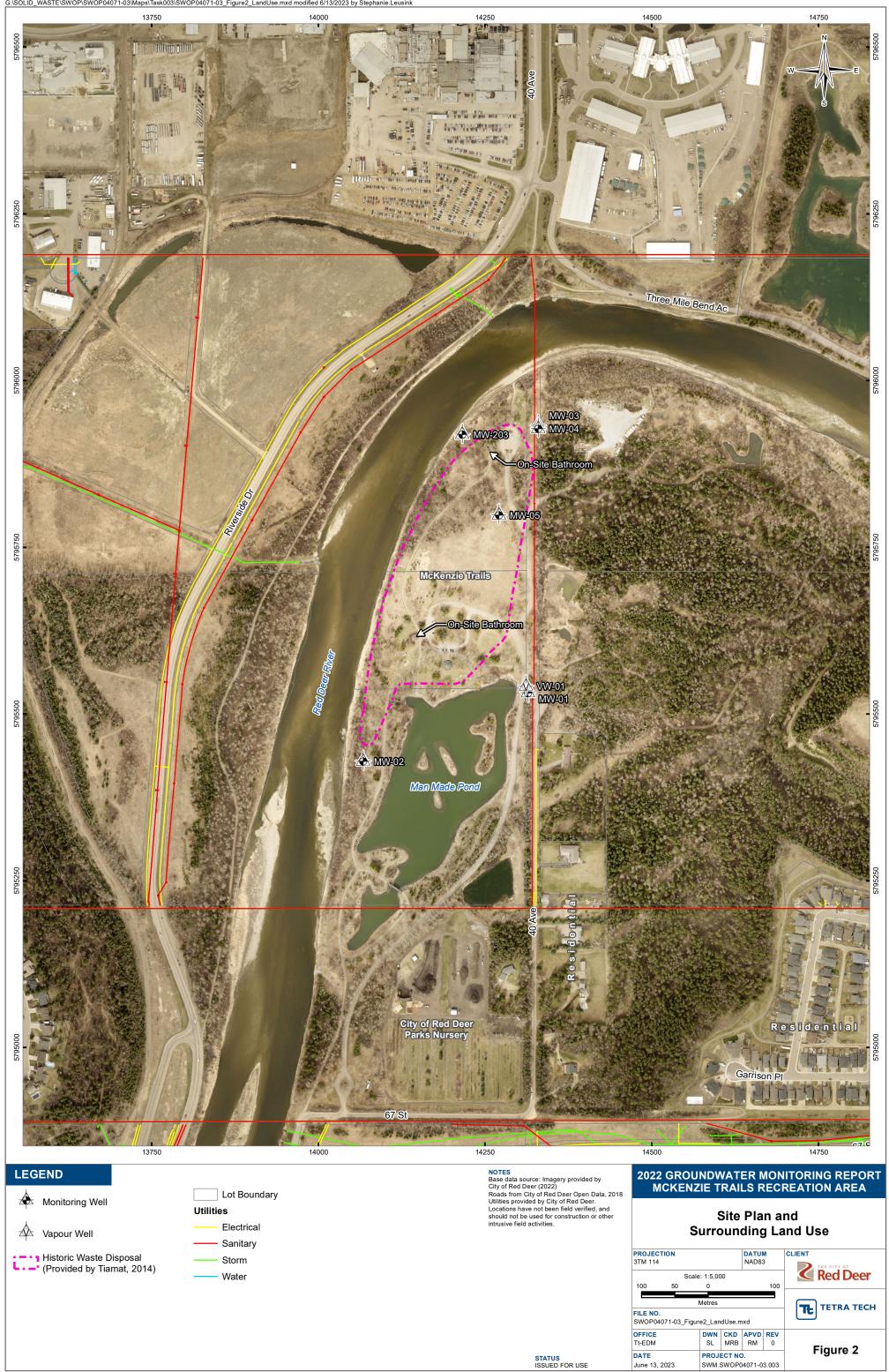
RDL - Reportable detection limit.

RPD - Relative Percentage Difference calculated as RPD(%)=(|V1-V2|)/[(V1+V2)/2])*100 where V1,V2 = concentrations of parent and duplicate sample, respectively.

"-" Indicates RPD not calculated. RPDs have only been considered where both concentrations are greater than 5 times the RDL.


N/A - Not applicable.

BOLD - RPD value greater than 20%.



FIGURES

- Figure 1 Site Location Plan
- Figure 2 Site Plan and Surrounding Land Use
- Figure 3 Groundwater Monitoring Well Hydrographs
- Figure 4 Groundwater Elevation Contours December 2022

Q:/Edmonton/GIS/SOLID_WASTE/SWOP/SWOP04071-03/Maps/Task003/SWOP04071-03_Figurer_Stel.ocation.mxd modified 2/21/2023 by stepharie.leusink

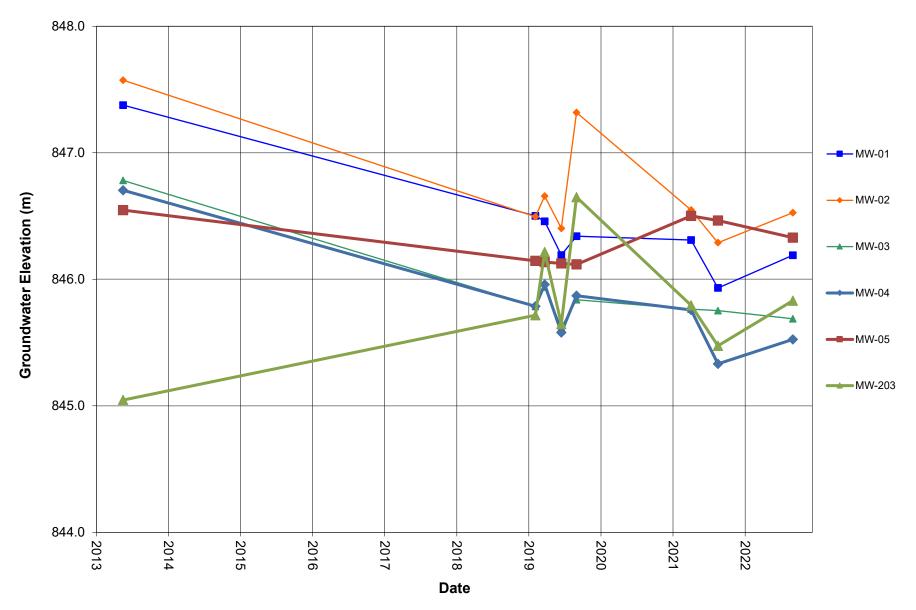
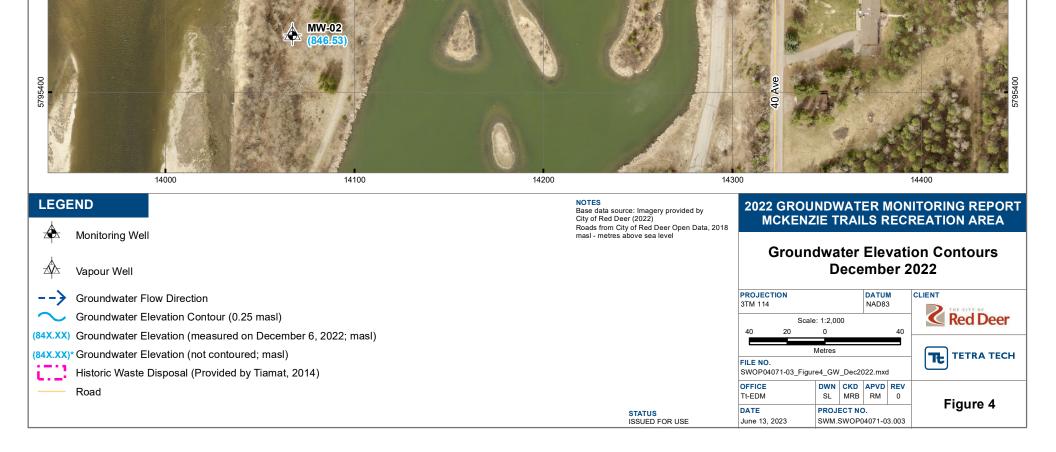



FIGURE 3 GROUNDWATER MONITORING WELL HYDROGRAPHS

G:\SOLID_WASTE\SWOP\SWOP04071-03\Maps\Task003\SWOP04071-03_Figure4_GW_Dec2022.mxd modified 6/13/2023 by Stephanie.Leusink

APPENDIX A

TETRA TECH'S LIMITATIONS ON THE USE OF THIS DOCUMENT

GEOENVIRONMENTAL

1.1 USE OF DOCUMENT AND OWNERSHIP

This document pertains to a specific site, a specific development, and a specific scope of work. The document may include plans, drawings, profiles and other supporting documents that collectively constitute the document (the "Professional Document").

The Professional Document is intended for the sole use of TETRA TECH's Client (the "Client") as specifically identified in the TETRA TECH Services Agreement or other Contractual Agreement entered into with the Client (either of which is termed the "Contract" herein). TETRA TECH does not accept any responsibility for the accuracy of any of the data, analyses, recommendations or other contents of the Professional Document when it is used or relied upon by any party other than the Client, unless authorized in writing by TETRA TECH.

Any unauthorized use of the Professional Document is at the sole risk of the user. TETRA TECH accepts no responsibility whatsoever for any loss or damage where such loss or damage is alleged to be or, is in fact, caused by the unauthorized use of the Professional Document.

Where TETRA TECH has expressly authorized the use of the Professional Document by a third party (an "Authorized Party"), consideration for such authorization is the Authorized Party's acceptance of these Limitations on Use of this Document as well as any limitations on liability contained in the Contract with the Client (all of which is collectively termed the "Limitations on Liability"). The Authorized Party should carefully review both these Limitations on Use of this Document and the Contract prior to making any use of the Professional Document. Any use made of the Professional Document by an Authorized Party constitutes the Authorized Party's express acceptance of, and agreement to, the Limitations on Liability.

The Professional Document and any other form or type of data or documents generated by TETRA TECH during the performance of the work are TETRA TECH's professional work product and shall remain the copyright property of TETRA TECH.

The Professional Document is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of TETRA TECH. Additional copies of the Document, if required, may be obtained upon request.

1.2 ALTERNATIVE DOCUMENT FORMAT

Where TETRA TECH submits electronic file and/or hard copy versions of the Professional Document or any drawings or other project-related documents and deliverables (collectively termed TETRA TECH's "Instruments of Professional Service"), only the signed and/or sealed versions shall be considered final. The original signed and/or sealed electronic file and/or hard copy version archived by TETRA TECH shall be deemed to be the original. TETRA TECH will archive a protected digital copy of the original signed and/or sealed version for a period of 10 years.

Both electronic file and/or hard copy versions of TETRA TECH's Instruments of Professional Service shall not, under any circumstances, be altered by any party except TETRA TECH. TETRA TECH's Instruments of Professional Service will be used only and exactly as submitted by TETRA TECH.

Electronic files submitted by TETRA TECH have been prepared and submitted using specific software and hardware systems. TETRA TECH makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

1.3 STANDARD OF CARE

Services performed by TETRA TECH for the Professional Document have been conducted in accordance with the Contract, in a manner

consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions in the jurisdiction in which the services are provided. Professional judgment has been applied in developing the conclusions and/or recommendations provided in this Professional Document. No warranty or guarantee, express or implied, is made concerning the test results, comments, recommendations, or any other portion of the Professional Document.

If any error or omission is detected by the Client or an Authorized Party, the error or omission must be immediately brought to the attention of TETRA TECH.

1.4 DISCLOSURE OF INFORMATION BY CLIENT

The Client acknowledges that it has fully cooperated with TETRA TECH with respect to the provision of all available information on the past, present, and proposed conditions on the site, including historical information respecting the use of the site. The Client further acknowledges that in order for TETRA TECH to properly provide the services contracted for in the Contract, TETRA TECH has relied upon the Client with respect to both the full disclosure and accuracy of any such information.

1.5 INFORMATION PROVIDED TO TETRA TECH BY OTHERS

During the performance of the work and the preparation of this Professional Document, TETRA TECH may have relied on information provided by third parties other than the Client.

While TETRA TECH endeavours to verify the accuracy of such information, TETRA TECH accepts no responsibility for the accuracy or the reliability of such information even where inaccurate or unreliable information impacts any recommendations, design or other deliverables and causes the Client or an Authorized Party loss or damage.

1.6 GENERAL LIMITATIONS OF DOCUMENT

This Professional Document is based solely on the conditions presented and the data available to TETRA TECH at the time the data were collected in the field or gathered from available databases.

The Client, and any Authorized Party, acknowledges that the Professional Document is based on limited data and that the conclusions, opinions, and recommendations contained in the Professional Document are the result of the application of professional judgment to such limited data.

The Professional Document is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site conditions present, or variation in assumed conditions which might form the basis of design or recommendations as outlined in this report, at or on the development proposed as of the date of the Professional Document requires a supplementary exploration, investigation, and assessment.

TETRA TECH is neither qualified to, nor is it making, any recommendations with respect to the purchase, sale, investment or development of the property, the decisions on which are the sole responsibility of the Client.

1.7 NOTIFICATION OF AUTHORITIES

In certain instances, the discovery of hazardous substances or conditions and materials may require that regulatory agencies and other persons be informed and the client agrees that notification to such bodies or persons as required may be done by TETRA TECH in its reasonably exercised discretion.

APPENDIX B

SITE HISTORY, HISTORICAL INFORMATION, SITE SETTING, 2019 HAZARD QUOTIENTS, AND 2014 RISK MANAGEMENT PLAN REVIEW

SITE HISTORY, HISTORICAL INFORMATION, SITE SETTING, 2019 HAZARD QUOTIENTS, AND 2014 RISK MANAGEMENT PLAN REVIEW

Section 1.0 to Section 4.0 are a summary from the 2019 Groundwater and Soil Vapour Monitoring Report – McKenzie Trails Recreation Area¹.

1.0 SITE HISTORY

Municipal records indicate that the waste disposal at the site occurred in two phases. Disposal in the southern portion occurred from 1930 to 1959 (approximately 29 years) and in the northern portion from 1960 to 1964 (approximately 4 years). The estimated age of the waste material post closure of the landfill is interpreted to be 55 to 60 years. Historical information indicates the waste as being municipal solid waste (MSW) including a mixture of plastics, cans, paper, scrap metals, wires, and glass. Bricks, wood, and ash were also encountered during the Phase II investigation².

Historical waste disposal was identified during the 2014 Phase II environmental site assessment (ESA) to be north of the man-made pond area. The waste area extends to the north end of the recreation area and to the west towards the Red Deer River. The Phase II ESA estimated the total area of buried waste at approximately 64,250 m². The status of the former landfill is inactive and closed.

Results of the 2014 Phase II ESA conducted by Tiamat Environmental Consultants Ltd. (Tiamat) indicate that surface material of sod and loam was overlying the buried MSW material. There were no indications of a formal barrier layer (e.g., clay) overlying the waste. The thickness of the layer or sod and loam varied between 8 cm and 15 cm. The MSW was mixed with fill consisting of sand, gravel, silt, and clay, located below the sod to a depth of approximately 5 m in the north-central area of the site. A portion of the waste material consists of burned garbage. The waste material was overlying silt (fill), sand and gravel (native), and siltstone (bedrock) in the northwest to southeast and the MSW was overlying silty sand (fill), sand and gravel (native), and siltstone and shale (bedrock) in the northeast to southwest with some clay (till) in the southwest. The base of the MSW material is similar to the level of the adjacent Red Deer River.

2.0 HISTORICAL GROUNDWATER MONITORING AND INVESTIGATION SUMMARY

Alberta Environment³ (AENV) installed monitoring wells in 1982, including seven groundwater monitoring wells within and beside the waste material boundary. In June 2013, the Red Deer River experienced flooding and the west side of the site was impacted. Groundwater monitoring wells located on the east riverbank were damaged or destroyed, with the exception of MW-203.

¹ Tetra Tech Canada Inc. 2020. 2019 Groundwater and Soil Vapour Monitoring Report – McKenzie Trails Recreation Area. Prepared for The City of Red Deer. October 2020. Project Number: 704-SWM.SWOP04071-01.003.

² Tiamat Environmental Consultants Ltd. 2014a. Phase II Environmental Site Assessment, Historic Waste Disposal Site, McKenzie Trails Recreation Area, The City of Red Deer. February 12, 2014.

³ Currently Alberta Environment and Protected Areas (AEPA).

Previous reports prepared by Tiamat for the site include the following:

- Phase I ESA, Historic Waste Disposal Site, McKenzie Trail, The City of Red Deer. September 24, 2013⁴.
- Phase II ESA, Historic Waste Disposal Site, McKenzie Trails Recreation Area, The City of Red Deer. February 12, 2014².
- Environmental Risk Management Plan (RMP), Historic Waste Disposal Sites, McKenzie Trails Recreation Area, The City of Red Deer. November 26, 2014⁵.

Two testholes (TH-03 and TH-04) were advanced in June 2013 as part of the Phase II ESA; one vapour well (VW-01) and one monitoring well (MW-01) were installed.

The results of the Phase II ESA conducted by Tiamat in 2014 indicated the following:

- There were no obvious activities that pose a high potential to adversely impact the site from activities on adjacent developments. The historical waste area is within the boundaries of the park.
- The waste area underlies the park space north of the man-made pond and extends to a setback from the Red Deer River. The plan area of the waste was calculated to be approximately 64,520 m², calculated from aerial photography and site observations based on topography.
- Groundwater samples demonstrated a varying level of contamination for petroleum hydrocarbons (PHCs), volatile organic compounds (VOCs), and chlorinated hydrocarbons.

A soil vapour sample indicated VOCs, aliphatic and aromatic hydrocarbons, and siloxanes. The concentrations were considered trace to low and not identified as an environmental concern to the residential developments southeast of the area.

The recommendations of the program were as follows:

- Monitor groundwater elevations and soil vapour data quarterly for one hydrogeological cycle.
- Determine if surface water sampling should be included along with additional groundwater monitoring locations to determine exposure from leachate contaminants.
- Collect an additional set of soil vapour and groundwater analytical data, groundwater elevations, and volatile headspace measurement during the winter months to determine seasonal changes in soil vapour concentrations.
- Develop a RMP to consider future land uses and address environmental concerns.
- Review all data to update the RMP with new information.

The results of the subsequent RMP conducted by Tiamat in 2014 indicated the following:

- Information in the preliminary quantitative risk assessment (PQRA) should be updated as new site information is obtained.
- A review of the RMP should be completed when the PQRA information is updated if there are changes to the chemicals of potential concern (COPCs).
- The RMP should be reviewed and updated at five-year intervals.

⁴ Tiamat Environmental Consultants Ltd. 2013. Phase I Environmental Site Assessment, Historic Waste Disposal Site, McKenzie Trail, The City of Red Deer. September 24, 2013.

⁵ Tiamat Environmental Consultants Ltd. 2014. Environmental Risk Management Plan, Historic Waste Disposal Sites, McKenzie Trails Recreation Area, The City of Red Deer. November 26, 2014.

3.0 SITE SETTING

The following section presents an overview of the regional and local setting for the site.

3.1 Geology

The following sections summarize the regional and local geology.

3.1.1 Geological Setting and Stratigraphy

The following description of regional geological setting was obtained from Tiamat's 2013 Phase I report⁴:

"The City of Red Deer and area are located within the Red Deer River drainage basin in the western Alberta Plains. The Red Deer River valley is the principal drainage way. The fertile black soil in the region (Penhold Loam) is of alluvial lacustrine origin. The Penhold Loam is a well-drained fine sandy loam classified as Chernozemic. It is generally stone free and in natural areas, is typically 1.5 m thick, more or less.

The local topography is characterized with gentle slopes bordered on the east and west by uplands and incised at its lowest part by the valley of the Red Deer River. The Tertiary bedrock consists of sequences of alternating shales and sandstones of the Paskapoo Formation whereas the Quaternary deposits consist of drift deposits of clay, silt, gravel and sand. Published information indicates the banks of the Red Deer River comprise of dirty gravel with thickness ranging from 6 to 12 m, more or less. The Paskapoo Formation underlies the gravel sediments. This non-marine bedrock is composed of mudstone, siltstone and sandstone. The formation of the Rocky Mountains subjected the Paskapoo Formation to a regional stress-induced fracture pattern.

Generally, the fracture pattern resembles a series of vertical fractures that trend southwest to northeast, perpendicular to the Rocky Mountains. A report from the Alberta Energy and Utilities Board EUB/AGS Earth Sciences Report 2002-04, suggest the pattern of fractures may be complemented with sub-horizontal fractures resulting from conjugate fracture patterns, differential stress release or pressure release events. In the valley, lies preglacial Saskatchewan gravels and sand. Terrace gravels hydraulically connected to the Red Deer River are a known groundwater resource.

Surficial soils comprise largely of poorly to moderately sorted sand, silt and gravel with a varying amount of clay. The fluvial sediments generally have obscure bedding planes. Medium to coarse sized gravel with cross-bedded sand have been documented."

3.1.2 Local Geology

Based on the findings from the 2014 Phase II ESA, McKenzie Trails Park consisted of 8 cm to 15 cm of sod and loam overlying municipal solid waste. The MSW is overlying a mix of silt (fill), sand and gravel (native), and siltstone and shale (bedrock). The maximum depth of waste encountered was approximately 6 m. There are no indications of a prepared landfill foundation (e.g., compacted clay liner) based on the drilling logs.

Mapping by the Alberta Geological Survey⁶ indicates that a buried valley could be present approximately 300 m east of the site trending in a north-northeast direction; however, the width of the valley is not defined.

⁶ Andriashek, L. comp. (2018): Thalwegs of bedrock valleys, Alberta (GIS data, line features); Alberta Energy Regulator, AER/AGS Digital Data 2018-0001.

3.2 Hydrogeology

The following sections summarize the regional and local hydrogeology.

3.2.1 Regional Hydrogeology

The following description is taken from regional hydrogeology information from Tiamat's 2013 Phase I report⁴:

"A significant buried valley and aquifer resource trending northeastward through the city has been partially mapped and lies in the SE 28-38-27 W4M (MacKenzie Trail and Riverside). This buried valley extends to a depth of 21 m, more or less and may extend to the south into north portions of 21-28-27 W4M."

"The dominant type of near-surface groundwater in the Paskapoo Formation in the area of assessment is sodium bicarbonate. Notable concentrations of sodium sulfate type groundwater have also been reported. The quality of groundwater for potable use is generally suitable to depths of 300 m on the west side of Red Deer and decreases to 90 m, more or less in the east.

Areas of recharge (downward flow) in unsaturated heterogeneous sediments include most areas above the river and creek valleys, whereas; the river valleys will generally exhibit discharge. The distribution of groundwater in the area can also be influenced by the local geology, topographic relief, areas of artesian flow, springs and reasonable yielding water source wells.

Numerous permanent surface water features within The City of Red Deer and vicinity include Red Deer River, Waskasoo Creek, Gaetz Lakes, Hazlett Lake, Bower Ponds (result of formerly mining gravel resources), various sloughs in the fringe areas of the city and an assortment of other smaller creeks and springs. These water bodies can be relevant to the environmental sensitivity of the site assessment."

There is a hydrologic relation between the gravel deposit and the Red Deer River. Depending on local sediments and flow dynamics, some sections of the Red Deer River may experience an influent flow pattern and river water may enter the gravel beds and remain as riverbank storage. The bank storage is typically gradually released when the river becomes effluent, usually between July and August. These seasonal fluctuations of the river level have notable influences with the magnitude and direction of groundwater. Discharges generally occur at some point downstream from the point of entry.

The regional groundwater generally follows the bedrock topography. It should be noted that local topography, geology, land development, and soil disturbances may influence the local movement and pattern of groundwater and in conjunction; groundwater levels may fluctuate seasonally and in response to climatic conditions. The shallow pattern of flow can also be influenced by the physical attributes of the fluvial sediments and the glacially formed Red Deer River Valley.

3.2.2 Local Hydrogeology

The Red Deer River is located on the west and north sides of McKenzie Trails Park and flows in a northerly direction. Shallow groundwater is assumed to flow towards or parallel to the river. A man-made pond is located in the central portion of McKenzie Trails Park, south of the closed landfill, and collects some of the site drainage.

3.3 Groundwater Resource Usage

A search of the Alberta Water Well Database conducted in January 2020 for groundwater users within a 1 km radius of the McKenzie Trails area identified 65 groundwater wells; 24 of the wells are listed as domestic use, two are listed as domestic and stock use, 21 are listed as investigation, two are listed as injection use, eight are listed as industrial use, three are listed as "other", one as observation use, and four are listed as unknown use⁷.

The nearest water well identified through the Water Well Database to site is located approximately 100 m west of site and the Red Deer River. The proposed well use was for investigation purposes. The water wells within a 1 km radius of site range from 2.4 m to 190 m deep. The status and use of the surrounding groundwater wells were not confirmed, and they were not field verified.

4.0 HAZARD QUOTIENTS

4.1 2019 Hazard Quotient Calculations

Using the soil vapour screening levels described above and the soil vapour sampling results, estimated cancer risks (for carcinogens) and estimated hazard quotients (HQs; for non-carcinogens) were calculated for the site.

Estimated risks were calculated by dividing the soil vapour concentration by the corresponding soil vapour screening level for carcinogenic effects and multiplying the ratio by the target risk level of 1×10^{-5} . Similarly, the estimated HQs represent the soil vapour concentration divided by the corresponding soil vapour screening level for non-carcinogenic effects.

Risk estimates for non-carcinogenic COPCs are defined as HQ. HQs are calculated based on a ratio of the estimated exposure and the toxicity reference values identified as the tolerable daily intake (TDI) or tolerable concentration (TC) according to the following equation:

Hazard Quotient = <u>Estimated Daily Dose (mg/kg-day or mg/m³)</u> Tolerable Daily Intake (mg/kg-day) or Tolerable Concentration (mg/m³)

Non-carcinogenic risk characterization in the assessment was completed for all COPCs.

When the HQ is greater than the target risk value, the scenario poses a potential concern and requires further evaluation or risk management. It is important to note that HQs greater than the target risk value do not necessarily indicate that adverse health effects will occur. This is because of the conservative assumptions used in estimating concentrations and in setting the target values. HQs that are less than the target risk value indicate that exposure is within acceptable levels and no further risk management is necessary. HQs greater than the target risk value suggest that further investigation or risk management (e.g., remediation) may be warranted.

For non-carcinogens, the cumulative target risk value used was 1.0. This target risk value accounts for additional exposure to the chemicals of concern from sources other than the site. Therefore, the cumulative target risk value of 1.0 represents an allocation of 20% of a person's daily exposure from site sources and the remaining 80% would come from other sources. Other sources of exposure include ambient air, household products, and soil and water contact from locations other than the site.

⁷ Alberta Environment and Parks. 2019b. Water Well Database. Information obtained http://www.telusgeomatics.com/tgpub/ag_water/.

For carcinogens, the risk of cancer is assumed to be proportional to dose with the assumption that any exposure results in a nonzero probability of risk. Carcinogenic risk probabilities were calculated by multiplying the estimated exposure level by the route-specific cancer slope factor (SF) or unit risk factor (URF) for each carcinogen:

$$R = E X SF (or URF)$$

Where:

R = Estimated individual excess lifetime cancer risk;

- E = Exposure level for each chemical of potential concern (mg/kg/day or mg/m³); and
- SF = Route- and chemical-specific SF (mg/kg/day)⁻¹ or URF ((mg/m³)⁻¹).

Risk probabilities determined for each carcinogen were also considered to be additive over all exposure pathways so that an overall risk of cancer was estimated for each group of potentially exposed receptors.

When assessing risks posed by exposure to carcinogenic substances, Health Canada and other regulatory agencies assume that any level of exposure is associated with some hypothetical cancer risk. As a result, it is necessary for regulatory agencies to specify an acceptable risk level. Per Health Canada guidance (2010a, 2010b), cancer risks are deemed essentially negligible where the estimated cumulative incremental lifetime cancer risk is less than or equal to 1 in 100,000 (1×10^{-5}).

For this evaluation, target risk and hazard levels were determined in accordance with the Alberta Tier 2 Guidelines. For carcinogens, the cumulative target risk level is 1×10^{-5} , as this value is considered by Health Canada to represent a negligible risk. For non-carcinogens a cumulative target hazard level of 1 is used as potential exposures that result in hazard indices equal to or less than 1 signify negligible potential for adverse health effects. Each sampling location was screened individually for every chemical detected.

A cumulative risk level for carcinogens was not calculated as none of the carcinogenic parameters were detected greater than the laboratory detection limits. A cumulative hazard level identified in the sample and its duplicate collected for the non-carcinogens ranged between 0.001 to 0.003.

The estimated cumulative risks and hazards associated with the soil vapour samples collected in December 2019 did not exceed the corresponding target risk and hazard levels.

4.2 Review of the 2014 Hazard Quotients from the Risk Management Plan

The following section is a review of the 2014 RMP⁵ for the site that was completed by Tiamat. The review of the 2014 RMP was completed for the 2019 groundwater and soil vapour monitoring report¹.

The 2014 RMP presented a proposed site-specific environmental risk management plan as a tool to assist with the review of future subdivision applications on lands lying within the regulated setback distance from the site (300 m). The focus was on potential ingress of soil gas for COPCs with a HQ greater than 1.0. Residential land use was considered most sensitive, and exposure ratings for other land uses (e.g., school, public institutions, commercial complexes) were considered to not be greater than residential; however, unique exceptions would have to be reviewed and addressed on a site-specific basis⁵. Further, underground utility workers and subsurface utility infrastructure were considered relevant to potential exposure.

The RMP applied a 10x factor of safety to the HQs to address uncertainties. HQs from the RMP ranged up to 566 (including the 10x factor of safety). Based on these, the RMP then provided recommended generic mitigative measures based on the calculated HQs, ranging from passive to active measures, recognizing that the ultimate approach would require a design professional for the proposed development.

Following the 2014 RMP, Canadian Council of Minister of the Environment (CCME) released the document A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures Via Inhalation of Vapours⁸, designed to provide guidance for developing site-appropriate soil vapour quality guidelines. The guidelines developed using the methods outlined in the CCME document were used for this current study and are included with the vapour sampling results in Table 4. HQs were calculated using estimated dose (based on concentrations measured at the site) and divided by tolerable daily intake. Soil vapour concentrations from the Phase II ESA conducted in 2013 were not compared to soil vapour quality guidelines; however, spot checks of five target compounds with the highest HQs in the 2013 work (benzene, tetrachloroethylene, chloromethane, 1,2,4--trimethylbenzene, and styrene) identified that none of the 2013 concentrations would have unacceptable HQs using the updated CCME methodology.

The 2014 RMP was prepared concurrent to RMPs at several other former City landfills, and a common set of mitigative measures was applied based on the HQs. Subsequent to the 2014 RMP and to the release of the CCME Protocol document, The City undertook additional assessment at another former City Landfill (Montfort); as part of that work, their consultant XCG Consulting Limited (XCG) revised the 2014 RMP criteria ranges for each generic mitigative measure category to include a Cancer Risk range to allow comparison of the 2014 RMP ranges with the HQ and Cancer Risks calculated by XCG⁹. From that work, XCG identified the following generic mitigative measures for developments within a 300 m setback of these landfills (based on Tiamat 2014), and these have been adopted for this site:

Passive Measures

1. Passive Measures – Level A: for Cancer Risk of > $1E^{-5}$ and < $5E^{-5}$ and/or HQ >0.2 and <1.

Compacted clay liner with a minimum thickness of 1 m and confirmed maximum hydraulic conductivity of 10⁻⁶ cm/sec.

2. Passive Measures – Level B: for Cancer Risk of > $5E^{-5}$ and < $5E^{-4}$ and/or HQ >1 and <5.

Synthetic liner with type of material, thickness, and installation details dependent on the design professional.

3. Passive Measures – Level C: for Cancer Risk of > $5E^{-4}$ and < $1E^{-3}$ and/or HQ >5 and <50.

Passive sub-slab depressurization (SSD) system with a minimum depressurization of 4 Pa to 10 Pa. In some instances (such as a pervious subgrade), the actual depressurization necessary may require an active SSD or alternative active ventilation system.

Active Measures

Field verify the presence of the identified chemicals of concern and other potential chemicals in the soil gas state at the development site. If confirmed, determine the most appropriate manner to prevent soil vapour intrusion.

1. Active Measures – Level D: for Cancer Risk of > $1E^{-3}$ and < $2E^{-3}$ and/or HQ values >50 and <100.

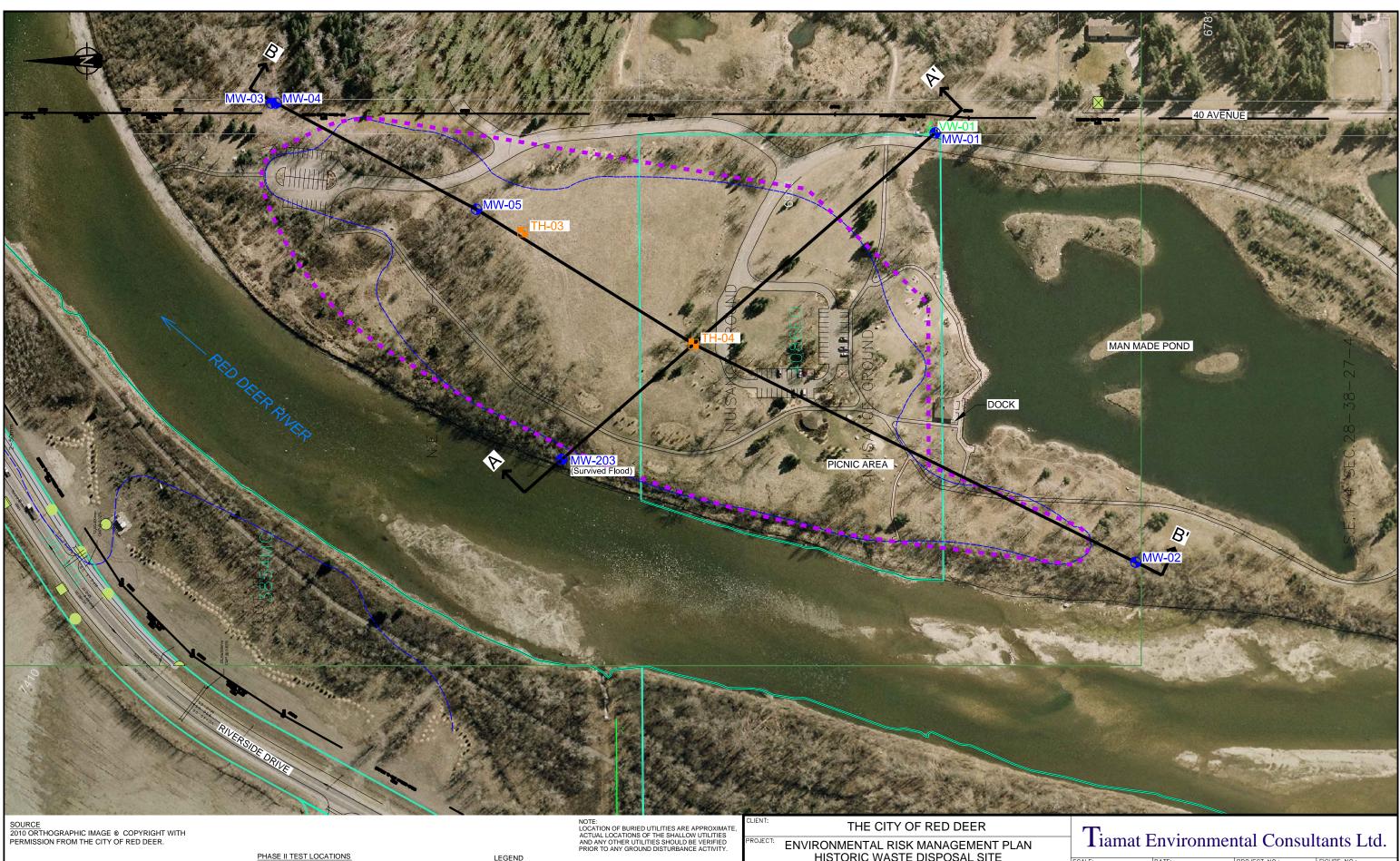
Active SSD must be configured to compensate for depressurization of the building and have adequate negative pressure gradients across the entire footprint of the foundation.

2. Active Measures – Level E: for Cancer Risk of >2E⁻³ and/or HQ values >100.

Installation of geomembrane and active soil vapour extraction with system fault notification alarm.

⁸ Canadian Council of Ministers of the Environment. 2014. A Protocol for the Derivation of Soil Vapour Quality Guidelines for Exposure Protection of Human Exposures via Inhalation of Vapours. Available online: <u>http://cegg-rcge.ccme.ca/en/index.html#void</u>.

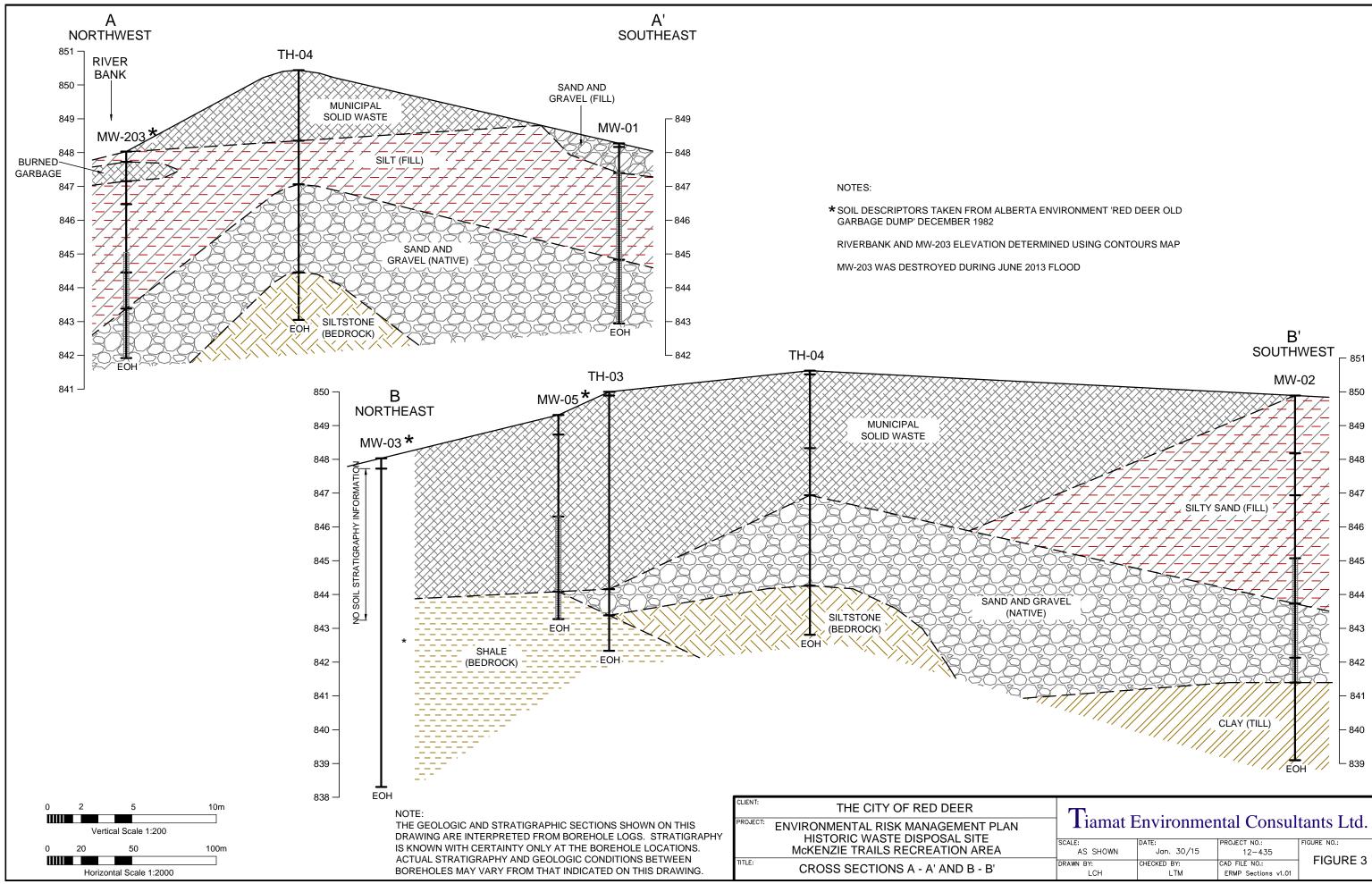
⁹ XCG Consulting Limited, 2018. Vapour Intrusion Assessment and Environmental Monitoring Report, prepared for the City of Red Deer's Montfort Landfill.


For consistency with XCG's approach from 2017, we compared individual HQs with the individual target hazard level (0.2). Based on the 2019 program, the greatest HQ calculated for the site was 0.001 (vs. target individual hazard level of 0.2) and the estimated cancer risk was not calculated as no carcinogenic parameters were detected above the detection limits. The greatest cumulative HQ calculated for the site was 0.003 (vs. target cumulative hazard level of 1.0). While development at the site is not currently proposed, for illustrative purposes, based on these HQs calculated from the 2019 vapour data, no passive or active measures would be required for the site. It is noted that even if the 10x factor of safety is applied, mitigative measures would still not be required. It should also be notes that assumptions made in the calculations of HQs and cancer risk above are inherently conservative; therefore, applying a factor of safety is not needed.

Future applications for development within the setback are subject to review by The City. The developer's team would be responsible for reviewing and verifying the available data relative to their proposed development. The mitigative measures presented above are generic and can be used as a general guide for expectations by The City; ultimately, the developer's design engineer would be responsible for developing measures specific to the intended development based on the above or an appropriate equivalent. Protection of workers (e.g., construction and utility) should form part of any development plan.

APPENDIX C

CROSS-SECTIONS (TIAMAT 2014A)


0	20		50	100m
ШП				
		Scale	e 1:2000	

PHASE II TEST LOCATIONS WW-## GROUNDWATER MONITORING WELL (5) TH-## TESTHOLE (2) VP-## SOIL VAPOUR MONITORING WELL (1) REFER TO TABLE 1 FOR TESTHOLE INFORMATION LEGEND HISTORIC WASTE DISPOSAL LOT BOUNDARY 100 YEAR FLOOD LINE CROSS SECTION LOCATION

ELECTRICAL
 SANITARY
 STORM
 WATER

ENVIRONMENTAL RISK MANAGEMENT PLAN HISTORIC WASTE DISPOSAL SITE McKENZIE TRAILS RECREATION AREA

	SCALE:	DATE:	PROJECT NO .:	FIGURE NO .:
	1 : 2000	June 24/14	12-435	
	DRAWN BY:	CHECKED BY:	CAD FILE NO.:	FIGURE 2
STE	LCH	LTM	ERMP v1.00.dwg	

 Tiamat H	Environme	ntal Consul	tants Ltd.
SCALE:	DATE:	PROJECT NO .:	FIGURE NO .:
 AS SHOWN	Jan. 30/15	12-435	FIGURE 3
DRAWN BY:	CHECKED BY:	CAD FILE NO.:	FIGURE 3
LCH	LTM	ERMP Sections v1.01	

APPENDIX D

LABORATORY ANALYTICAL REPORT

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS								
Work Order	: CG2217088	Page	: 1 of 6					
Client	: Tetra Tech Canada Inc.	Laboratory	: Calgary - Environmental					
Contact	: Darby Madalena	Account Manager	: Patryk Wojciak					
Address	: 110, 140 Quarry Park Blvd SE Calgary AB Canada T2C 3G3	Address	: 2559 29th Street NE Calgary AB Canada T1Y 7B5					
Telephone	: 403 203 3355	Telephone	: +1 403 407 1800					
Project	: SWM.SWOP04071-03.003	Date Samples Received	: 12-Dec-2022 08:00					
PO	: SWM.SWOP04071-03.003	Date Analysis Commenced	: 12-Dec-2022					
C-O-C number	: CORD MCKENZIE TRAILS	Issue Date	: 16-Dec-2022 15:04					
Sampler	: Ryan Miller							
Site	:							
Quote number	: CG22-EBAE100-0021 City of Red Deer (CORD) Pre-1972 Landfill Sites							
No. of samples received	: 4							
No. of samples analysed	: 4							

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Anthony Calero	Supervisor - Inorganic	Inorganics, Calgary, Alberta	
Jeanie Mark	Laboratory Analyst	Organics, Calgary, Alberta	
Kevin Baxter	Team Leader - Inorganics	Metals, Calgary, Alberta	
Shirley Li	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Shirley Li	Team Leader - Inorganics	Metals, Calgary, Alberta	
Sonthuong Bui	Laboratory Analyst	Metals, Calgary, Alberta	
Summie Lo	Lab Assistant	Metals, Calgary, Alberta	
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta	

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
-	no units
%	percent
µg/L	micrograms per litre
µS/cm	microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.

Sub-Matrix: Water			Cl	ient sample ID	MW-03	MW-04	MW-203	DUPLICATE	
(Matrix: Water)									
			Client samp	ling date / time	08-Dec-2022 10:35	08-Dec-2022 10:45	08-Dec-2022 11:00	08-Dec-2022	
Analyte	CAS Number	Method	LOR	Unit	CG2217088-001	CG2217088-002	CG2217088-003	CG2217088-004	
					Result	Result	Result	Result	
Physical Tests									
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	1140	1120	896	1140	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	934	920	735	937	
conductivity		E100	1.0	µS/cm	1660	1610	1350	1650	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	544	668	529	570	
рН		E108	0.10	pH units	7.77	7.62	7.71	7.75	
solids, total dissolved [TDS], calculated		EC103	1.0	mg/L	1080	1040	858	1100	
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	5.57	11.0	14.1	5.52	
chloride	16887-00-6	E235.Cl	0.50	mg/L	41.4	28.1	22.9	40.2	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.157	0.233	0.218	0.123	
nitrate (as N)	14797-55-8	E235.NO3	0.020	mg/L	0.152	<0.100 DLDS	<0.100 DLDS	<0.100 DLDS	
nitrate + nitrite (as N)		EC235.N+N	0.0032	mg/L	0.152	<0.112	<0.112	<0.112	
nitrite (as N)	14797-65-0	E235.NO2	0.010	mg/L	<0.050 DLDS	<0.050 DLDS	<0.050 DLDS	<0.050 DLDS	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	69.6	64.8	85.3	69.2	
Ion Balance									
anion sum		EC101	0.10	meq/L	21.3	20.5	17.1	21.3	
cation sum		EC101	0.10	meq/L	19.8	19.6	15.5	20.4	
ion balance (APHA)		EC101	0.01	%	-3.65	-2.24	-4.91	-2.16	
ion balance (cations/anions)		EC101	0.010	%	93.0	95.6	90.6	95.8	
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0036	0.0036	0.0060	0.0039	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	0.00012	<0.00010	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00130	0.00398	0.00396	0.00120	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.360	0.277	0.243	0.366	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.791	1.06	0.534	0.818	
cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0000830	0.0000098	<0.000050	0.0000861	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	134	162	130	145	
1	I		•				I		I

Sub-Matrix: Water			Cli	ent sample ID	MW-03	MW-04	MW-203	DUPLICATE	
(Matrix: Water)									
			Client samp	ling date / time	08-Dec-2022 10:35	08-Dec-2022 10:45	08-Dec-2022 11:00	08-Dec-2022	
Analyte	CAS Number	Method	LOR	Unit	CG2217088-001	CG2217088-002	CG2217088-003	CG2217088-004	
					Result	Result	Result	Result	
Dissolved Metals									
chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00051	0.00134	<0.00020	0.00041	
iron, dissolved	7439-89-6	E421	0.010	mg/L	0.029	3.70	0.753	0.029	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	50.8	64.0	49.7	50.4	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.796	1.06	0.358	0.810	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00467	0.0112	0.00182	0.00466	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	8.49	19.3	13.7	8.80	
selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.000063	0.000064	0.00360	0.000285	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	190	110	80.2	192	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00212	0.00291	0.000473	0.00234	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0021	0.0028	0.0019	0.0013	
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	Field	
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	
Volatile Organic Compounds									
benzene	71-43-2	E611E	0.50	µg/L	<0.50	<0.50	0.79	<0.50	
bromobenzene	108-86-1	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
bromochloromethane	74-97-5	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
bromodichloromethane	75-27-4	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
bromoform	75-25-2	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
bromomethane	74-83-9	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
butylbenzene, n-	104-51-8	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
butylbenzene, sec-	135-98-8	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
butylbenzene, tert-	98-06-6	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
carbon tetrachloride	56-23-5	E611E	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	
chlorobenzene	108-90-7	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
chloroethane	75-00-3	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
chloroform	67-66-3	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
	07-00-3	LUTTE		₽9/⊏	-1.0	-1.0	-1.0	-1.0	

Sub-Matrix: Water			C	lient sample ID	MW-03	MW-04	MW-203	DUPLICATE	
(Matrix: Water)									
			Client samp	oling date / time	08-Dec-2022 10:35	08-Dec-2022 10:45	08-Dec-2022 11:00	08-Dec-2022	
Analyte	CAS Number	Method	LOR	Unit	CG2217088-001	CG2217088-002	CG2217088-003	CG2217088-004	
					Result	Result	Result	Result	
Volatile Organic Compounds									
chloromethane	74-87-3	E611E	5.0	µg/L	<5.0	<5.0	<5.0	<5.0	
chlorotoluene, 2-	95-49-8	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
chlorotoluene, 4-	106-43-4	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
cymene, p-	99-87-6	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dibromo-3-chloropropane, 1,2-	96-12-8	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dibromochloromethane	124-48-1	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
dibromoethane, 1,2-	106-93-4	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dibromomethane	74-95-3	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dichlorobenzene, 1,2-	95-50-1	E611E	0.50	µg/L	<0.50	<0.50	<0.50	<0.50	
dichlorobenzene, 1,3-	541-73-1	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dichlorobenzene, 1,4-	106-46-7	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dichlorodifluoromethane	75-71-8	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dichloroethane, 1,1-	75-34-3	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dichloroethane, 1,2-	107-06-2	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dichloroethylene, 1,1-	75-35-4	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dichloroethylene, cis-1,2-	156-59-2	E611E	1.0	µg/L	4.9	10.2	10.6	5.3	
dichloroethylene, trans-1,2-	156-60-5	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dichloromethane	75-09-2	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dichloropropane, 1,2-	78-87-5	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dichloropropane, 1,3-	142-28-9	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dichloropropane, 2,2-	594-20-7	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dichloropropylene, 1,1-	563-58-6	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dichloropropylene, cis+trans-1,3-	542-75-6	E611E	1.5	μg/L	<1.5	<1.5	<1.5	<1.5	
dichloropropylene, cis-1,3-	10061-01-5	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
dichloropropylene, trans-1,3-	10061-02-6	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
ethylbenzene	100-41-4	E611E	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	
hexachlorobutadiene	87-68-3	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
isopropylbenzene	98-82-8	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
methyl-tert-butyl ether [MTBE]	1634-04-4	E611E	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	
propylbenzene, n-	103-65-1	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
			1			I		I I	

Sub-Matrix: Water			C	lient sample ID	MW-03	MW-04	MW-203	DUPLICATE	
(Matrix: Water)									I
			Client samp	ling date / time	08-Dec-2022 10:35	08-Dec-2022 10:45	08-Dec-2022 11:00	08-Dec-2022	
Analyte	CAS Number	Method	LOR	Unit	CG2217088-001	CG2217088-002	CG2217088-003	CG2217088-004	
					Result	Result	Result	Result	
Volatile Organic Compounds									
styrene	100-42-5	E611E	0.50	µg/L	<0.50	<0.50	<0.50	<0.50	
tetrachloroethane, 1,1,1,2-	630-20-6	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
tetrachloroethane, 1,1,2,2-	79-34-5	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
tetrachloroethylene	127-18-4	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
toluene	108-88-3	E611E	0.50	µg/L	<0.50	<0.50	<0.50	<0.50	
trichlorobenzene, 1,2,3-	87-61-6	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
trichlorobenzene, 1,2,4-	120-82-1	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
trichloroethane, 1,1,1-	71-55-6	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
trichloroethane, 1,1,2-	79-00-5	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
trichloroethylene	79-01-6	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
trichlorofluoromethane	75-69-4	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
trichloropropane, 1,2,3-	96-18-4	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
trimethylbenzene, 1,2,4-	95-63-6	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
trimethylbenzene, 1,3,5-	108-67-8	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
vinyl chloride	75-01-4	E611E	1.0	µg/L	1.6	3.7	6.2	1.6	
xylene, m+p-	179601-23-1	E611E	0.40	µg/L	<0.40	<0.40	<0.40	<0.40	
xylene, o-	95-47-6	E611E	0.30	µg/L	<0.30	<0.30	<0.30	<0.30	
xylenes, total	1330-20-7	E611E	0.50	µg/L	<0.50	<0.50	<0.50	<0.50	
BTEX, total		E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
trihalomethanes [THMs], total		E611E	2.0	µg/L	<2.0	<2.0	<2.0	<2.0	
Volatile Organic Compounds Surrogates									
bromofluorobenzene, 4-	460-00-4	E611E	1.0	%	77.5	75.8	77.2	72.1	
difluorobenzene, 1,4-	540-36-3	E611E	1.0	%	101	102	101	101	

Please refer to the General Comments section for an explanation of any qualifiers detected.

	QUALITY CONTROL INT	ERPRETIVE REI	PORT
Work Order	:CG2217088	Page	: 1 of 12
Client	E Tetra Tech Canada Inc.	Laboratory	: Calgary - Environmental
Contact	: Darby Madalena	Account Manager	Patryk Wojciak
Address	: 110, 140 Quarry Park Blvd SE	Address	2559 29th Street NE
	Calgary AB Canada T2C 3G3		Calgary, Alberta Canada T1Y 7B5
Telephone	:403 203 3355	Telephone	: +1 403 407 1800
Project	:SWM.SWOP04071-03.003	Date Samples Received	: 12-Dec-2022 08:00
PO	: SWM.SWOP04071-03.003	Issue Date	: 16-Dec-2022 15:05
C-O-C number	CORD MCKENZIE TRAILS		
Sampler	: Ryan Miller		
Site			
Quote number	CG22-EBAE100-0021 City of Red Deer (CORD) Pre-1972 Landfill		
	Sites		
No. of samples received	:4		
No. of samples analysed	:4		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

<u>Key</u>

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- <u>No</u> Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Aatrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🔹	<pre>/ = Within</pre>	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
DUPLICATE	E298	08-Dec-2022	12-Dec-2022				12-Dec-2022	28 days	4 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
MW-03	E298	08-Dec-2022	12-Dec-2022				12-Dec-2022	28 days	4 days	✓
Anions and Nutrients : Ammonia by Fluorescence									·	
Amber glass total (sulfuric acid)										
MW-04	E298	08-Dec-2022	12-Dec-2022				12-Dec-2022	28 days	4 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
MW-203	E298	08-Dec-2022	12-Dec-2022				12-Dec-2022	28 days	4 days	1
Anions and Nutrients : Chloride in Water by IC										
HDPE										
DUPLICATE	E235.Cl	08-Dec-2022	12-Dec-2022				12-Dec-2022	28 days	4 days	1
Anions and Nutrients : Chloride in Water by IC										
HDPE										
MW-03	E235.CI	08-Dec-2022	12-Dec-2022				12-Dec-2022	28 days	4 days	1
Anions and Nutrients : Chloride in Water by IC										
HDPE										
MW-04	E235.Cl	08-Dec-2022	12-Dec-2022				12-Dec-2022	28 days	4 days	1

Page Work Order	:	4 of 12 CG2217088
Client	:	Tetra Tech Canada Inc.
Project	:	SWM.SWOP04071-03.003

Matrix: Water					Ev	valuation: × =	Holding time exce	edance ; •	= Withir	Holding Tin
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Anions and Nutrients : Chloride in Water by IC										
HDPE MW-203	E235.Cl	08-Dec-2022	12-Dec-2022				12-Dec-2022	28 days	4 days	*
Anions and Nutrients : Fluoride in Water by IC										
HDPE DUPLICATE	E235.F	08-Dec-2022	12-Dec-2022				12-Dec-2022	28 days	4 days	*
Anions and Nutrients : Fluoride in Water by IC										
HDPE MW-03	E235.F	08-Dec-2022	12-Dec-2022				12-Dec-2022	28 days	4 days	*
Anions and Nutrients : Fluoride in Water by IC				1						
HDPE MW-04	E235.F	08-Dec-2022	12-Dec-2022				12-Dec-2022	28 days	4 days	4
Anions and Nutrients : Fluoride in Water by IC										
HDPE MW-203	E235.F	08-Dec-2022	12-Dec-2022				12-Dec-2022	28 days	4 days	1
Anions and Nutrients : Nitrate in Water by IC										
HDPE DUPLICATE	E235.NO3	08-Dec-2022	12-Dec-2022				12-Dec-2022	3 days	4 days	¥ EHTR-FM
Anions and Nutrients : Nitrate in Water by IC										
HDPE MW-03	E235.NO3	08-Dec-2022	12-Dec-2022				12-Dec-2022	3 days	4 days	¥ EHTR-FN
Anions and Nutrients : Nitrate in Water by IC										
HDPE MW-04	E235.NO3	08-Dec-2022	12-Dec-2022				12-Dec-2022	3 days	4 days	¥ EHTR-FM
Anions and Nutrients : Nitrate in Water by IC										
HDPE MW-203	E235.NO3	08-Dec-2022	12-Dec-2022				12-Dec-2022	3 days	4 days	¥ EHTR-FN

Page Work Order	:	5 of 12 CG2217088
Client	:	Tetra Tech Canada Inc.
Project	:	SWM.SWOP04071-03.003

Matrix: Water				=		/aluation: × =	Holding time exce			Holding Tin
Analyte Group Container / Client Sample ID(s)	Method	Sampling Date	Ext Preparation Date	traction / Pr Holding Rec	g Times	Eval	Analysis Date	Analys Holding Rec	g Times Actual	Eval
Anions and Nutrients : Nitrite in Water by IC										
HDPE DUPLICATE	E235.NO2	08-Dec-2022	12-Dec-2022				12-Dec-2022	3 days	4 days	¥ EHTR-FM
Anions and Nutrients : Nitrite in Water by IC										
HDPE MW-03	E235.NO2	08-Dec-2022	12-Dec-2022				12-Dec-2022	3 days	4 days	¥ EHTR-FM
Anions and Nutrients : Nitrite in Water by IC										
HDPE MW-04	E235.NO2	08-Dec-2022	12-Dec-2022				12-Dec-2022	3 days	4 days	¥ EHTR-FN
Anions and Nutrients : Nitrite in Water by IC										
HDPE MW-203	E235.NO2	08-Dec-2022	12-Dec-2022				12-Dec-2022	3 days	4 days	¥ EHTR-FN
Anions and Nutrients : Sulfate in Water by IC										
HDPE DUPLICATE	E235.SO4	08-Dec-2022	12-Dec-2022				12-Dec-2022	28 days	4 days	1
Anions and Nutrients : Sulfate in Water by IC										
HDPE MW-03	E235.SO4	08-Dec-2022	12-Dec-2022				12-Dec-2022	28 days	4 days	*
Anions and Nutrients : Sulfate in Water by IC										
HDPE MW-04	E235.SO4	08-Dec-2022	12-Dec-2022				12-Dec-2022	28 days	4 days	1
Anions and Nutrients : Sulfate in Water by IC								I	1	I
HDPE MW-203	E235.SO4	08-Dec-2022	12-Dec-2022				12-Dec-2022	28 days	4 days	*
Dissolved Metals : Dissolved Mercury in Water by CVAAS				1	I			1	1	
Glass vial dissolved (hydrochloric acid) DUPLICATE	E509	08-Dec-2022	12-Dec-2022				12-Dec-2022	28 days	4 days	*

Page	:	6 of 12
Work Order	1	CG2217088
Client	1	Tetra Tech Canada Inc.
Project	:	SWM.SWOP04071-03.003

Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)		, ,	Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) MW-03	E509	08-Dec-2022	12-Dec-2022				12-Dec-2022	28 days	4 days	1
Dissolved Metals : Dissolved Mercury in Water by CVAAS				1						
Glass vial dissolved (hydrochloric acid) MW-04	E509	08-Dec-2022	12-Dec-2022				12-Dec-2022	28 days	4 days	~
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) MW-203	E509	08-Dec-2022	12-Dec-2022				12-Dec-2022	28 days	4 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) DUPLICATE	E421	08-Dec-2022	14-Dec-2022				14-Dec-2022	180 days	6 days	1
issolved Metals : Dissolved Metals in Water by CRC ICPMS				1						
HDPE dissolved (nitric acid) MW-03	E421	08-Dec-2022	14-Dec-2022				14-Dec-2022	180 days	6 days	4
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) MW-04	E421	08-Dec-2022	14-Dec-2022				14-Dec-2022	180 days	6 days	1
issolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) MW-203	E421	08-Dec-2022	14-Dec-2022				14-Dec-2022	180 days	6 days	1
Physical Tests : Alkalinity Species by Titration										
HDPE DUPLICATE	E290	08-Dec-2022	14-Dec-2022				14-Dec-2022	14 days	6 days	*
hysical Tests : Alkalinity Species by Titration									1	
HDPE MW-03	E290	08-Dec-2022	14-Dec-2022				14-Dec-2022	14 days	6 days	1

Page Work Order	:	7 of 12 CG2217088
Client	:	Tetra Tech Canada Inc.
Project	:	SWM.SWOP04071-03.003

Matrix: Water					E	valuation: × =	Holding time exce	edance ; •	= Within	Holding Time
Analyte Group	Method	Sampling Date		traction / Pr	reparation			Analys		
Container / Client Sample ID(s)			Preparation	· · · · ·	g Times	Eval	Analysis Date		Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Alkalinity Species by Titration										
HDPE MW-04	E290	08-Dec-2022	14-Dec-2022				14-Dec-2022	14 days	6 days	1
Physical Tests : Alkalinity Species by Titration										
HDPE										
MW-203	E290	08-Dec-2022	14-Dec-2022				14-Dec-2022	14 days	6 days	1
Physical Tests : Conductivity in Water										
HDPE	E100	08-Dec-2022	14-Dec-2022				14-Dec-2022	28 days	6 days	1
DUPLICATE	EIUU	08-Dec-2022	14-Dec-2022				14-Dec-2022	28 days	6 days	v
Physical Tests : Conductivity in Water										
HDPE MW-03	E100	08-Dec-2022	14-Dec-2022				14-Dec-2022	28 days	6 days	1
WW-05	2100	00-Dec-2022	14-Dec-2022				14-Dec-2022	20 uays	0 uays	·
Physical Tests : Conductivity in Water										
HDPE MW-04	E100	08-Dec-2022	14-Dec-2022				14-Dec-2022	28 days	6 days	1
14144-0-+	2100	00-Dec-2022	14-Dee-2022				14-Dec-2022	20 0493	0 uays	·
Physical Tests : Conductivity in Water										
HDPE MW-203	E100	08-Dec-2022	14-Dec-2022				14-Dec-2022	28 days	6 days	1
WW-203	L100	00-Dec-2022	14-Dec-2022				14-Dec-2022	20 uays	0 uays	•
Physical Tests : pH by Meter										
HDPE DUPLICATE	E108	08-Dec-2022	14-Dec-2022				14-Dec-2022	0.05	0.05	×
DUFLICATE	E 100	00-Dec-2022	14-Dec-2022				14-Dec-2022	0.25 hrs	0.25 hrs	EHTR-FM
Physical Tests : pH by Meter				1				I	<u> </u>	
HDPE	F100	00 5	14.5.00000				11.5			
MW-03	E108	08-Dec-2022	14-Dec-2022				14-Dec-2022	0.25 hrs	0.25 hrs	¥ EHTR-FM
Physical Tests : pH by Meter								1115	1115	
HDPE										
MW-04	E108	08-Dec-2022	14-Dec-2022				14-Dec-2022	0.25	0.25	*
								hrs	hrs	EHTR-FM

Page Work Order	:	8 of 12 CG2217088
Client Project	:	Tetra Tech Canada Inc. SWM.SWOP04071-03.003

Matrix: Water					Ev	aluation: × =	Holding time excee	edance ; 🗸	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter										
HDPE										
MW-203	E108	08-Dec-2022	14-Dec-2022				14-Dec-2022	0.25	0.25	*
								hrs	hrs	EHTR-FM
Volatile Organic Compounds : VOCs (Prairies List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
DUPLICATE	E611E	08-Dec-2022	12-Dec-2022				12-Dec-2022	14 days	4 days	1
Volatile Organic Compounds : VOCs (Prairies List) by Headspace GC-MS										
Glass vial (sodium bisulfate)	50445						10 5 0000			,
MW-03	E611E	08-Dec-2022	12-Dec-2022				12-Dec-2022	14 days	4 days	1
Volatile Organic Compounds : VOCs (Prairies List) by Headspace GC-MS					1					
Glass vial (sodium bisulfate)	E611E	08-Dec-2022	12-Dec-2022				12-Dec-2022	14 days	1 days	1
MW-04	EOIIE	06-Dec-2022	12-Dec-2022				12-Dec-2022	14 days	4 days	•
Volatile Organic Compounds : VOCs (Prairies List) by Headspace GC-MS										
Glass vial (sodium bisulfate) MW-203	E611E	08-Dec-2022	12-Dec-2022				12-Dec-2022	14 dovo	1 days	1
WW-203	EOIIE	00-Dec-2022	12-Dec-2022				12-Dec-2022	14 days	4 uays	•

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Rec. HT: ALS recommended hold time (see units).

Page	:	9 of 12
Work Order	:	CG2217088
Client	:	Tetra Tech Canada Inc.
Project	:	SWM.SWOP04071-03.003

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type				ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Alkalinity Species by Titration	E290	778186	1	18	5.5	5.0	✓
Ammonia by Fluorescence	E298	775577	1	8	12.5	5.0	✓
Chloride in Water by IC	E235.Cl	775886	1	11	9.0	5.0	~
Conductivity in Water	E100	778188	1	18	5.5	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	775718	1	14	7.1	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	777979	1	18	5.5	5.0	✓
Fluoride in Water by IC	E235.F	775883	1	11	9.0	5.0	1
Nitrate in Water by IC	E235.NO3	775884	1	11	9.0	5.0	1
Nitrite in Water by IC	E235.NO2	775885	1	11	9.0	5.0	1
pH by Meter	E108	778187	1	18	5.5	5.0	~
Sulfate in Water by IC	E235.SO4	775887	1	11	9.0	5.0	1
VOCs (Prairies List) by Headspace GC-MS	E611E	775458	1	8	12.5	5.0	1
Laboratory Control Samples (LCS)							
Alkalinity Species by Titration	E290	778186	1	18	5.5	5.0	1
Ammonia by Fluorescence	E298	775577	1	8	12.5	5.0	
Chloride in Water by IC	E235.Cl	775886	1	11	9.0	5.0	
Conductivity in Water	E100	778188	1	18	5.5	5.0	
Dissolved Mercury in Water by CVAAS	E509	775718	1	14	7.1	5.0	
Dissolved Metals in Water by CRC ICPMS	E421	777979	1	18	5.5	5.0	
Fluoride in Water by IC	E235.F	775883	1	11	9.0	5.0	
Nitrate in Water by IC	E235.NO3	775884	1	11	9.0	5.0	
Nitrite in Water by IC	E235.NO2	775885	1	11	9.0	5.0	
pH by Meter	E108	778187	1	18	5.5	5.0	
Sulfate in Water by IC	E235.SO4	775887	1	11	9.0	5.0	
VOCs (Prairies List) by Headspace GC-MS	E611E	775458	1	8	12.5	5.0	
Method Blanks (MB)						1 1	-
Alkalinity Species by Titration	E290	778186	1	18	5.5	5.0	1
Ammonia by Fluorescence	E298	775577	1	8	12.5	5.0	
Chloride in Water by IC	E235.Cl	775886	1	11	9.0	5.0	
Conductivity in Water	E100	778188	1	18	5.5	5.0	
Dissolved Mercury in Water by CVAAS	E509	775718	1	14	7.1	5.0	
Dissolved Metals in Water by CRC ICPMS	E421	777979	1	18	5.5	5.0	
Fluoride in Water by IC	E235.F	775883	1	11	9.0	5.0	
Nitrate in Water by IC	E235.NO3	775884	1	11	9.0	5.0	
Nitrite in Water by IC	E235.NO2	775885	1	11	9.0	5.0	•

Page Work Order	:	10 of 12 CG2217088
Client	:	Tetra Tech Canada Inc.
Project	:	SWM.SWOP04071-03.003

Matrix: Water		Evaluatio	on: × = QC frequ	ency outside sp	ecification; ✓ = 0	QC frequency wi	thin specification
Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Method Blanks (MB) - Continued							
Sulfate in Water by IC	E235.SO4	775887	1	11	9.0	5.0	1
VOCs (Prairies List) by Headspace GC-MS	E611E	775458	1	8	12.5	5.0	✓
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	775577	1	8	12.5	5.0	1
Chloride in Water by IC	E235.Cl	775886	1	11	9.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	775718	1	14	7.1	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	777979	1	18	5.5	5.0	✓
Fluoride in Water by IC	E235.F	775883	1	11	9.0	5.0	~
Nitrate in Water by IC	E235.NO3	775884	1	11	9.0	5.0	~
Nitrite in Water by IC	E235.NO2	775885	1	11	9.0	5.0	✓
Sulfate in Water by IC	E235.SO4	775887	1	11	9.0	5.0	~
VOCs (Prairies List) by Headspace GC-MS	E611E	775458	1	8	12.5	5.0	✓

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is
				measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
				at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Chloride in Water by IC	E235.Cl	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV
	Calgary - Environmental			detection.
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV
				detection.
	Calgary - Environmental			
Nitrite in Water by IC	E235.NO2	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV
				detection.
Nitrate in Water by IC	Calgary - Environmental	Water		
Nitrate in Water by IC	E235.NO3	vvater	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV
	Calgary - Environmental			detection.
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV
-				detection.
	Calgary - Environmental			
Alkalinity Species by Titration	E290	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate,
				carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total
	Calgary - Environmental			alkalinity values.
Ammonia by Fluorescence	E298	Water	Method Fialab 100,	Ammonia in water is determined by automated continuous flow analysis with membrane
			2018	diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
Dissolved Metals in Water by CRC ICPMS	Calgary - Environmental	\\/otor		This method is approved under US EPA 40 CFR Part 136 (May 2021)
Dissolved Metals III Water by CRC ICPMS	E421	Water	APHA 3030B/EPA	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by
	Calgary - Environmental		6020B (mod)	Collision/Reaction Cell ICPMS.
				Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered
				by this method.
Dissolved Mercury in Water by CVAAS	E509	Water	APHA 3030B/EPA	Water samples are filtered (0.45 um), preserved with HCI, then undergo a cold-oxidation
			1631E (mod)	using bromine monochloride prior to reduction with stannous chloride, and analyzed by
	Calgary - Environmental			CVAAS.
VOCs (Prairies List) by Headspace GC-MS	E611E	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS.
				Samples are prepared in headspace vials and are heated and agitated on the
	Calgary - Environmental			headspace autosampler, causing VOCs to partition between the aqueous phase and
				the headspace in accordance with Henry's law.

Page Work Order	:	12 of 12 CG2217088
Client Project	:	Tetra Tech Canada Inc. SWM.SWOP04071-03.003

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Hardness (Calculated)	EC100 Calgary - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
lon Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
TDS in Water (Calculation)	EC103 Calgary - Environmental	Water	APHA 1030E (mod)	Total Dissolved Solids is calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present.
Nitrate and Nitrite (as N) (Calculation)	EC235.N+N Calgary - Environmental	Water	EPA 300.0	Nitrate and Nitrite (as N) is a calculated parameter. Nitrate and Nitrite (as N) = Nitrite (as N) + Nitrate (as N).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Dissolved Metals Water Filtration	EP421 Calgary - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
Dissolved Mercury Water Filtration	EP509 Calgary - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
VOCs Preparation for Headspace Analysis	EP581 Calgary - Environmental	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the GC/MS-FID system.

ALS Canada Ltd.

QUALITY CONTROL REPORT Work Order Page CG2217088 : 1 of 15 Client : Tetra Tech Canada Inc. Laboratory : Calgary - Environmental Account Manager Contact : Darby Madalena : Patryk Wojciak Address Address : 110, 140 Quarry Park Blvd SE : 2559 29th Street NE Calgary AB Canada T2C 3G3 Calgary, Alberta Canada T1Y 7B5 Telephone Telephone :+1 403 407 1800 Project **Date Samples Received** :12-Dec-2022 08:00 :SWM.SWOP04071-03.003 PO **Date Analysis Commenced** :12-Dec-2022 :SWM.SWOP04071-03.003 C-O-C number Issue Date CORD MCKENZIE TRAILS :16-Dec-2022 15:05 : Ryan Miller 403 203 3355 Sampler Site ----Quote number CG22-EBAE100-0021 City of Red Deer (CORD) Pre-1972 Landfill Sites No. of samples received : 4 No. of samples analysed : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Anthony Calero	Supervisor - Inorganic	Calgary Inorganics, Calgary, Alberta	
Jeanie Mark	Laboratory Analyst	Calgary Organics, Calgary, Alberta	
Kevin Baxter	Team Leader - Inorganics	Calgary Metals, Calgary, Alberta	
Shirley Li	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta	
Shirley Li	Team Leader - Inorganics	Calgary Metals, Calgary, Alberta	
Sonthuong Bui	Laboratory Analyst	Calgary Metals, Calgary, Alberta	
Summie Lo	Lab Assistant	Calgary Metals, Calgary, Alberta	
Vladka Stamenova	Analyst	Calgary Inorganics, Calgary, Alberta	

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 778186)										
CG2217087-004	Anonymous	alkalinity, total (as CaCO3)		E290	1.0	mg/L	770	759	1.48%	20%	
Physical Tests (QC	Lot: 778187)										
CG2217087-004	Anonymous	рН		E108	0.10	pH units	7.19	7.25	0.831%	4%	
Physical Tests (QC	Lot: 778188)										
CG2217087-004	Anonymous	conductivity		E100	1.0	μS/cm	2470	2490	0.806%	10%	
Anions and Nutrien	ts (QC Lot: 775577)										
CG2217087-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.125	mg/L	2.82	2.85	1.13%	20%	
Anions and Nutrien	ts (QC Lot: 775883)										
CG2217087-001	Anonymous	fluoride	16984-48-8	E235.F	0.100	mg/L	0.253	0.250	0.003	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 775884)										
CG2217087-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3	0.100	mg/L	<0.100	<0.100	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 775885)										
CG2217087-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 775886)										
CG2217087-001	Anonymous	chloride	16887-00-6	E235.CI	2.50	mg/L	381	387	1.56%	20%	
Anions and Nutrien	ts (QC Lot: 775887)										
CG2217087-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	1.50	mg/L	118	119	1.35%	20%	
Dissolved Metals(QC Lot: 775718)										
CG2216879-008	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 777979)										
CG2217056-009	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0020	mg/L	0.0023	0.0041	0.0018	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00020	mg/L	0.00023	<0.00020	0.00003	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00020	mg/L	0.00049	0.00060	0.00011	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00020	mg/L	0.00874	0.00956	8.96%	20%	
		boron, dissolved	7440-42-8	E421	0.020	mg/L	0.038	0.038	0.0008	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000100	mg/L	0.352 µg/L	0.000314	11.3%	20%	
		calcium, dissolved	7440-70-2	E421	0.100	mg/L	270	271	0.568%	20%	
		chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00040	mg/L	<0.00040	<0.00040	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.020	mg/L	0.021	0.020	0.00007	Diff <2x LOR	

Page	:	4 of 15
Work Order	:	CG2217088
Client	:	Tetra Tech Canada Inc.
Project	:	SWM.SWOP04071-03.003

Laboratory sample IDClient sample IDAnalyteCAS NumberMethodLORUnitOriginal ResultDuplicate ResultRPD(%) DifferentDissolved Metals (QC Lot: 777979) - continue </th <th></th> <th>Duplicate</th> <th colspan="6">Laboratory Duplicate (DUP) Report</th>		Duplicate	Laboratory Duplicate (DUP) Report					
CG2217056-009 Anonymous lead, dissolved 7439-92-1 E421 0.000100 mg/L <0.000100								
nagnesium, dissolved 7439-95-4 E421 0.0100 mg/L 143 151 5.47% manganese, dissolved 7439-96-5 E421 0.00020 mg/L 0.420 0.447 6.14% nickel, dissolved 7440-02-0 E421 0.00100 mg/L 0.0612 0.0651 6.22% potassium, dissolved 7440-02-7 E421 0.100 mg/L 4.83 5.16 6.66%								
manganese, dissolved 7439-96-5 E421 0.00020 mg/L 0.420 0.447 6.14% nickel, dissolved 7440-02-0 E421 0.00100 mg/L 0.0612 0.0651 6.22% potassium, dissolved 7440-09-7 E421 0.100 mg/L 4.83 5.16 6.66%	Diff <2x LOR	Diff <2x LOR	ff <2x LOR					
nickel, dissolved 7440-02-0 E421 0.00100 mg/L 0.0612 0.0651 6.22% potassium, dissolved 7440-09-7 E421 0.100 mg/L 4.83 5.16 6.66%	20%	20%	20%					
potassium, dissolved 7440-09-7 E421 0.100 mg/L 4.83 5.16 6.66%	20%	20%	20%					
	20%	20%	20%					
selenium, dissolved 7782-49-2 E421 0.000100 mg/L 1.80 μg/L 0.00185 2.37%	20%	20%	20%					
	20%	20%	20%					
silver, dissolved 7440-22-4 E421 0.00020 mg/L <0.000020 <0.000020 0	Diff <2x LOR	Diff <2x LOR	ff <2x LOR					
sodium, dissolved 7440-23-5 E421 0.100 mg/L 10.5 10.9 4.27%	20%	20%	20%					
uranium, dissolved 7440-61-1 E421 0.00020 mg/L 0.00966 0.00982 1.70%	20%	20%	20%					
zinc, dissolved 7440-66-6 E421 0.0020 mg/L 0.0238 0.0244 2.38%	20%	20%	20%					
/olatile Organic Compounds (QC Lot: 775458)								
CG2217087-001 Anonymous benzene 71-43-2 E611E 0.50 µg/L 1.16 1.27 0.11	Diff <2x LOR	Diff <2x LOR	ff <2x LOR					
bromobenzene 108-86-1 E611E 1.0 µg/L <1.0 <1.0 0	Diff <2x LOR	Diff <2x LOR	ff <2x LOR					
bromochloromethane 74-97-5 E611E 1.0 µg/L <1.0 <1.0 0	Diff <2x LOR	Diff <2x LOR	ff <2x LOR					
bromodichloromethane 75-27-4 E611E 1.0 µg/L <1.0 <1.0 0	Diff <2x LOR	Diff <2x LOR	ff <2x LOR					
bromoform 75-25-2 E611E 1.0 µg/L <1.0 <1.0 0	Diff <2x LOR	Diff <2x LOR	ff <2x LOR					
bromomethane 74-83-9 E611E 1.0 µg/L <1.0 <1.0 0	Diff <2x LOR	Diff <2x LOR	ff <2x LOR					
butylbenzene, n- 104-51-8 E611E 1.0 µg/L <1.0 <1.0 0	Diff <2x LOR	Diff <2x LOR	ff <2x LOR					
butylbenzene, sec- 135-98-8 E611E 1.0 μg/L <1.0 <1.0 0	Diff <2x LOR	Diff <2x LOR	ff <2x LOR					
butylbenzene, tert- 98-06-6 E611E 1.0 μg/L <1.0 <1.0 0	Diff <2x LOR	Diff <2x LOR	ff <2x LOR					
carbon tetrachloride 56-23-5 E611E 0.50 µg/L <0.50 <0.50 0	Diff <2x LOR	Diff <2x LOR	ff <2x LOR					
chlorobenzene 108-90-7 E611E 1.0 µg/L <1.0 <1.0 0	Diff <2x LOR	Diff <2x LOR	ff <2x LOR					
chloroethane 75-00-3 E611E 1.0 µg/L <1.0 <1.0 0	Diff <2x LOR	Diff <2x LOR	ff <2x LOR					
chloroform 67-66-3 E611E 1.0 µg/L <1.0 <1.0 0	Diff <2x LOR							
chloromethane 74-87-3 E611E 5.0 µg/L <5.0 <5.0 0	Diff <2x LOR	Diff <2x LOR	ff <2x LOR					
chlorotoluene, 2- 95-49-8 E611E 1.0 µg/L <1.0 <1.0 0	Diff <2x LOR							
chlorotoluene, 4- 106-43-4 E611E 1.0 µg/L <1.0 <1.0 0	Diff <2x LOR							
cymene, p- 99-87-6 E611E 1.0 µg/L <1.0 <1.0 0	Diff <2x LOR							
dibromo-3-chloropropane, 1,2- 96-12-8 E611E 1.0 µg/L <1.0 <1.0 0	Diff <2x LOR							
dibromochloromethane 124-48-1 E611E 1.0 µg/L <1.0 <1.0 0	Diff <2x LOR							
dibromoethane, 1,2- 106-93-4 E611E 1.0 µg/L (1.0 4.0 4.0 4.0 4.0 0	Diff <2x LOR							
$\frac{100-95-4}{100-95-3} = 601E \qquad 1.0 \qquad \mu g/L \qquad <1.0 \qquad <1.0 \qquad 0$	Diff <2x LOR							
	Diff <2x LOR							
dichlorobenzene, 1,3- 541-73-1 E611E 1.0 µg/L <1.0 <1.0 0	Diff <2x LOR	Diff <2x LOR	ff <2x LOR					

Page	:	5 of 15
Work Order	:	CG2217088
Client	:	Tetra Tech Canada Inc.
Project	:	SWM.SWOP04071-03.003

ıb-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
/olatile Organic Co	mpounds (QC Lot: 77	5458) - continued									
CG2217087-001	Anonymous	dichlorobenzene, 1,4-	106-46-7	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		dichlorodifluoromethane	75-71-8	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		dichloroethane, 1,1-	75-34-3	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		dichloroethane, 1,2-	107-06-2	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
	dichloroethylene, 1,1-	75-35-4	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichloroethylene, cis-1,2-	156-59-2	E611E	1.0	µg/L	14.7	15.9	7.87%	30%	
		dichloroethylene, trans-1,2-	156-60-5	E611E	1.0	µg/L	2.3	2.7	0.3	Diff <2x LOR	
		dichloromethane	75-09-2	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		dichloropropane, 1,2-	78-87-5	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		dichloropropane, 1,3-	142-28-9	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		dichloropropane, 2,2-	594-20-7	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
	dichloropropylene, 1,1-	563-58-6	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
	dichloropropylene, cis-1,3-	10061-01-5	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
	dichloropropylene, trans-1,3-	10061-02-6	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
	ethylbenzene	100-41-4	E611E	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR		
	hexachlorobutadiene	87-68-3	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
	isopropylbenzene	98-82-8	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611E	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		propylbenzene, n-	103-65-1	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
	styrene	100-42-5	E611E	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR		
	tetrachloroethane, 1,1,1,2-	630-20-6	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
	tetrachloroethane, 1,1,2,2-	79-34-5	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
	tetrachloroethylene	127-18-4	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
	toluene	108-88-3	E611E	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR		
		trichlorobenzene, 1,2,3-	87-61-6	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
	trichlorobenzene, 1,2,4-	120-82-1	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
	trichloroethane, 1,1,1-	71-55-6	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		trichloroethane, 1,1,2-	79-00-5	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		trichloroethylene	79-01-6	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		trichlorofluoromethane	75-69-4	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		trichloropropane, 1,2,3-	96-18-4	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		trimethylbenzene, 1,2,4-	95-63-6	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		trimethylbenzene, 1,3,5-	108-67-8	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		vinyl chloride	75-01-4	E611E	1.0	μg/L	8.7	9.4	8.09%	50%	

Page	:	6 of 15
Work Order	:	CG2217088
Client	:	Tetra Tech Canada Inc.
Project	:	SWM.SWOP04071-03.003

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Volatile Organic Compounds (QC Lot: 775458) - continued											
CG2217087-001	Anonymous	xylene, m+p-	179601-23-1	E611E	0.40	µg/L	<0.40	<0.40	0	Diff <2x LOR	
		xylene, o-	95-47-6	E611E	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Inalyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 778186)						
alkalinity, total (as CaCO3)		E290	1	mg/L	<1.0	
hysical Tests (QCLot: 778188)						
conductivity		E100	1	µS/cm	<1.0	
nions and Nutrients (QCLot: 775577)					
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	<0.0050	
nions and Nutrients (QCLot: 775883)					
fluoride	16984-48-8	E235.F	0.02	mg/L	<0.020	
nions and Nutrients (QCLot: 775884)					
nitrate (as N)	14797-55-8	E235.NO3	0.02	mg/L	<0.020	
nions and Nutrients (QCLot: 775885)					
nitrite (as N)	14797-65-0	E235.NO2	0.01	mg/L	<0.010	
nions and Nutrients (QCLot: 775886)					
chloride	16887-00-6	E235.Cl	0.5	mg/L	<0.50	
nions and Nutrients (QCLot: 775887)					
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	<0.30	
bissolved Metals (QCLot: 775718)					1	
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.0000050	
issolved Metals (QCLot: 777979)						
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
boron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.000050	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
chromium, dissolved	7440-47-3	E421	0.0005	mg/L	<0.00050	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
iron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	

Page	:	8 of 15
Work Order	:	CG2217088
Client	:	Tetra Tech Canada Inc.
Project	:	SWM.SWOP04071-03.003

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 777979) -						
potassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	<0.050	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
Volatile Organic Compounds (QCLo	ot: 775458)					
benzene	71-43-2	E611E	0.5	µg/L	<0.50	
bromobenzene	108-86-1	E611E	1	µg/L	<1.0	
bromochloromethane	74-97-5	E611E	1	µg/L	<1.0	
bromodichloromethane	75-27-4	E611E	1	µg/L	<1.0	
bromoform	75-25-2	E611E	1	µg/L	<1.0	
bromomethane	74-83-9	E611E	1	μg/L	<1.0	
butylbenzene, n-	104-51-8	E611E	1	μg/L	<1.0	
butylbenzene, sec-	135-98-8	E611E	1	μg/L	<1.0	
butylbenzene, tert-	98-06-6	E611E	1	µg/L	<1.0	
carbon tetrachloride	56-23-5	E611E	0.5	µg/L	<0.50	
chlorobenzene	108-90-7	E611E	1	µg/L	<1.0	
chloroethane	75-00-3	E611E	1	µg/L	<1.0	
chloroform	67-66-3	E611E	1	µg/L	<1.0	
chloromethane	74-87-3	E611E	5	µg/L	<5.0	
chlorotoluene, 2-	95-49-8	E611E	1	µg/L	<1.0	
chlorotoluene, 4-	106-43-4	E611E	1	µg/L	<1.0	
cymene, p-	99-87-6	E611E	1	µg/L	<1.0	
dibromo-3-chloropropane, 1,2-	96-12-8	E611E	1	µg/L	<1.0	
dibromochloromethane	124-48-1	E611E	1	µg/L	<1.0	
dibromoethane, 1,2-	106-93-4	E611E	1	µg/L	<1.0	
dibromomethane	74-95-3	E611E	1	µg/L	<1.0	
dichlorobenzene, 1,2-	95-50-1	E611E	0.5	µg/L	<0.50	
dichlorobenzene, 1,3-	541-73-1	E611E	1	µg/L	<1.0	
dichlorobenzene, 1,4-	106-46-7	E611E	1	µg/L	<1.0	
dichlorodifluoromethane	75-71-8	E611E	1	µg/L	<1.0	
dichloroethane, 1,1-	75-34-3	E611E	1	µg/L	<1.0	
dichloroethane, 1,2-	107-06-2	E611E	1	µg/L	<1.0	
dichloroethylene, 1,1-	75-35-4	E611E	1	μg/L	<1.0	

Page	:	9 of 15
Work Order	:	CG2217088
Client	:	Tetra Tech Canada Inc.
Project	:	SWM.SWOP04071-03.003

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Volatile Organic Compounds (QC	Lot: 775458) - continued					
dichloroethylene, cis-1,2-	156-59-2	E611E	1	µg/L	<1.0	
dichloroethylene, trans-1,2-	156-60-5	E611E	1	µg/L	<1.0	
dichloromethane	75-09-2	E611E	1	µg/L	<1.0	
dichloropropane, 1,2-	78-87-5	E611E	1	µg/L	<1.0	
dichloropropane, 1,3-	142-28-9	E611E	1	µg/L	<1.0	
dichloropropane, 2,2-	594-20-7	E611E	1	µg/L	<1.0	
dichloropropylene, 1,1-	563-58-6	E611E	1	µg/L	<1.0	
dichloropropylene, cis-1,3-	10061-01-5	E611E	1	µg/L	<1.0	
dichloropropylene, trans-1,3-	10061-02-6	E611E	1	µg/L	<1.0	
ethylbenzene	100-41-4	E611E	0.5	µg/L	<0.50	
hexachlorobutadiene	87-68-3	E611E	1	µg/L	<1.0	
isopropylbenzene	98-82-8	E611E	1	µg/L	<1.0	
methyl-tert-butyl ether [MTBE]	1634-04-4	E611E	0.5	µg/L	<0.50	
propylbenzene, n-	103-65-1	E611E	1	µg/L	<1.0	
styrene	100-42-5	E611E	0.5	µg/L	<0.50	
tetrachloroethane, 1,1,1,2-	630-20-6	E611E	1	µg/L	<1.0	
tetrachloroethane, 1,1,2,2-	79-34-5	E611E	1	µg/L	<1.0	
tetrachloroethylene	127-18-4	E611E	1	µg/L	<1.0	
toluene	108-88-3	E611E	0.5	µg/L	<0.50	
trichlorobenzene, 1,2,3-	87-61-6	E611E	1	µg/L	<1.0	
trichlorobenzene, 1,2,4-	120-82-1	E611E	1	µg/L	<1.0	
trichloroethane, 1,1,1-	71-55-6	E611E	1	µg/L	<1.0	
trichloroethane, 1,1,2-	79-00-5	E611E	1	µg/L	<1.0	
trichloroethylene	79-01-6	E611E	1	µg/L	<1.0	
trichlorofluoromethane	75-69-4	E611E	1	µg/L	<1.0	
trichloropropane, 1,2,3-	96-18-4	E611E	1	µg/L	<1.0	
trimethylbenzene, 1,2,4-	95-63-6	E611E	1	µg/L	<1.0	
trimethylbenzene, 1,3,5-	108-67-8	E611E	1	µg/L	<1.0	
vinyl chloride	75-01-4	E611E	1	µg/L	<1.0	
xylene, m+p-	179601-23-1	E611E	0.4	µg/L	<0.40	
xylene, o-	95-47-6	E611E	0.3	µg/L	<0.30	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
		_		Spike	Recovery (%)	Recovery (%) Recovery				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie	
Physical Tests (QCLot: 778186)										
alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	112	85.0	115		
Physical Tests (QCLot: 778187)										
pH		E108		pH units	7 pH units	101	98.6	101		
Physical Tests (QCLot: 778188)										
conductivity		E100	1	μS/cm	146.9 µS/cm	100	90.0	110		
Anions and Nutrients (QCLot: 775577)										
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	96.6	85.0	115		
Anions and Nutrients (QCLot: 775883)										
fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	100	90.0	110		
Anions and Nutrients (QCLot: 775884)										
nitrate (as N)	14797-55-8	E235.NO3	0.02	mg/L	2.5 mg/L	98.6	90.0	110		
Anions and Nutrients (QCLot: 775885)										
nitrite (as N)	14797-65-0	E235.NO2	0.01	mg/L	0.5 mg/L	98.1	90.0	110		
Anions and Nutrients (QCLot: 775886)										
chloride	16887-00-6	E235.Cl	0.5	mg/L	100 mg/L	99.6	90.0	110		
Anions and Nutrients (QCLot: 775887)										
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	101	90.0	110		
	7439-97-6	E500	0.000005	mg/l	0.0001	400	80.0	120		
mercury, dissolved	7439-97-0	E909	0.000005	mg/L	0.0001 mg/L	108	80.0	120		
Dissolved Metals (QCLot: 777979)	7429-90-5	E 401	0.001		0 "	00.0	80.0	120		
aluminum, dissolved	7429-90-5		0.0001	mg/L mg/L	2 mg/L	98.0	80.0	120		
antimony, dissolved arsenic, dissolved	7440-38-2		0.0001	mg/L	1 mg/L	83.7 97.6	80.0	120		
barium, dissolved	7440-39-3		0.0001	mg/L	1 mg/L 0.25 mg/L	97.6 86.0	80.0	120		
boron, dissolved	7440-39-3		0.001	mg/L	0.25 mg/L	86.0	80.0	120		
cadmium, dissolved	7440-42-0		0.000005	mg/L	0.1 mg/L	97.8	80.0	120		
calcium, dissolved	7440-70-2		0.05	mg/L	50 mg/L	98.2	80.0	120		
	7440-47-3		0.0005	mg/L	0.25 mg/L	98.9	80.0	120		
chromium dissolved				-	Ť	97.5	80.0	120		
chromium, dissolved	7440-50-8	E421	0.0002	ma/L						
chromium, dissolved copper, dissolved iron, dissolved	7440-50-8 7439-89-6		0.0002	mg/L mg/L	0.25 mg/L 1 mg/L	97.5 84.0	80.0	120		

Page	:	11 of 15
Work Order	:	CG2217088
Client	:	Tetra Tech Canada Inc.
Project	:	SWM.SWOP04071-03.003

Sub-Matrix: Water						Laboratory Control Sample (LCS) Report						
						Spike Recovery (%) Recovery Limits (%)						
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Dissolved Metals (QCLot: 777979) - c	ontinued											
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	92.7	80.0	120				
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	98.0	80.0	120				
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	97.2	80.0	120				
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	99.0	80.0	120				
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	94.3	80.0	120				
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	81.4	80.0	120				
sodium, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	99.9	80.0	120				
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	96.6	80.0	120				
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	95.1	80.0	120				
					Ũ							
Volatile Organic Compounds (QCLot:	775458)								1			
benzene	71-43-2	E611E	0.5	µg/L	100 µg/L	106	70.0	130				
bromobenzene	108-86-1	E611E	1	µg/L	100 µg/L	120	70.0	130				
promochloromethane	74-97-5	E611E	1	µg/L	100 µg/L	107	70.0	130				
bromodichloromethane	75-27-4	E611E	1	µg/L	100 µg/L	105	70.0	130				
bromoform	75-25-2	E611E	1	µg/L	100 µg/L	111	70.0	130				
bromomethane	74-83-9	E611E	1	μg/L	100 µg/L	106	60.0	140				
butylbenzene, n-	104-51-8	E611E	1	μg/L	100 µg/L	80.8	70.0	130				
butylbenzene, sec-	135-98-8		1	μg/L	100 µg/L	116	70.0	130				
butylbenzene, tert-	98-06-6		1	μg/L	100 μg/L	122	70.0	130				
carbon tetrachloride	56-23-5		0.5	μg/L	100 μg/L	123	70.0	130				
chlorobenzene	108-90-7		1	μg/L	100 μg/L	105	70.0	130				
chloroethane	75-00-3		1	µg/L	100 μg/L	128	60.0	140				
chloroform	67-66-3		1	µg/L	100 µg/L	111	70.0	130				
chloromethane	74-87-3		5	µg/L	100 μg/L	116	60.0	140				
chlorotoluene, 2-	95-49-8		1	μg/L	100 μg/L	116	70.0	130				
chlorotoluene, 4-	106-43-4	E611E	1	μg/L		118	70.0	130				
cymene, p-	99-87-6		1	μg/L	100 μg/L 100 μg/L	98.2	70.0	130				
dibromo-3-chloropropane, 1,2-	96-12-8		1	μg/L		96.2 93.9	70.0	130				
dibromochloromethane	124-48-1		1	μg/L	100 μg/L 100 μg/L	93.9 113	70.0	130				
	106-93-4		1	μg/L			70.0	130				
dibromoethane, 1,2-	74-95-3		1		100 μg/L	99.4	70.0	130				
dibloropone 12	95-50-1		0.5	µg/L	100 μg/L	105	70.0	130				
dichlorobenzene, 1,2-			0.5	µg/L	100 μg/L	108						
dichlorobenzene, 1,3-	541-73-1		1	µg/L	100 μg/L	108	70.0	130				
dichlorobenzene, 1,4-	106-46-7			µg/L	100 µg/L	108	70.0	130				
dichlorodifluoromethane	75-71-8	E011E	1	µg/L	100 µg/L	118	60.0	140				

Page	:	12 of 15
Work Order	:	CG2217088
Client	:	Tetra Tech Canada Inc.
Project	:	SWM.SWOP04071-03.003

Sub-Matrix: Water						Laboratory Control Sample (LCS) Report					
						Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Volatile Organic Compounds (QCLot:	775458) - continued										
dichloroethane, 1,1-	75-34-3	E611E	1	µg/L	100 µg/L	118	70.0	130			
dichloroethane, 1,2-	107-06-2	E611E	1	µg/L	100 µg/L	104	70.0	130			
dichloroethylene, 1,1-	75-35-4	E611E	1	µg/L	100 µg/L	122	70.0	130			
dichloroethylene, cis-1,2-	156-59-2	E611E	1	µg/L	100 µg/L	106	70.0	130			
dichloroethylene, trans-1,2-	156-60-5	E611E	1	µg/L	100 µg/L	104	70.0	130			
dichloromethane	75-09-2	E611E	1	µg/L	100 µg/L	111	70.0	130			
dichloropropane, 1,2-	78-87-5	E611E	1	µg/L	100 µg/L	106	70.0	130			
dichloropropane, 1,3-	142-28-9	E611E	1	µg/L	100 µg/L	106	70.0	130			
dichloropropane, 2,2-	594-20-7	E611E	1	µg/L	100 µg/L	93.9	70.0	130			
dichloropropylene, 1,1-	563-58-6	E611E	1	µg/L	100 µg/L	102	70.0	130			
dichloropropylene, cis-1,3-	10061-01-5	E611E	1	µg/L	100 µg/L	88.6	70.0	130			
dichloropropylene, trans-1,3-	10061-02-6	E611E	1	µg/L	100 µg/L	75.8	70.0	130			
ethylbenzene	100-41-4	E611E	0.5	µg/L	100 µg/L	95.0	70.0	130			
hexachlorobutadiene	87-68-3	E611E	1	µg/L	100 µg/L	75.5	70.0	130			
isopropylbenzene	98-82-8	E611E	1	µg/L	100 µg/L	108	70.0	130			
methyl-tert-butyl ether [MTBE]	1634-04-4	E611E	0.5	µg/L	100 µg/L	111	70.0	130			
propylbenzene, n-	103-65-1	E611E	1	µg/L	100 µg/L	88.6	70.0	130			
styrene	100-42-5	E611E	0.5	µg/L	100 µg/L	88.1	70.0	130			
tetrachloroethane, 1,1,1,2-	630-20-6	E611E	1	µg/L	100 µg/L	97.9	70.0	130			
tetrachloroethane, 1,1,2,2-	79-34-5	E611E	1	µg/L	100 µg/L	127	70.0	130			
tetrachloroethylene	127-18-4	E611E	1	µg/L	100 µg/L	102	70.0	130			
toluene	108-88-3	E611E	0.5	µg/L	100 µg/L	102	70.0	130			
trichlorobenzene, 1,2,3-	87-61-6	E611E	1	µg/L	100 µg/L	83.2	70.0	130			
trichlorobenzene, 1,2,4-	120-82-1	E611E	1	µg/L	100 µg/L	80.0	70.0	130			
trichloroethane, 1,1,1-	71-55-6	E611E	1	µg/L	100 µg/L	127	70.0	130			
trichloroethane, 1,1,2-	79-00-5	E611E	1	µg/L	100 µg/L	112	70.0	130			
trichloroethylene	79-01-6	E611E	1	µg/L	100 µg/L	104	70.0	130			
trichlorofluoromethane	75-69-4	E611E	1	µg/L	100 µg/L	121	60.0	140			
trichloropropane, 1,2,3-	96-18-4	E611E	1	µg/L	100 µg/L	122	70.0	130			
trimethylbenzene, 1,2,4-	95-63-6	E611E	1	µg/L	100 µg/L	102	70.0	130			
trimethylbenzene, 1,3,5-	108-67-8	E611E	1	µg/L	100 µg/L	117	70.0	130			
vinyl chloride	75-01-4	E611E	1	µg/L	100 µg/L	114	60.0	140			
xylene, m+p-	179601-23-1	E611E	0.4	µg/L	200 µg/L	110	70.0	130			
xylene, o-	95-47-6	E611E	0.3	µg/L	100 µg/L	93.9	70.0	130			

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water				Matrix Spike (MS) Report						
					Sp	ike	Recovery (%)		y Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	ents (QCLot: 775577)									-
CG2217087-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	ND mg/L	0.1 mg/L	ND	75.0	125	
Anions and Nutri	ents (QCLot: 775883)									1
CG2217087-002	Anonymous	fluoride	16984-48-8	E235.F	0.911 mg/L	1 mg/L	91.1	75.0	125	
Anions and Nutri	ents (QCLot: 775884)						1 1		1	1
CG2217087-002	Anonymous	nitrate (as N)	14797-55-8	E235.NO3	2.42 mg/L	2.5 mg/L	96.9	75.0	125	
Anions and Nutri	ents (QCLot: 775885)						1			1
CG2217087-002	Anonymous	nitrite (as N)	14797-65-0	E235.NO2	0.497 mg/L	0.5 mg/L	99.4	75.0	125	
Anions and Nutri	ents (QCLot: 775886)						1			
CG2217087-002	Anonymous	chloride	16887-00-6	E235.CI	ND mg/L	100 mg/L	ND	75.0	125	
Anions and Nutri	ents (QCLot: 775887)									1
CG2217087-002	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	ND mg/L	100 mg/L	ND	75.0	125	
	(QCLot: 775718)		14000 70 0	2200.004	NB mg/E	100 mg/L	ND	10.0	120	
CG2216972-012	Anonymous	mercury, dissolved	7439-97-6	E509	0.000108 mg/L	0.0001 mg/L	108	70.0	130	
	(QCLot: 777979)	inoroary, absorroa	7433-37-0	2303	0.000 100 mg/L	0.0001 mg/L	100	70.0	130	
		aluminum disasturd								
CG2217056-010	Anonymous	aluminum, dissolved	7429-90-5	E421	2.15 mg/L	2 mg/L	108	70.0	130	
		antimony, dissolved	7440-36-0	E421	0.170 mg/L	0.2 mg/L	84.9	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.222 mg/L	0.2 mg/L	111	70.0	130	
		barium, dissolved	7440-39-3	E421	0.173 mg/L	0.2 mg/L	86.7	70.0	130	
		boron, dissolved	7440-42-8	E421	1.02 mg/L	1 mg/L	102	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.0449 mg/L	0.04 mg/L	112	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	40 mg/L	ND	70.0	130	
		chromium, dissolved	7440-47-3	E421	0.461 mg/L	0.4 mg/L	115	70.0	130	
		copper, dissolved	7440-50-8	E421	0.223 mg/L	0.2 mg/L	112	70.0	130	
		iron, dissolved	7439-89-6	E421	18.0 mg/L	20 mg/L	89.8	70.0	130	
		lead, dissolved	7439-92-1	E421	0.173 mg/L	0.2 mg/L	86.7	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	10 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	ND mg/L	0.2 mg/L	ND	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.449 mg/L	0.4 mg/L	112	70.0	130	
							1		1	1

Page	:	14 of 15
Work Order	:	CG2217088
Client	:	Tetra Tech Canada Inc.
Project	:	SWM.SWOP04071-03.003

Sub-Matrix: Water	b-Matrix: Water						Matrix Spi	ke (MS) Report							
					Spi	ike	Recovery (%)	Recovery	Limits (%)						
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier					
	(QCLot: 777979) -	continued								1					
CG2217056-010	Anonymous	selenium, dissolved	7782-49-2	E421	0.462 mg/L	0.4 mg/L	116	70.0	130						
		silver, dissolved	7440-22-4	E421	0.0367 mg/L	0.04 mg/L	91.8	70.0	130						
		sodium, dissolved	7440-23-5	E421	21.9 mg/L	20 mg/L	109	70.0	130						
		uranium, dissolved	7440-61-1	E421	0.0350 mg/L	0.04 mg/L	87.5	70.0	130						
		zinc, dissolved	7440-66-6	E421	4.46 mg/L	4 mg/L	112	70.0	130						
/olatile Organic	Compounds (QCLo	t: 775458)													
CG2217087-001	Anonymous	benzene	71-43-2	E611E	94.9 µg/L	100 µg/L	94.9	70.0	130						
		bromobenzene	108-86-1	E611E	128 µg/L	100 µg/L	128	70.0	130						
		bromochloromethane	74-97-5	E611E	88.8 µg/L	100 µg/L	88.8	70.0	130						
		bromodichloromethane	75-27-4	E611E	90.2 µg/L	100 µg/L	90.2	70.0	130						
		bromoform	75-25-2	E611E	110 µg/L	100 µg/L	110	70.0	130						
		bromomethane	74-83-9	E611E	93.6 µg/L	100 µg/L	93.6	60.0	140						
		butylbenzene, n-	104-51-8	E611E	84.3 µg/L	100 µg/L	84.3	70.0	130						
		butylbenzene, sec-	135-98-8	E611E	128 µg/L	100 µg/L	128	70.0	130						
		butylbenzene, tert-	98-06-6	E611E	128 µg/L	100 µg/L	128	70.0	130						
		carbon tetrachloride	56-23-5	E611E	114 µg/L	100 µg/L	114	70.0	130						
		chlorobenzene	108-90-7	E611E	109 µg/L	100 µg/L	109	70.0	130						
		chloroethane	75-00-3	E611E	117 µg/L	100 µg/L	117	60.0	140						
		chloroform	67-66-3	E611E	99.2 µg/L	100 µg/L	99.2	70.0	130						
		chloromethane	74-87-3	E611E	104 µg/L	100 µg/L	104	60.0	140						
		chlorotoluene, 2-	95-49-8	E611E	128 µg/L	100 µg/L	128	70.0	130						
		chlorotoluene, 4-	106-43-4	E611E	130 µg/L	100 µg/L	130	70.0	130						
		cymene, p-	99-87-6	E611E	107 µg/L	100 µg/L	107	70.0	130						
		dibromo-3-chloropropane, 1,2-	96-12-8	E611E	76.3 µg/L	100 µg/L	76.3	70.0	130						
		dibromochloromethane	124-48-1	E611E	109 µg/L	100 µg/L	109	70.0	130						
		dibromoethane, 1,2-	106-93-4	E611E	92.4 µg/L	100 µg/L	92.4	70.0	130						
		dibromomethane	74-95-3	E611E	84.1 µg/L	100 µg/L	84.1	70.0	130						
		dichlorobenzene, 1,2-	95-50-1	E611E	111 µg/L	100 µg/L	111	70.0	130						
		dichlorobenzene, 1,3-	541-73-1	E611E	119 µg/L	100 µg/L	119	70.0	130						
		dichlorobenzene, 1,4-	106-46-7	E611E	115 µg/L	100 µg/L	115	70.0	130						
		dichlorodifluoromethane	75-71-8	E611E	123 µg/L	100 µg/L	123	60.0	140						
		dichloroethane, 1,1-	75-34-3	E611E	105 µg/L	100 µg/L	105	70.0	130						
		dichloroethane, 1,2-	107-06-2	E611E	85.5 µg/L	100 µg/L	85.5	70.0	130						
		dichloroethylene, 1,1-	75-35-4	E611E	112 µg/L	100 µg/L	112	70.0	130						
		dichloroethylene, cis-1,2-	156-59-2	E611E	88.7 µg/L	100 µg/L	88.7	70.0	130						

Page	:	15 of 15
Work Order	:	CG2217088
Client	:	Tetra Tech Canada Inc.
Project	:	SWM.SWOP04071-03.003

Sub-Matrix: Water							Matrix Spil	ke (MS) Report							
					Spi	ke	Recovery (%)	Recovery	Limits (%)						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier					
	Compounds (QCLo	t: 775458) - continued													
CG2217087-001	Anonymous	dichloroethylene, trans-1,2-	156-60-5	E611E	96.0 µg/L	100 µg/L	96.0	70.0	130						
		dichloromethane	75-09-2	E611E	93.0 µg/L	100 µg/L	93.0	70.0	130						
		dichloropropane, 1,2-	78-87-5	E611E	91.7 µg/L	100 µg/L	91.7	70.0	130						
		dichloropropane, 1,3-	142-28-9	E611E	100 µg/L	100 µg/L	100	70.0	130						
		dichloropropane, 2,2-	594-20-7	E611E	81.2 μg/L	100 µg/L	81.2	70.0	130						
		dichloropropylene, 1,1-	563-58-6	E611E	95.7 µg/L	100 µg/L	95.7	70.0	130						
		dichloropropylene, cis-1,3-	10061-01-5	E611E	80.0 µg/L	100 µg/L	80.0	70.0	130						
		dichloropropylene, trans-1,3-	10061-02-6	E611E	71.8 µg/L	100 µg/L	71.8	70.0	130						
		ethylbenzene	100-41-4	E611E	95.8 µg/L	100 µg/L	95.8	70.0	130						
		hexachlorobutadiene	87-68-3	E611E	71.9 µg/L	100 µg/L	71.9	70.0	130						
		isopropylbenzene	98-82-8	E611E	112 µg/L	100 µg/L	112	70.0	130						
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611E	115 µg/L	100 µg/L	115	70.0	130						
		propylbenzene, n-	103-65-1	E611E	91.5 µg/L	100 µg/L	91.5	70.0	130						
		styrene	100-42-5	E611E	83.5 μg/L	100 µg/L	83.5	70.0	130						
		tetrachloroethane, 1,1,1,2-	630-20-6	E611E	104 µg/L	100 µg/L	104	70.0	130						
		tetrachloroethane, 1,1,2,2-	79-34-5	E611E	112 µg/L	100 µg/L	112	70.0	130						
		tetrachloroethylene	127-18-4	E611E	112 µg/L	100 µg/L	112	70.0	130						
		toluene	108-88-3	E611E	104 µg/L	100 µg/L	104	70.0	130						
		trichlorobenzene, 1,2,3-	87-61-6	E611E	79.8 µg/L	100 µg/L	79.8	70.0	130						
		trichlorobenzene, 1,2,4-	120-82-1	E611E	83.0 µg/L	100 µg/L	83.0	70.0	130						
		trichloroethane, 1,1,1-	71-55-6	E611E	117 µg/L	100 µg/L	117	70.0	130						
		trichloroethane, 1,1,2-	79-00-5	E611E	106 µg/L	100 µg/L	106	70.0	130						
		trichloroethylene	79-01-6	E611E	95.8 µg/L	100 µg/L	95.8	70.0	130						
		trichlorofluoromethane	75-69-4	E611E	109 µg/L	100 µg/L	109	60.0	140						
		trichloropropane, 1,2,3-	96-18-4	E611E	111 µg/L	100 µg/L	111	70.0	130						
		trimethylbenzene, 1,2,4-	95-63-6	E611E	109 µg/L	100 µg/L	109	70.0	130						
		trimethylbenzene, 1,3,5-	108-67-8	E611E	123 µg/L	100 µg/L	123	70.0	130						
		vinyl chloride	75-01-4	E611E	105 µg/L	100 µg/L	105	60.0	140						
		xylene, m+p-	179601-23-1	E611E	221 µg/L	200 µg/L	110	70.0	130						
		xylene, o-	95-47-6	E611E	95.6 µg/L	100 µg/L	95.6	70.0	130						

ALS LE		hain of Cus	stody / Analytical F a Toll Free: 1 800 6	equest Form	,			coc	C# CC	DR <u>D M</u>	lcKenzi	e Trai	S	<u> </u>	_		
Environme	Intal Division	oundu	www.alsglobal.com								P	age	1	of _	1		
Report to		Report F	ormat / Distributio	n		Se	rvice	Requ	lested	:						7	
Company:	Tetra Tech Canada Inc.	T Stand	lard 🗔 Other			V	Reg	ular	Service	(Defa	ult)		_				
Contact:	Darby Madalena	PDF	Excel C	Fax		Г	Rush Service (2-3 Days)										
Address:	110, 140 Quarry Park Blvd SE, Calgary, AB T2C 3G3	Email 1:	darby.madalena@	tetratech.com		Г	Priority Service (1 Day or ASAP)										
		Email 2:	ryan.miller@tetrate	ech.com		۳.	Emergency Service (<1 Day / Wkend) - Contact ALS						3				
Phone:	403-723-6867 Fax: 403-203-3301	ALS Digit	al Crosstab results							Analys	sis Reo	uest					
Invoice To	o: IV Same as Report			Indicate Bottle	es: Filtered / Preserved (F/P) \rightarrow	_											
Company:	SAME AS REPORT	Client / P	roject Information	:			eg										
Contact:		Job #:		SWM.SWOP04	1071-03.003		Dissalved										
Address:		PO/AFE:	PO/AFE: SWM.SWOP04071-03.003				1 S								5	_ເ	
Sample		Legal Site	al Site Description:				8								atec	ine	
Phone:	Fax:	Quote #:	uote #: CG22-EBAE100-C				Routine	nia							Ë	onta	
	b Work Order # (1997) (lab use only): (1997) (1997)	ALS Contact:	Patryk Wolciak 2 Patryk Wolciak					Ammonia						Hazardous?	Highly Contaminated?	Number of Containers	
Sample	Sample Identification	· · ·	Date	Time	C Sample Type	E611E	S5421B	- i					ŀ	ard	≧	lpe	
#	(This description will appear on the report)		dd-mmm-yy	hh:mm	(Select from drop-down list)	E E	S54	E298						Haz	ŝ		
ang ting ting ting ting ting ting ting ti	MW-03		08-12-22	10:35	Water	X		x								5	
tan she she	MW-04		1	10:45	Water	X	X	X								ζ	
	MW-203			11:00	Water	T x	x	x		-						ζ,	
	Duplicate				Water	T x	x	x		1		-			_	5	
												+	+			4	
a service a service se						1	<u> </u>					+	1.1			-1	
	······································		~			+	+	<u> </u>					+	-+	-+	-1	· .
1.1.1.19				<u></u>													
						1	+										
	· · · · · · · · · · · · · · · · · · ·			<u> </u>		+	+					+	+ +			-	
	Guidelines / Regulations				Special Instruction	s/Ha	zard	ous	Details								
			1														
	Failure to complete	e all portion	s of this form may	delay analysis	. Please fill in this form	1 LEC	BL	(.									
	By the use of this form the user acl	-	-						nt work	sheet	_			-		J	
Relinquished	Do word Mar Date & Time: Dac 1/22	Received		Date & Time:		7.8%C	ar vaş	gerer 19			dition (lat	us				ental Div	leion
By: Relinguished	Date & Time:	By:	16		12/12 8:00	4	Temp	erature	00		eceived						
By:	Date & Time: 15:15	Received Bv:		Date & Time:			5	70	_ c		?Y/N declotetai		Ua	work	ry c Orr	der Referer	nce
					· · · · · · · · · · · · · · · · · · ·									C	G2	der Referen 2217(388
											· ·	;					

Telephone: +1 403 407 1800

APPENDIX E

HISTORICAL ANALYTICAL DATA

Monitoring	pН	Electrical Conductivity	Temperature	Dissolved Oxygen	Total Dissolved Solid	Redox
Well		(µg/cm)	(°C)	(mg/L)	(mg/L)	(±mV)
MW-01	7.50	449.5	12.9	0.58	379.60	-121.2
MW-02	7.59	423.3	13.7	3.87	347.75	-21.9
MW-03	7.97	1,078	7.9	3.24	1,040.00	-133.4
MW-04						
MW-05	7.22	1,585	9.7	3.53	1,438.50	-139.3

 Table 4A

 Groundwater Indices Measured at Time of Sampling

Notes:

1) Measurement of groundwater indices by YSI Pro Plus.

2) Groundwater sampled on Monday, August 19, 2013.

12-435

Phase II ESA - McKenzie Trails Recreation Area

Historic Waste Disposal Sites, The City of Red Deer

Analytical	Results -	Groundwater -	General	Water Qu	uality		
Parameter	Unit	Detection	MW-01	MW-02	MW-03	MW-05	Tier 1
		Limit		08/19	/2013		Guideline
General Water Quality	-	_					
Biochemical Oxygen Demand (BOD)	mg/L	2	14	3.8	ND	38	
Chemical Oxygen Demand (COD)	mg/L	5.0 - 25	150	32	47	200	
Conductivity	µS/cm	1	590	560	1,700	2,200	
рН	Unitless	N/A	7.88	7.82	8.07	7.89	6.5-8.5
Total Organic Carbon (C)	mg/L	0.50 - 2.5	15	13	21	38	
Dissolved Cadmium (Cd)	μg/L	0.005	0.012	NT	0.037	0.097	
Total Cadmium (Cd)	μg/L	0.005	0.73	0.33	0.98	0.79	0.060*
Alkalinity (Total as CaCO ₃)	mg/L	0.5	280	260	800	740	
Bicarbonate (HCO ₃)	mg/L	0.5	340	320	980	910	
Carbonate (CO ₃)	mg/L	0.5	ND	ND	ND	ND	
Hydroxide (OH)	mg/L	0.5	ND	ND	ND	ND	
	-	0.3 1.0 - 5.0	ND 17	ND 27	32	450	
Sulphate (SO ₄)	mg/L	1.0 - 3.0					
Chloride (Cl)	mg/L	1	9.3	7.2	70	62	
Total Ammonia (N)	mg/L	0.050 - 0.50	0.47	ND	6.3	30	1.37*
Total Phosphorus (P)	mg/L	0.0030 - 0.030	1.5	0.068	0.38	2.1	
Total Nitrogen (N)	mg/L	0.05	2.1	0.58	6.9	35	
Total Kjeldahl Nitrogen	mg/L	0.050 - 1.3	2.1	0.57	6.9	35	
Nitrite (as N)	mg/L	0.003	ND	ND	0.010	0.018	
Nitrate (as N)	mg/L	0.003	0.015	0.0079	0.017	0.054	
Nitrate plus Nitrite (N)	mg/L	0.0003	0.015	0.0080	0.027	0.072	
Trace Organics							
Acetic Acid	mg/L	50	ND	NT	ND	ND	
Formic Acid	mg/L	50	ND	NT	ND	ND	
Propionic Acid	mg/L	50	ND	NT	ND	ND	
Adsorbable Organic halogens	mg/L	0.02	0.03	NT	0.07	0.04	
			1				

Table 4B
Analytical Results - Groundwater - General Water Quality

Notes:

1) Tier 1 Guideline - Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for residential/parkland land use.

2) * Surface Water Quality Guidelines for Use in Alberta (AENV, 1999) on aquatic life pathway. Canadian Council of Ministers of the Environment (CCME) guidelines are referenced.

3) ND - Not Detected, less than the limit of method detection.

4) NT - Not Tested

5) -- No value established in the reference criteria.

6) Bold & Shaded - Exceeds the referenced Alberta Tier 1 Guidelines and CCME guidelines.

7) For further laboratory information, refer to the specific laboratory report in Appendix A.

Analytical 1	Results - O	Froundwa	nter - Met	als	
Detection	MW-01	MW-02	MW-03	MW-05	Tier 1
Limit		08/19	/2013	1	Guideline
0.0030	10	0.73	7.9	0.37	0.1*
0.00060	0.00063	ND	ND	0.0017	0.006
	0.015	0.0011		0.0089	0.005
					1
0.0010	ND	ND	ND	ND	
0.020	0.041	0.022	0.43	1.8	1.5
0.30	120	78	150	240	
0.0010	0.018	0.0035	0.014	0.003	0.001*
0.00030					
0.00020	0.042	0.0043	0.023	0.026	0.003*
0.060	25	1.6	19	22	0.3
0.00020	0.019	0.0017	0.012	0.11	0.004*
0.020	0.025	ND	0.075	0.031	
0.20	46	22	40	91	
0.0040	1.4	0.1	0.9	0.6	0.05
0.00020	0.004	0.0025	0.0017	0.0021	
0.00050	0.0340	0.0035	0.025	0.012	0.11*
0.10	1.10	ND	1.2	0.94	
0.30	6.8	3.5	6.2	45	
0.00020	0.00074	ND	0.00076	0.0004	0.001
0.10	22	5.6	20	8.4	
					0.0001*
					0.0001
	0.45		1.1		
			15	130	
					0.02
0.0010	0.05	0.0024	0.021	0.0015	
0.0030	0.11	0.078	0.25	0.12	0.03
0.0030	0.0067	NT	0.040	0.0052	
0.00020	0.0062	NT	0.0021	0.0079	
0.010	0.28	NT	0.42	0.33	
0.0010	ND	NT	ND	ND	
0.020	0.044	NUT	0.64	1.0	
0.060	3	NT	0.52	17	
0.00020	ND	NT	ND		
0.0040	0.84	191	0.03	0.07	
0.00020	0.0042	NT	0.0025	0.00088	
0.00050	0.0014	NT	0.0032	0.0042	
0.10	ND	NT	0.16	ND	
0.30	4.5	NT	7.0	40	
0.00020	0.00047	NT	ND	0.0002	
0.10	5	NT	6	8	
0.00010	ND	NT	ND	ND	
0.50 - 2.5	43	NT	280	120	
0.020	0.34	NT	1.3	1.40	
0.20 -1.0	4.5	NT	17	150	
0.00020	ND	NT	ND	ND	
0.00020	ND ND	NI NT	ND ND	ND 0.0018	
	ND	NT	ND	0.0018 ND	
0 0010		141			
0.0010		NT	0.0024	0.00085	
0.0010 0.00010 0.0010	0.00048 ND	NT NT	0.0024 0.0011	0.00085 ND	
0.00010	0.00048				
	Detection Limit 0.0030 0.00060 0.00020 0.010 0.0010 0.0010 0.0010 0.0010 0.0010 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.10 0.00020 0.10 0.00010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.00020	Detection Limit MW-01 0.0030 0.00060 10 0.0030 0.00020 0.0015 0.010 0.72 0.0010 ND 0.0020 0.041 0.30 0.018 0.0010 0.018 0.0010 0.018 0.0010 0.011 0.00020 0.0412 0.00020 0.042 0.00020 0.042 0.00020 0.0042 0.00020 0.0042 0.00020 0.0044 0.00020 0.0040 0.10 1.10 0.30 6.8 0.00020 0.0442 0.0010 0.0340 0.10 22 0.0010 0.0340 0.10 22 0.0010 0.045 0.20 45 0.20 5.1 0.0010 0.015 0.0010 0.018 0.0010 0.0318 0.0010 0.0318	Detection Limit MW-01 MW-02 0.0030 0 08/19 0.00060 0.00063 ND 0.00020 0.0015 0.0011 0.0010 ND ND 0.0010 ND ND 0.0020 0.041 0.022 0.30 120 78 0.0010 0.018 0.0035 0.00030 0.011 0.00087 0.00020 0.042 0.0043 0.00020 0.019 0.017 0.020 0.025 ND 0.00020 0.044 0.10 0.0020 0.044 0.0025 0.00020 0.004 0.0025 0.00020 0.004 0.0025 0.00020 0.0044 0.0025 0.00020 0.0044 0.0025 0.0020 0.0044 0.0025 0.0020 0.0045 0.38 0.20 0.45 20 0.0010 0.015 0.003 <td>Detection Limit MW-01 MW-02 MW-03 0.0030 0.00060 0.013 08/19/2013 0.00060 0.0053 ND ND 0.00060 0.015 0.011 0.0071 0.010 0.72 0.015 0.5 0.0010 ND ND ND 0.020 0.041 0.022 0.43 0.30 120 78 150 0.0010 0.018 0.0035 0.014 0.00020 0.042 0.0043 0.023 0.060 25 1.6 19 0.00020 0.025 ND 0.017 0.0020 0.024 0.0017 0.012 0.00020 0.0044 0.1 0.9 0.00020 0.0044 0.0074 ND 0.0077 0.00020 0.0044 0.0017 0.00022 0.0010 0.340 0.0035 0.025 0.10 1.10 ND 1.2 0.30 <td< td=""><td>Limit 08/19/2013 0.00060 0.00063 ND ND 0.0017 0.00020 0.015 0.0011 0.0071 0.0017 0.0010 0.72 0.015 0.5 0.37 0.0010 0.72 0.015 0.5 0.37 0.0010 0.72 0.015 0.5 0.37 0.0010 0.018 0.0035 0.014 0.003 0.0010 0.018 0.0035 0.014 0.003 0.00020 0.019 0.0017 0.012 0.11 0.00020 0.019 0.0017 0.012 0.11 0.0020 0.025 ND 0.075 0.031 0.0020 0.0040 1.4 0.1 0.9 0.6 0.00020 0.0044 0.0035 0.0017 0.0021 0.00020 0.0044 ND 0.00076 0.0004 0.10 1.2 5.6 20 8.4 0.00010 0.00025 0.017</td></td<></td>	Detection Limit MW-01 MW-02 MW-03 0.0030 0.00060 0.013 08/19/2013 0.00060 0.0053 ND ND 0.00060 0.015 0.011 0.0071 0.010 0.72 0.015 0.5 0.0010 ND ND ND 0.020 0.041 0.022 0.43 0.30 120 78 150 0.0010 0.018 0.0035 0.014 0.00020 0.042 0.0043 0.023 0.060 25 1.6 19 0.00020 0.025 ND 0.017 0.0020 0.024 0.0017 0.012 0.00020 0.0044 0.1 0.9 0.00020 0.0044 0.0074 ND 0.0077 0.00020 0.0044 0.0017 0.00022 0.0010 0.340 0.0035 0.025 0.10 1.10 ND 1.2 0.30 <td< td=""><td>Limit 08/19/2013 0.00060 0.00063 ND ND 0.0017 0.00020 0.015 0.0011 0.0071 0.0017 0.0010 0.72 0.015 0.5 0.37 0.0010 0.72 0.015 0.5 0.37 0.0010 0.72 0.015 0.5 0.37 0.0010 0.018 0.0035 0.014 0.003 0.0010 0.018 0.0035 0.014 0.003 0.00020 0.019 0.0017 0.012 0.11 0.00020 0.019 0.0017 0.012 0.11 0.0020 0.025 ND 0.075 0.031 0.0020 0.0040 1.4 0.1 0.9 0.6 0.00020 0.0044 0.0035 0.0017 0.0021 0.00020 0.0044 ND 0.00076 0.0004 0.10 1.2 5.6 20 8.4 0.00010 0.00025 0.017</td></td<>	Limit 08/19/2013 0.00060 0.00063 ND ND 0.0017 0.00020 0.015 0.0011 0.0071 0.0017 0.0010 0.72 0.015 0.5 0.37 0.0010 0.72 0.015 0.5 0.37 0.0010 0.72 0.015 0.5 0.37 0.0010 0.018 0.0035 0.014 0.003 0.0010 0.018 0.0035 0.014 0.003 0.00020 0.019 0.0017 0.012 0.11 0.00020 0.019 0.0017 0.012 0.11 0.0020 0.025 ND 0.075 0.031 0.0020 0.0040 1.4 0.1 0.9 0.6 0.00020 0.0044 0.0035 0.0017 0.0021 0.00020 0.0044 ND 0.00076 0.0004 0.10 1.2 5.6 20 8.4 0.00010 0.00025 0.017

Table 4C

1) Tier 1 Guideline - Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for residential/parkland land use.
2) * Surface Water Quality Guidelines for Use in Alberta (AENV, 1999) on aquatic life pathway. Canadian Council of Ministers of the Environment (CCME) guidelines are referenced.
3) ND - Not Detected, less than the limit of method detection.

4) NT - Not Tested.

5) Unless specified all units are mg/L.
6) - - No value established in the reference criteria.

7) Bold & Shaded - Exceeds the referenced Alberta Tier 1 and CCME guidelines.

8) For further laboratory information, refer to the specific laboratory report in Appendix A.

Analytical Results - Groundwater -VOCs								
Parameter	Detection	MW-01	MW-02	MW-03	MW-05	Tier 1		
	Limit		08/19	/2013		Guideline		
Volatile Organic Compounds								
Benzene	0.00040	ND	ND	ND	0.0014	0.005		
Toluene	0.00040	ND	ND	0.0011	0.00063	0.024		
Ethylbenzene	0.00040	ND	ND	ND	ND	0.0024		
Xylenes (Total)	0.00080	ND	ND	ND	ND	0.3		
	0.10					0.01		
F1 (C ₆ -C ₁₀)	0.10	ND	ND	ND	ND	0.81		
F2 (C_{10} - C_{16})	0.10	ND	ND	ND	ND	1.1		
Total Trihalomethanes	0.0020	ND	ND	ND	ND	0.1		
Bromodichloromethane	0.00050	ND	ND	ND	ND			
Bromoform	0.00050	ND	ND	ND	ND			
Bromomethane	0.0020	ND	ND	ND	ND			
Carbon tetrachloride	0.00050	ND	ND	ND	ND	0.00056		
Carbon tetracmonde	0.00050	ND	ND	ND	ND	0.00050		
Chlorobenzene	0.00050	ND	ND	ND	ND	0.0013		
Chlorodibromomethane	0.0010	ND	ND	ND	ND			
Chloroethane	0.0010	ND	ND	ND	ND			
Chloroform	0.00050	ND	ND	ND	ND	0.0018		
Chloromethane	0.0020	ND	ND	ND	ND			
1,2-dibromoethane	0.00050	ND	ND	ND	ND			
1,2-dichlorobenzene	0.00050	ND	ND	ND	ND	0.0007		
1,3-dichlorobenzene	0.00050	ND	ND	ND	ND			
1,4-dichlorobenzene	0.00050	ND	ND	ND	ND	0.001		
1,1-dichloroethane	0.00050	ND	ND	ND	ND			
-,								
1,2-dichloroethane	0.00050	ND	ND	ND	ND	0.005		
1,1-dichloroethene	0.00050	ND	ND	ND	ND	0.014		
cis-1,2-dichloroethene	0.00050	ND	ND	0.0012	0.0037			
trans-1,2-dichloroethene	0.00050	ND	ND	ND	ND			
Dichloromethane	0.0020	ND	ND	ND	ND	0.05		
1,2-dichloropropane	0.00050	ND	ND	ND	ND			
cis-1,3-dichloropropene	0.00050	ND	ND	ND	ND			
trans-1,3-dichloropropene	0.00050	ND	ND	ND	ND			
Methyl methacrylate	0.00050	ND	ND	ND	ND	0.47		
Methyl-tert-butylether (MTBE)	0.00050	ND	ND	ND	ND	0.015		
Styrene	0.00050	ND	ND	ND	ND	0.072		
1,1,1,2-tetrachloroethane	0.0020	ND	ND	ND	ND			
1.1.2.2-tetrachloroethane	0.0020	ND	ND	ND	ND			
Tetrachloroethene	0.00050	ND	ND	ND	0.0033	0.03		
1,2,3-trichlorobenzene	0.0010	ND	ND	ND	0.0033 ND	0.008		
1,2,5-u temorobenzene	0.0010	ND	ND	ND	ND	0.008		
1,2,4-trichlorobenzene	0.0010	ND	ND	ND	ND	0.015		
1,3,5-trichlorobenzene	0.00050	ND	ND	ND	ND	0.014		
1,1,1-trichloroethane	0.00050	ND	ND	ND	ND			
1,1,2-trichloroethane	0.00050	ND	ND	ND	ND			
Trichloroethene	0.00050	ND	ND	ND	ND	0.005		
Trichlorofluoromethane	0.00050	ND	ND	ND	ND			
1,2,4-trimethylbenzene	0.00050	ND	ND	ND	ND			
1,3,5-trimethylbenzene	0.00050	ND	ND	ND	ND			
Vinyl chloride	0.00050	ND	ND	ND	0.0007	0.0011		

 Table 4D

 Analytical Results - Groundwater -VOCs

Notes:

1) Tier 1 Guideline - Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010

and amendments. Coarse-grained criteria for residential/parkland land use.

2) ND - Not Detected, less than the limit of method detection.

3) Unless specified all units are mg/L

- 4) -- No value established in the reference criteria.
- 5) Bold & Shaded Exceeds the referenced Alberta Tier 1 Guidelines.

6) For further laboratory information, refer to the specific laboratory report in Appendix A.

 Table 5A

 Summary of Monitoring Parameters During Sampling of Soil Vapour

Parameter	Well Diameter	Well Depth	Headspace Volume	Purge Rate	Purge Time	P	ressure
Unit	(mm)	(m)	(cm ³)	(cm ³ /min)	(min)	Ambient (psi)	Vapour Well (psi)
VW-01	25	5.5	2,700.0	943.3	5	15.00	15.00

Notes:

1) Measurement of pressure by digital Cole-Parmer absolute pressure gauge.

2) Purge time is elapsed time prior to the collection of a soil vapour sample.

3) Soil Vapour sampling was completed on August 19, 2013.

Analytical Resul	ts - Soll Vapo	ur - General Ind	lices
Parameter	Unit	Detection Limit	VW-01
Gauge Pressure			
Following sampling	psi		
Reported by laboratory	psi		(-4.0)
<mark>Fixed Gases</mark> Oxygen	% v/v	0.2	5.8
Nitrogen	% v/v	0.2	84.7
Carbon monoxide	% v/v	0.2	ND
Methane	% v/v	0.2	ND
Carbon dioxide	% v/v	0.2	9.5

Table 5B
Analytical Results - Soil Vapour - General Indices

Notes:

1) Soil vapour sample collected on Saturday, August 17, 2013.

2) ND - Not Detected, less than the limit of method detection.

3) - - No value established in the detection limit and reference criteria.

4) For further information, the reader should refer to the laboratory report in Appendix A.

Inder serviceInder serviceHardrace Dec serviceImpairSoleAliphatic S-Q-Cq.µg/m ² SoleAliphatic S-Q-Cq.µg/m ² SoleAliphatic S-Q-Cq.µg/m ² SoleAliphatic S-Q-Cq.µg/m ² SoleAromatic S-Q-Cq. (TEX Excluded)µg/m ² SoleAromatic S-Q-Cq.µg/m ² SoleHanceppm0.2Biblaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propanepphv0.30Viallenepphv0.30Trichloroethanepphv0.30Trichloroethanepphv0.30Trichloroethanepphv0.20Propanepphv0.30Trichloroethanepphv0.30Trichloroethanepphv0.30Trichloroethanepphv0.30Trichloroethanepphv0.30Hethyl butyl ketonepphv0.30Trichloroethylenepphv0.30Lip Dichloroethylenepphv <td< th=""><th></th><th colspan="3">VW-01</th></td<>		VW-01		
Aliphatic >C _x C ₆ µg/m³5.0Aliphatic >C _x C ₁₀ µg/m³5.0Aliphatic >C _x C ₁₀ µg/m³5.0Aliphatic >C _{1x} C ₁₂ µg/m³5.0Aliphatic >C _{1x} C ₁₂ µg/m³5.0Aromatic >C _x C ₁₀ µg/m³5.0Aromatic >C _x C ₁₀ µg/m³5.0Aromatic >C _x C ₁₀ µg/m³5.0Aromatic >C _{1x} C ₁₂ µg/m³5.0Aromatic >C _{1x} C ₁₂ µg/m³5.0Aromatic >C _{1x} C ₁₀ µg/m³5.0Aromatic >C _{1x} C ₁₂ µg/m³5.0Aromatic >C _{1x} C ₁₀ µg/m³5.0Aromatic >C _{1x} C ₁₂ µg/m³5.0Aromatic >C _{1x} C ₁₂ µg/m³5.0Pipe0.2µg/m³Pipe0.2µg/m³Pipe0.2µg/m³Pipe0.2µg/m³Pipe0.2µg/m³Pipe0.2µg/m³Pipe0.2µg/m³Pipe0.2Pipe0.2µg/m³Pipe0.2Pipe0.2Pipe0.2Pipe0.2Pipe0.2Pipe0.2Pipe0.2Pipe0.2Pipe0.30Pipe0.30Pipe0.30Pipe0.20Pipe0.20Pipe0.	08/17/2	013		
Aliphatic >Cq. Cq.µg/m³5.0Aliphatic >Cq. Cq.µg/m³5.0Aliphatic >Cq. Cq.µg/m³5.0Aliphatic >Cq. Cq. (TEX Excluded)µg/m³5.0Aromatic >Cq. Cq. (TEX Excluded)µg/m³5.0Aromatic >Cq. Cq. (TEX Excluded)µg/m³5.0Aromatic >Cq. Cq. Cq. (TEX Excluded)µg/m³5.0Aromatic >Cq. Cq. Cq. (TEX Excluded)µg/m³5.0Aromatic >Cq. Cq. Cq. (TEX Excluded)µg/m³5.0Select Volatile GasesTTAcetyleneppm0.2Ehaneppm0.2Ehaneppm0.41-Pataneppm0.2Propaneppm0.2Propaneppm0.2Propanepphv0.10Teldorofthuoromethane (FREON 12)pphv0.10Chlorodthuoromethane (FREON 11)pphv0.30Unyl chloridepphv0.30Chlorodthuorethanepphv0.30Chlorodthuorethanepphv0.20Popanepphv0.30Chlorodthuorethanepphv0.20Popticepphv0.20Ethane (MEK) (2-Butanone)pphv0.30Pollering (Chrosethylenepphv0.20Popticepphv0.30Chlorodthanepphv0.20Popticepphv0.20Popticepphv0.30Chlorodthanepphv0.30Chlorodthanepphv0.30Chlorodthane <t< td=""><td></td><td></td></t<>				
Aliphatic >C _n C ₁₀ µg/m³5.0Aliphatic >C _n C ₁₂ . C ₁₅ µg/m³5.0Aromatic >C _n C ₀ (TEX Excluded)µg/m³5.0Aromatic >C _n C ₁₀ µg/m³5.0Aromatic >C _n C ₁₀ µg/m³5.0Aromatic >C _n C ₁₂ µg/m³5.0Aromatic >C ₁₇ . C ₁₆ µg/m³1.1Dichorodithoreµg/m³0.2Propanoµg/m³0.2Dichorodithoreµg/m³0.301.2.Dichorodithaneµg/m³0.301.3.Dichorodithaneµg/m³0.30Arohor + Confineµg/m³0.30Arohor + Confine <td></td> <td></td>				
Aliphatic >C112 Cig.µg/m²5.0Aliphatic >C12 Cig.µg/m²5.0Aromatic >C12 Cig.µg/m²5.0Aromatic >C12 Cig.µg/m²5.0Aromatic >C12 Cig.µg/m²5.0Aromatic >C12 Cig.µg/m²5.0Aromatic >C12 Cig.µg/m²5.0Aromatic >C12 Cig.µg/m²5.0Sater Vlatile Gavesppm0.2Entyleneppm0.2Entyleneppm0.2Entyleneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propanepphv0.17Chloroethanepphv0.30Chloroethanepphv0.30Chloroethanepphv0.30Chloroethanepphv0.30Chloroethanepphv0.30Chloroethanepphv0.30Chloroethanepphv0.30Chloroethanepphv0.30Chloroethanepphv0.30Chloroethanepphv0.30Chloroethylenepphv0.30Chloroethylenepphv0.30Chloroethylenepphv0.30Chloroethylenepphv0.30Chloroethylenepphv0.30Chloroethylenepphv0.30Chloroethanepphv0.30Li Dichloroethylenepphv0.30Li Dichloroethanepphv0.30 <td></td> <td></td>				
Aliphatic >Cr_12-Cr_16µg/m³5.0Aromatic >Cr_12-Cr_16µg/m³5.0Aromatic >Cr_12-Cr_0µg/m³5.0Aromatic >Cr_12-Cr_0µg/m³5.0Aromatic >Cr_12-Cr_0µg/m³5.0Select Valuille CasesTAcetyleneppm0.2Ehlynenppm0.2Ehlyneneppm0.2Ehlyneneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppbv0.301,2-Dichlorodertallourcentaneppbv0.301,3-Battadieneppbv0.301,3-Battadieneppbv0.302-ropananeppbv0.302-ropananeppbv0.302-ropananeppbv0.302-ropananeppbv0.30Hehly Letone (MEK) (2-Butanono)ppbv0.30Hehly Letone (MEK) (2-Butanono)ppbv0.30Hehly Letone (MEK) (2-Butanono)ppbv0.301,1-Dichloroethaneppbv0.301,1-Dichloroethaneppbv0.301,1-Dichloroethaneppbv0.301,1-Dichloroethaneppbv0.301,1-Dichloroethaneppbv0.301,1-Dichloroethaneppbv0.301,1-Dichloroe				
Anomatic >C ₄ C ₁₀ µµ µµ µµ5.0Aromatic >C ₄ C ₁₁ Cµµ µµ5.0Aromatic >C ₄ C ₁₂ Cµµ µµ5.0Aromatic >C ₁₂ Cµµ µµ5.0Select Volitile Gases Actyleneµµ µµ0.2Ehane Detyleneµµ µµ0.2Ehane Detyleneµµ µµ0.2Hothane Detylene Popaneµµ µµ0.2Propane Depone Popone Popyneµµ µµ0.2Propane Depone Popyneµµ µµ0.2Propane Depone Popyneµµ µµ0.20Propane Depone Popyneµµ µµ0.30Volitle Organic Compounds Detylevi Unit olitorid Detylevi Unit olitorid Pophv0.301.3-Butaliene Thethorofithuroethane (Hy) will cloinod Phv0.50Trichlorotithuroethane (Hy) will cloinod Phv0.50Trichlorotithuroethane (Hy) will cloinod Phv0.502-ropanane Methyl stoine (MEK) (2-Butanon) Phvµµ 0.20Phy0.21Phy0.21Phy0.22Phy0.21Phy0.21Phy0.21Phy0.21Phy0.21Phy0.21Phy0.20Phy0.30Phy0.30Phy0.20Phy0.21Phy0.21Phy0.21Phy0.21Phy0.21Phy0.21Phy				
Aromatic >Cq.*C10µg/m³5.0Aromatic >Cq.*C12µg/m³5.0Aromatic >Cq.*C12µg/m³5.0Selex Volatic Gasesppm0.2Ethaneppm0.2Ethaneppm0.2Ethaneppm0.2Methaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppw0.30Vinyl chloridippbv0.30Vinyl chlorideppbv0.30Vinyl chlorideppbv0.30Propaneppbv0.30Propanalppbv0.302-Propanalppbv0.30Probiv3.0ppbv2-Propanalppbv0.20Probiv0.20ppbv2-Propanalppbv0.30Probiv0.20ppbv2-Propanalppbv0.30Probiv0.20ppbv2-Propanalppbv0.30Probiv0.20ppbv2-Propanalppbv0.30Probiv0.30ppbv1.1-Dichlorocthyleneppbv0.30Probiv0.30ppbv1.1-Dichlorocthyleneppbv0.301.1.2-Trichlorocthane <td>$>C_{12}-C_{16}$ µg/m³ 5.0 18.4</td> <td></td>	$>C_{12}-C_{16}$ µg/m ³ 5.0 18.4			
Aromatic >C10^212µg/m³5.0Aromatic >C12^2C16µg/m³5.0Select Volatile Gasesppm0.2Ethaneppm0.2Ethaneppm0.2Ethyleneppm0.2Ethyleneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppw0.17Chlorodifluoromethane (FREON 12)ppbv0.301,3-Butadieneppbv0.301,3-Butadieneppbv0.301,3-Butadieneppbv0.302-propanolppbv0.50Trichlorofluoromethane (FREON 11)ppbv0.20Probaneppbv0.302-propanolppbv0.302-propanolppbv0.20Ethyl acetateppbv0.20Ethyl acetateppbv0.20Ethyl acetateppbv0.20Ethyl acetateppbv0.20Ethyl acetateppbv0.301,1-Dichlorocethaneppbv0.301,1-Dichlorocethaneppbv0.301,1-Dichlorocethaneppbv0.20Ethyl acetateppbv0.20Ethyl acetateppbv0.20Ethyl acetateppbv0.301,1-Dichlorocethaneppbv0.301,1-Dichlo	$>C_7$ -C ₈ (TEX Excluded) $\mu g/m^3$ 5.0 ND			
Aromatic >C1_2^{-1}6µg/ml5.0Select Volatile Gases Actylene Ehaneppm0.2Ehaneppm0.2Ehyleneppm0.2Ehyleneppm0.2Ehyleneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppw0.30Viali (action of the construction of the con				
Select Valuitle Gasesppm0.2Acetyleneppm0.2Ethaneppm0.2Ethyleneppm0.2Ethyleneppm0.2Propaneppm0.2Propaneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.41Valuit Corrant CompoundsppbvDichloroditoronethane (FREON 12)ppbv0.30Vinyl chlorideppbv0.30Chloroethaneppbv0.30Chloroethaneppbv0.301,3-Butadieneppbv0.30Tichloroftuoroethaneppbv3.02-propanolppbv3.02-propanolppbv0.20Ethyl acetateppbv0.20Ethyl ac				
Accelvenceppm0.2Ethaneppm0.2Ethyleneppm0.2Ethyleneppm0.2Methaneppm0.1n-Butaneppm0.2Propaneppm0.2Propaneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.41Valille Orcanic Compoundsppbv0.101.3-Butancental fuccottaneppbv0.301.3-Butancental fuccottaneppbv0.301.3-Butancentane (FREON 11)ppbv0.20Propaneppbv0.50Trichloroffucomethane (FREON 11)ppbv0.20Propanoppbv0.302-propanolppbv0.302-propanolppbv0.20Methyl ethyl ketone (MEK) (2-Butanone)ppbvMethyl ethyl ketone (MEK) (2-Butanone)ppbvMethyl othyl ketoneppbv1.1-Dichloroethyleneppbv1.1-Dichloroethyleneppbv1.1-Dichloroethyleneppbv1.1-Dichloroethyleneppbv1.1-Dichloroethaneppbv1.1.2-Trichloroethaneppbv1.1.2-Trichloroethaneppbv1.1.2-Trichloroethaneppbv1.1.2-Trichloroethaneppbv1.1.2-Trichloroethaneppbv1.1.2-Trichloroethaneppbv1.1.2-Trichloroethaneppbv1.1.2-Trichloroe	$>C_{12}-C_{16}$ µg/m ³ 5.0 ND			
Enhaneppm0.2Ethyleneppm0.2Methaneppm0.2Methaneppm0.2Propaneppm0.2Propaneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.2Dichlorodifluoromethane (FREON 12)ppbv0.301.3-Dichloroterafluoroethaneppbv0.301.3-Butadieneppbv0.50Trichlorofluoromethane (FREON 11)ppbv0.20Ehhane (ethyl alcohol)ppbv0.301.3-Butadieneppbv0.301.3-Butadieneppbv0.301.3-Butadieneppbv0.301.3-Butadieneppbv0.301.3-Butadieneppbv0.301.3-Butadieneppbv0.301.3-Butadieneppbv0.301.3-Butadieneppbv0.20Propanoneppbv0.20Methyl tektore (MEK) (2-Butanone)ppbvMethyl tektore (MEK) (2-Butanone)ppbv1.1-Dichloroethaneppbv1.1-Dichloroethaneppbv1.1-Dichloroethaneppbv1.1-Dichloroethane <td>latile Gases</td> <td></td>	latile Gases			
Ethyleneppm0.2Methaneppm4.1-Butaneppm0.21Propaneppm0.2Propaneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.41Valid Cortanic Compoundsppbv0.17Chiorochtrafi durorethaneppbv0.301,3-Butadieneppbv0.30Trichloroftomenthane (FREON 11)ppbv0.20Ethanal (ethyl alcohol)ppbv0.302-Propanoeppbv0.152-propanolppbv0.302-Propanoeppbv0.20Ethyl acetateppbv3.02-Propanoeppbv0.20Ethyl acetateppbv0.20Hethyl butyl ketone (MEK) (2-Butanone)ppbv0.20Methyl butyl ketone (MEK) (2-Butanone)ppbv0.20Ithylae ather (MTBE)ppbv0.20Ethylae ather (MTBE)ppbv0.20Ethylae ather (MTBE)ppbv0.20Ethylae ather (MTBE)ppbv0.20Ithylae ather (MTBE)ppbv0.20Ithylae ath				
Methane n-Butaneppm4.1 ppmn-Butaneppm0.2 pppmPropaneppm0.2 ppmPropaneppm0.2Propeneppm0.2Propymeppm0.2Dichforottrafluoroethane (FREON 12) 1.2-Dichlorottrafluoroethaneppbv0.17Chloromethane (FREON 11) Ethanal (ethyl alcohol)ppbv0.301,3-Butafieneppbv0.50Trichlorofluoromethane (FREON 11) Ethanal (ethyl alcohol)ppbv0.302-Propanoppbv0.152-propanolppbv0.152-propanolppbv0.20Methyl tektone (MEK) (2-Butanone) ppbvppbv0.20Ethana (ethyl alcohol) mpbvppbv0.20Ethana (ethyl alcohol) mpbvppbv0.20Ethyl acetate methyl ether (MTBE)ppbv0.20Ethyl acetate methylene (holfk) (2-Hexanone) ppbvppbv0.20Ethyl acetate methylene chloride(Dichloromethane) ppbvppbv0.20Ethyl acetate methylene chloride(Dichloromethane) ppbvppbv0.20Ethylacetate methylene chloride(Dichloromethane ppbv0.20151,1-Dichloroethane methylene mpbv0.20151,1-Dichloroethane methyleneppbv0.301,1-Dichloroethane methyleneppbv0.20Ethylene methyleneppbv0.20Ethylene methyleneppbv0.20Ethylene methyleneppbv0.20E	11			
n-Pentane ppm 0.2 Propane ppm 0.2 Propane ppm 0.2 Propyne 0.2 Prop	**			
Propaneppm0.2Propyneppm0.2Propyneppm0.2Propyneppm0.2Dichlorodifluoromethane (FREON 12) 1.2-Dichlorotertafluoroethaneppbv0.301.3-Dichlorotertafluoroethaneppbv0.301.3-Butadieneppbv0.50Trichloroffluoromethane (FREON 11) Ethanol (cthyl alcohol)ppbv0.50Trichloroffluoroethaneppbv0.152-propanolppbv0.0Methyl telyt ketone (MEK) (2-Butanone) Methyl thyl ketone (MEK) (2-Hexanoe) Methyl hutyl ketone Methyl hutyl	ppm 0.41 ND			
Propeneppm0.2Propyneppm0.41Volatile Organic Compoundsppbv0.11Dichlorodithoromethane (FREON 12)ppbv0.131.2-Dichloroditoromethane (FREON 11)ppbv0.301.3-Butadieneppbv0.30Trichloromethane (FREON 11)ppbv0.20Ethanol (ethyl alcohol)ppbv0.302-Propanolppbv0.302-Propanolppbv0.302-Propanoneppbv0.30Methyl isobutyl ketone (MEK) (2-Butanone)ppbv3.0Methyl isobutyl ketone (MEK) (2-Hexanore)ppbv0.20Ethyl acetateppbv0.20Ethyl acetateppbv0.20I-1-Dichloroethyleneppbv0.20Ethyl acetateppbv0.20Dichloroethaneppbv0.20I-1-Dichloroethyleneppbv0.20Ethyl acetateppbv0.20I-1-Dichloroethaneppbv0.20I-1-Dichloroethaneppbv0.20I-1-Dichloroethaneppbv0.20I-1-Dichloroethaneppbv0.20I-1-Dichloroethaneppbv0.20I-1-Dichloroethaneppbv0.20I-1-Dichloroethaneppbv0.20I-1-Dichloroethaneppbv0.20I-1-Dichloroethaneppbv0.20I-1-Dichloroethaneppbv0.20I-1-Dichloroethaneppbv0.20I-1-Dichloroethaneppbv0.20I-1-Dichloroethane<				
Propynei ppm0.41Valatile Organic Compounds Dichlorodifluoromethane (FREON 12) 1,2-Dichlorottrafluoroethaneppbv0.001,2-Dichlorottrafluoroethaneppbv0.301,3-Butadieneppbv0.50Trichlorofluoromethane (FREON 11) Ethanol (ethyl alcohol)ppbv0.501,3-Butadieneppbv0.50Trichlorottrifluoroethaneppbv0.152-propanolppbv0.152-propanoneppbv3.02-Propanoneppbv3.0Methyl tethyl ketone (MEK) (2-Hexanone) methyl isobutyl ketoneppbv2.0Methyl thyl ketne (MBK) (2-Hexanone) methyl tether (MTBE)ppbv0.20Ehyl acetateppbv0.201.11,1-Dichloroethyleneppbv0.301.11,1-Dichloroethyleneppbv0.301.11,1-Dichloroethyleneppbv0.301.11,1,2-Titchloroethaneppbv0.301.11,1,1-Trichloroethaneppbv0.301.11,1,2,2-Tetchloroethaneppbv0.301.11,1,2,2-Tetchloroethaneppbv0.301,1,2,2-Tetchloroethaneppbv0.301,1,2,2-Tetchloroethaneppbv0.301,1,2,2-Tetchloroethaneppbv0.301,1,2,2-Tetchloroethaneppbv0.301,1,2,2-Tetchloroethaneppbv0.301,1,2,2-Tetchloroethaneppbv0.301,1,2,2-Tetchloroethaneppbv0.301,1,2,2-Tetchloroethane <td< td=""><td></td><td></td></td<>				
NumberNumberDichlorodifluoromethane (FREON 12) 1,2-DichlorodetrafluoroethaneppbvDichlorodifluoromethaneppbvChloromethaneppbvChloromethaneppbvChloromethaneppbv1,3-ButadieneppbvTrichlorofluoromethaneppbv2-propanolppbv2-propanoneppbvMethyl letyl ketone (MEK) (2-Butanone)ppbvMethyl letyl ketone (MEK) (2-Butanone)ppbvMethyl letyl ketone (MEK) (2-Butanone)ppbvMethyl letyl ketone (MEK) (2-Butanone)ppbvMethyl letyl ketone (MEK) (2-Hexanone)ppbvMethyl letyl ketone (MEK) (2-Butanone)ppbvMethyl letyl ketoneppbv1,1-Dichloroethyleneppbv0,20ppbv2.1-Dichloroethyleneppbv0,20ppbv1,1-Dichloroethyleneppbv0,20ppbv1,1-Dichloroethaneppbv1,1,2-Trichloroethaneppbv0,20ppbv1,1,2-Trichloroethaneppbv1,1,2-Trichloroethaneppbv1,1,2-Trichloroethaneppbv1,1,2-Trichloroethaneppbv1,1,2-Trichloroethaneppbv1,1,2-Trichloroethaneppbv1,1,2-Trichloroethaneppbv1,2-Trichloroethaneppbv1,2-Trichloroethaneppbv1,2-Trichloroethaneppbv1,2-Trichloroethaneppbv1,2-Trichloroethaneppbv1,2-Trichloroethaneppbv1,2-				
Dichlorodifluoromethane (FREON 12) 1.2-Dichlorotetrafluoroethaneppbv0.17 0.107 0.18 0.10Chloromethaneppbv0.18 0.101.3-Bundieneppbv0.50 0.15Trichlorofluoromethane (FREON 11) ppbvppbv0.20 0.15Ethanol (ethyl alcohol)ppbv0.302-Propanoneppbv0.05Methyl idtyl ketone (MEK) (2-Butanone) Methyl butyl ketone (MEK) (2-Hexanone) Methyl butyl ketone (MBK) (2-Hexanone) ppbvppbvMethyl chotyl ketone (MEK) (2-Butanone) methyl butyl ketone (MBK) (2-Hexanone) ppbvppbv2.2 Propanoneppbv0.20 2.2 1.1-Dichloroethyleneppbv1.1-Dichloroethyleneppbv0.20 0.20Ethyl acetateppbv0.20 0.201.1-Dichloroethyleneppbv0.30 0.201.1-Dichloroethyleneppbv0.30 0.201.2-Dichloroethyleneppbv0.30 0.201.1-Dichloroethaneppbv0.30 0.201.1-Dichloroethaneppbv0.30 0.301.1.2-Trichloroethaneppbv0.30 0.301.1.2-Trichloroethaneppbv0.30 0.301.1.2-Trichloroethaneppbv0.20 0.20Ethyleneppbv0.20 0.20Ethyleneppbv0.30 0.301.1.2-Trichloroethaneppbv0.30 0.20Dibromochloromethaneppbv0.20 0.20Dibromochloromethaneppbv0.20 0.20Dibromochloromethaneppbv0.20 0.20Dibromochloromet	**			
1.2-Dichlorotertafluoroethaneppbv0.17 ppbvChloromethaneppbv0.301,3-Butadieneppbv0.301,3-Butadieneppbv0.20Ethanol (ethyl alcohol)ppbv2.3Trichlorotorifluoroethaneppbv0.152-propanolppbv0.152-propanolppbv3.0Methyl lisobutyl ketone (MEK) (2-Butanone)ppbv3.0Methyl lisobutyl ketone (MEK) (2-Hexanore)ppbv3.2Methyl lisobutyl ketone (MEK) (2-Hexanore)ppbv0.20Ethyl acetateppbv0.20Ethyl acetateppbv0.20Ethyl acetateppbv0.20Hethyl ethor(dDichloromethane)ppbv0.20Dirams-1,2-Dichloroethyleneppbv0.20Chloroformppbv0.15Carbon tetrachlorideppbv0.301,1-Dichloroethaneppbv0.20Ethylane dibromideppbv0.20Ethylane dibromideppbv0.201,2-Dichloroethaneppbv0.201,1-Dichloroethaneppbv0.201,2-Dichloropropaneppbv0.20Bromodichloromethaneppbv0.20Ethylene dibromideppbv0.20Ethyleneppbv0.20Dibromochhaneppbv0.20Dibromochhaneppbv0.20Ethyleneppbv0.20Ethyleneppbv0.20Ethyleneppbv0.20Ethyleneppbv <td></td> <td></td>				
Vinyl chloridePpbv0.18Chlorochtaneppbv0.301,3-Butalčineppbv0.50Trichlorofluoromethane (FREON 11)ppbv0.20Ehanol (ethyl alcohol)ppbv0.32-propanolppbv0.152-propanolppbv3.02-Propanoneppbv3.0Methyl tethyl ketone (MEK) (2-Butanone)ppbv3.0Methyl tethyl ketone (MEK) (2-Hexanoe)ppbv3.0Methyl tyl ketone (MEK) (2-Hexanoe)ppbv0.20Ethyl acetateppbv0.201,1-Dichloroethyleneppbv0.20Kethyl tyl zhor (MEK) (2-Hexanoe)ppbv0.20Methyl tethore(MEK) (2-Hexanoe)ppbv0.20Methyl tethore(MEK) (2-Hexanoe)ppbv0.20Methyl techtore(MEK)ppbv0.20Ethyl acetateppbv0.201,2-Dichloroethyleneppbv0.301,1-Dichloroethaneppbv0.301,1-Dichloroethaneppbv0.20Ethylane dibromideppbv0.301,1,2-Trichloroethaneppbv0.301,1,2-Trichloroptopaneppbv0.151,1,2-Trichloroptopaneppbv0.20Bromoformppbv0.20Bromodichloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethane	orotetrafluoroethane ppbv 0.17 ND			
Chloroethaneppbv0.301.3-Bundieneppbv0.50Trichlorofthuoromethane (FREON 11)ppbv0.50Ehanol (ethyl alcohol)ppbv2.3Trichlorotrifhuoroethaneppbv0.152-propanolppbv3.0Perponnoreppbv3.0Methyl lethyl ketone (MEK) (2-Butanone)ppbv3.0Methyl lisobutyl ketone (MEK) (2-Hexanore)ppbv3.0Methyl lisobutyl ketone (MEK) (2-Hexanore)ppbv0.20Kethyl acciateppbv0.20Ehyl acciateppbv0.20Ehyl acciateppbv0.20Chloroformppbv0.30(Chlorofermaneppbv0.301,1-Dichloroethyleneppbv0.30(Labcolino)ppbv0.301,1-Dichloroethaneppbv0.301,1-Dichloroethaneppbv0.301,1,2-Tichloroethaneppbv0.301,1,2-Tichloroethaneppbv0.301,1,2-Tichloroethaneppbv0.151,1,2-Tichloroethaneppbv0.301,1,2-Tichloroethaneppbv0.301,1,2-Tichloroethaneppbv0.20Bromodichloromethaneppbv0.20Bromodichloromethaneppbv0.20Bromodichloromethaneppbv0.20Bromodichloromethaneppbv0.20Dibromochloromethaneppbv0.20Bromodichloromethaneppbv0.20Bromodichloromethaneppbv0.20 <td></td> <td></td>				
1.3-Butadieneppbv0.50Trichlorofluoromethane (FREON 11)ppbv0.50Ethanol (ethyl alcohol)ppbv2.3Trichloroffluoromethaneppbv3.02-propanolppbv3.02-Propanoneppbv0.80Methyl ethyl ketone (MEK) (2-Butanone)ppbv3.0Methyl butyl ketone (MEK) (2-Hexanone)ppbv2.2Methyl butyl ketone (MBK) (2-Hexanone)ppbv2.0Methyl butyl ketone (MBK) (2-Hexanone)ppbv0.25Eihyl acetateppbv0.221.1-Dichloroethyleneppbv0.20Methyl bethorethyleneppbv0.15Tarsal-2-Dichloroethyleneppbv0.301.1-Dichloroethyleneppbv0.301.2-Dichloroethaneppbv0.301.1-Dichloroethaneppbv0.301.2-Dichloropthaneppbv0.171.1.2-Trichloroethaneppbv0.161.1.2-Trichloroethaneppbv0.20Ethylene (TCE)ppbv0.20Bromoformppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromoc				
Trichlorofluoromethane (FREON 11)ppbv0.20Ethanol (ethyl alcohol)ppbv2.3Trichloroffluoromethaneppbv3.02-propanolppbv3.02-propanoneppbv3.0Methyl tehyl ketone (MEK) (2-Butanone)ppbv3.0Methyl butyl ketone (MBK) (2-Hexanone)ppbv3.0Methyl butyl ketone (MBK) (2-Hexanone)ppbv0.20Methyl butyl ketone (MBK) (2-Hexanone)ppbv0.20Eihyl acetateppbv0.221.1-Dichloroethyleneppbv0.25eis-1.2-Dichloroethyleneppbv0.15Trish.2-Dichloroethyleneppbv0.301.1-Dichloroethyleneppbv0.301.1-Dichloroethyleneppbv0.301.1-Dichloroethaneppbv0.301.1-Dichloroethaneppbv0.301.1-Dichloroethaneppbv0.301.1.2-Trichloroethaneppbv0.171.1.2-Trichloroethaneppbv0.18Bromoformppbv0.30Bromoformppbv0.30Trichloroethylene (TCE)ppbv0.30Bromodichloromethaneppbv0.30Dibronochloromethaneppbv0.20Dibronochloromethaneppbv0.20Dibronochloromethaneppbv0.20Dibronochloromethaneppbv0.20Dibronochloromethaneppbv0.20Dibronochloromethaneppbv0.20Dibronochloromethaneppbv0.20Di				
Ethanol (ethyl alcohol)ppbv2.3Trichlorotrifluoroethaneppbv0.152-propanolppbv3.02-Propanoneppbv3.0Methyl ethyl ketone (MEK) (2-Butanone)ppbv3.0Methyl utyl ketone (MBK) (2-Hexanore)ppbv3.0Methyl utyl ketone (MBK) (2-Hexanore)ppbv2.0Methyl utyl ketone (MBK) (2-Hexanore)ppbv0.20Ethyl accataeppbv0.20I-Dichloroethyleneppbv0.20Kethyl utyl chor (MTBE)ppbv0.20Chloroethyleneppbv0.20Methyl i-Dichloroethyleneppbv0.20L-Dichloroethaneppbv0.20L-Dichloroethaneppbv0.20L-Dichloroethaneppbv0.20L-Dichloroethaneppbv0.20L-Dichloroethaneppbv0.20L-Dichloroethaneppbv0.20Ehylane dibromideppbv0.15I,1,2-Trichloroethaneppbv0.16I,1,2-Trichloroethaneppbv0.17I,2-Dichloropropaneppbv0.18Bromodichloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethane <td< td=""><td></td><td></td></td<>				
2-propanolppbv3.02-Propanoneppbv0.80Methyl lethyl ketone (MEK) (2-Butanone)ppbv3.0Methyl lethyl ketone (MBK) (2-Hexanone)ppbv3.0Methyl butyl ketone (MBK) (2-Hexanone)ppbv2.0Methyl lotutyl ketone (MBK) (2-Hexanone)ppbv2.0Methyl lotutyl ether (MTBE)ppbv0.20Ethyl acetateppbv0.22(1-1)-Dichloroethyleneppbv0.15cis-12-Dichloroethyleneppbv0.30Tams-1,2-Dichloroethyleneppbv0.30(1-1)-Dichloroethyleneppbv0.30(1-1)-Dichloroethaneppbv0.20Ethylace dibromideppbv0.30(1-1)-Dichloroethaneppbv0.201,1-Dichloroethaneppbv0.30(1,2-Trichloroethaneppbv0.15(1,2-Trichloroethaneppbv0.171,2-Trichloroethaneppbv0.171,2-Trichloroethaneppbv0.20Bromodichloromethaneppbv0.20Bromodichloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20<	ethyl alcohol) ppbv 2.3 104			
A-rDescription2-Propanoneppbv0.80Methyl lethyl ketone (MEK) (2-Butanone)ppbv3.0Methyl lisobutyl ketone (MEK) (2-Haxanoe)ppbv3.2Methyl lisobutyl ketone (MEK) (2-Haxanoe)ppbv0.20Ethyl acetateppbv0.20Ethyl acetateppbv0.20Ethyl acetateppbv0.19trans.1.2-Dichloroethyleneppbv0.09Carbon tetrachlorideppbv0.301,1-Dichloroethyleneppbv0.301,1-Dichloroethaneppbv0.301,1-Dichloroethaneppbv0.20Ehylane dibromideppbv0.301,1-Dichloroethaneppbv0.20Ehylane dibromideppbv0.171,1,2-Trichloroethaneppbv0.131,1,2-Trichloroethaneppbv0.101,2-Dichloroptopaneppbv0.10Bromodichloromethaneppbv0.18Bromodichloromethaneppbv0.20Envenceppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20 <t< td=""><td>**</td><td></td></t<>	**			
Methyl ethyl ethyl ethyl (2-Butanone)i ppbv3.0 ppbvMethyl isobutyl ketone (MBK) (2-Haxanone)ppbv3.0 ppbvMethyl isobutyl ketone (MBK) (2-Haxanone)ppbv0.20Ethyl acetateppbv0.20Ethyl acetateppbv0.20Ethyl acetateppbv0.19(i 1-Dichloroethyleneppbv0.19(i 1-Dichloroethyleneppbv0.00Methyl the chloride(Dichloromethane)ppbv0.30Charbon tetrachlorideppbv0.301, 1-Dichloroethaneppbv0.301, 1-Dichloroethaneppbv0.20Ehylane dibromideppbv0.301, 1, 2-Trichloroethaneppbv0.151, 1, 2, 2-Tetrachloroethaneppbv0.171, 1, 2, 2-Tetrachloroptopeneppbv0.18Bromodichloromethaneppbv0.20Ensmodichloromethaneppbv0.20Bromodichloromethaneppbv0.20Bromodichloromethaneppbv0.20Bromodichloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Ethyleneppbv0.20Ethyleneppbv0.20Ethyleneppbv0.20Dibromochloromethaneppbv0.20<				
Methyl isobutyl ketoneppbv3.2Methyl butyl ketone (MBK) (2-Hexanore)ppbv2.0Methyl butyl ketone (MBK) (2-Hexanore)ppbv0.20Ethyl acetateppbv0.211,1-Dichloroethyleneppbv0.25cis-1,2-Dichloroethyleneppbv0.20Methyl butyl ketone (Dickloromethane)ppbv0.20Methylene chloride(Dichloromethane)ppbv0.301,1-Dichloroethyleneppbv0.301,1-Dichloroethaneppbv0.20Liyl-Inchloroethaneppbv0.20Liyl-Inchloroethaneppbv0.20Liyl-Inchloroethaneppbv0.201,1,2-Trichloroethaneppbv0.301,1,2-Trichloroethaneppbv0.151,1,2-Trichloroethaneppbv0.171,2-Dichloroethaneppbv0.171,2-Dichloropropeneppbv0.20Bromofornppbv0.20Bromofornppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Styreneppbv0.37colaceppbv0.20phylbenzeneppbv0.50Likloroethylenzeneppbv0.50Likloroethylenzeneppbv0.50Lithoroethylenzeneppbv0.401,2-Trichloroethaneppbv0.20phylbenzeneppbv0.50 <trr< td=""><td>11</td><td></td></trr<>	11			
Methyl butyl ketone (MBK) (2-Hexanone) phbvppbv2.0 ppbvEhyl acetateppbv0.20Ehyl acetateppbv0.21(1-Dichloroethyleneppbv0.19trans-1,2-Dichloroethyleneppbv0.00Methyl-ne chloride(Dichloromethane)ppbv0.00Chloroformppbv0.15Carbon tetrachlorideppbv0.301,1-Dichloroethaneppbv0.20Li,1-Dichloroethaneppbv0.301,1-Dichloroethaneppbv0.20Ethylene dibromideppbv0.20Ethylene dibromideppbv0.151,1,2-Trichloroethaneppbv0.161,1,2-Trichloroethaneppbv0.171,1,2-Trichloroethaneppbv0.171,2-Dichloropropeneppbv0.171,2-Dichloropropeneppbv0.20Bromodichloromethaneppbv0.20Bromodichloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20prim-xyleneppbv0.20pim-xyleneppbv0.20pim-xyleneppbv0.20pim-xyleneppbv0.20pim-xyleneppbv0.20pim-xyleneppbv0.20pim-xyleneppbv0.20pim-xyleneppbv0.20pim-xyleneppbv0.20 <td></td> <td></td>				
Ethyl acetateppbv2.21,1-Dichloroethyleneppbv0.25irasn.1,2-Dichloroethyleneppbv0.19Methylene chloride(Dichloromethane)ppbv0.80Chloroformppbv0.301,1-Dichloroethyleneppbv0.301,1-Dichloroethaneppbv0.20Li,1-Dichloroethaneppbv0.201,2-Dichloroethaneppbv0.201,2-Trichloroethaneppbv0.201,1,1-Trichloroethaneppbv0.301,1,2-Trichloroethaneppbv0.151,1,2-Trichloroethaneppbv0.171,2-Dichloropopaneppbv0.18Bromoformppbv0.20Bromoformppbv0.20Dibromothloromethaneppbv0.20Dibromothloromethaneppbv0.20Dibromothloromethaneppbv0.20Dibromothloromethaneppbv0.20Dibromothloromethaneppbv0.20Pirtachlorothyleneppbv0.20Ethylbenzeneppbv0.20pitholueneppbv0.20pitholueneppbv0.20pitholoroethyleneppbv0.20pitholoroethyleneppbv0.20pitholoroethyleneppbv0.20pitholoroethyleneppbv0.20pitholoroethyleneppbv0.20pitholoroethyleneppbv0.20pitholoroethyleneppbv0.20pitholoroethyleneppbv0.20 <trr< td=""><td></td><td></td></trr<>				
1,1-Dichloroethyleneppbv0.25cis-1,2-Dichloroethyleneppbv0.20Methylene chloridc(Dichloromethane)ppbv0.80Chloroformppbv0.301,1-Dichloroethyleneppbv0.301,1-Dichloroethaneppbv0.20Larbon tetrachlorideppbv0.20Li,1-Trichloroethaneppbv0.20Li,1-Trichloroethaneppbv0.20Li,1-Trichloroethaneppbv0.301,1,2-Trichloroethaneppbv0.301,1,2-Trichloroethaneppbv0.151,1,2-Trichloroethaneppbv0.171,2-Dichloroethaneppbv0.18Bromofornppbv0.20Bromofornppbv0.20Bromofornppbv0.20Bromofornppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Styreneppbv0.20Ethylbenzeneppbv0.20phw0.201,2,4-Trimethylbenzeneppbv0.501,1,2-Trichlorobenzeneppbv0.501,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1	butyl ether (MTBE) ppbv 0.20 ND			
cis-1_2-Dichloroethyleneppbv0.19trans-1_2-Dichloroethyleneppbv0.20Methylene chloride/Dichloromethane)ppbv0.80Chloroformppbv0.15Carbon tetrachlorideppbv0.301,1-Dichloroethaneppbv0.201,1-Dichloroethaneppbv0.20Ehylene dibromideppbv0.20Ehylene dibromideppbv0.171,1,2-Trichloroethaneppbv0.151,1,2-Trichloroethaneppbv0.181,1,2-Trichloroethaneppbv0.171,2-Dichloropropeneppbv0.171,2-Dichloropropeneppbv0.18Bromoformppbv0.171,2-Dichloropropeneppbv0.101,2-Dichloropropeneppbv0.20Bromodichloromethaneppbv0.20Bromodichloromethaneppbv0.20Bromodichloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Ehylenzeneppbv0.20Ehylenzeneppbv0.20pim-xyleneppbv0.20pim-xyleneppbv0.20pim-xyleneppbv0.20pim-xyleneppbv0.20pi-trininethylbenzeneppbv0.20pim-xyleneppbv0.20pim-xyleneppbv0.20pim-xyleneppbv0.20pim-trininethylbenzeneppbv0.20la,3-Dichlor				
trans-1,2-Dichloroethyleneppbv0.20Methylene chloride/Dichloromethane)ppbv0.80Chloroformppbv0.15Carbon tetrachlorideppbv0.201,1-Dichloroethaneppbv0.20Ehylene dihoromideppbv0.201,1,2-Trichloroethaneppbv0.171,1,2,2-Tetrachloroethaneppbv0.171,1,2,2-Tetrachloroethaneppbv0.18trans-1,3-Dichloropropeneppbv0.171,2,2-Tetrachloroethaneppbv0.18Bromomethaneppbv0.20Bromomethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Trichloroethylene (PCE)ppbv0.20Bromodichloromethaneppbv0.20Trichloroethylene (PCE)ppbv0.20Bryneneppbv0.20Pirm-xyleneppbv0.20Pirm-xyleneppbv0.20Pirm-tyllenzeneppbv0.20Pirm-tyllenzeneppbv0.50Chlorobenzeneppbv0.50Chlorobenzeneppbv0.401,2-Dichlorobenzeneppbv0.401,2-Trinichtylbenzeneppbv0.401,2-Trinichtylbenzeneppbv0.401,2-Trinichtylbenzeneppbv0.401,2-Trinichtylbenzeneppbv0.401,2-Trinichtylbenzeneppbv0.401,2-Trinichtylben				
Methylene chloride(Dichloromethane)ppbv0.80Chloroformppbv0.15Carbon tetrachlorideppbv0.301,1-Dichloroethaneppbv0.20Ethylene dibromideppbv0.20Ethylene dibromideppbv0.301,1,1-Trichloroethaneppbv0.301,1,2-Trichloroethaneppbv0.311,1,2-Trichloroethaneppbv0.151,1,2-Trichloroethaneppbv0.161,1,2-Trichloroethaneppbv0.171,2-Dichloropropeneppbv0.18Bromoformppbv0.20Bromoformppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Pirtachloroothylene (TCE)ppbv0.20Enzeneppbv0.20Ehylbenzeneppbv0.20Pylm-xyleneppbv0.20Pylmes0.2022La,3-Trimethylbenzeneppbv0.20Pybv0.2022I,3-Dichlorobenzeneppbv0.401,2-Dichlorobenzeneppbv0.401,2-Trichlorobenzeneppbv0.401,2-Trichlorobenzeneppbv0.401,2-Trichlorobenzeneppbv0.401,2-Trichlorobenzeneppbv0.30La,1-Dichlorobenzeneppbv0.30 <td< td=""><td></td><td></td></td<>				
Carbon tetrachlorideppbv0.301,1-Dichloroethaneppbv0.201,1-Dichloroethaneppbv0.20Ehylene dibromideppbv0.171,1,1-Trichloroethaneppbv0.131,1,2-Trichloroethaneppbv0.151,1,2-Trichloroethaneppbv0.161,1,2-Trichloroethaneppbv0.18trans.1,3-Dichloropropeneppbv0.18trans.1,3-Dichloropropeneppbv0.18Bromofernppbv0.20Bromodichloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Bromofernppbv0.20Bromofernppbv0.20Bromofernppbv0.20Bromothaneppbv0.20Bromothoromethaneppbv0.20Bromothoromethaneppbv0.20Bromothoromethaneppbv0.20Bromothoromethaneppbv0.20Bromzeneppbv0.20Brybeneppbv0.20Ehylhenzeneppbv0.20pi-m-xyleneppbv0.20pi-m-xyleneppbv0.20I,3-Trimethylbenzeneppbv0.401,4-Dichlorobenzeneppbv0.401,2-Trichlorobenzeneppbv0.401,2-Trichlorobenzeneppbv0.401,2-Trichlorobenzeneppbv0.30Hexanklorobutadienepp				
Carbon tetrachlorideppbv0.301,1-Dichloroethaneppbv0.201,1-Dichloroethaneppbv0.20Ehylene dibromideppbv0.171,1,1-Trichloroethaneppbv0.131,1,2-Trichloroethaneppbv0.151,1,2-Trichloroethaneppbv0.161,1,2-Trichloroethaneppbv0.18trans.1,3-Dichloropropeneppbv0.18trans.1,3-Dichloropropeneppbv0.18Bromofernppbv0.20Bromodichloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Bromofernppbv0.20Bromofernppbv0.20Bromofernppbv0.20Bromothaneppbv0.20Bromothoromethaneppbv0.20Bromothoromethaneppbv0.20Bromothoromethaneppbv0.20Bromothoromethaneppbv0.20Bromzeneppbv0.20Brybeneppbv0.20Ehylhenzeneppbv0.20pi-m-xyleneppbv0.20pi-m-xyleneppbv0.20I,3-Trimethylbenzeneppbv0.401,4-Dichlorobenzeneppbv0.401,2-Trichlorobenzeneppbv0.401,2-Trichlorobenzeneppbv0.401,2-Trichlorobenzeneppbv0.30Hexanklorobutadienepp	rm ppbv 0.15 0.24			
1.2-Dichloroethaneppbv0.20Ethylene dibromideppbv0.171,1,1-Trichloroethaneppbv0.301,1,2-Trichloroethaneppbv0.151,1,2-Trichloroethaneppbv0.171,2-Dichloropropeneppbv0.171,2-Dichloropropeneppbv0.18Bromodrmppbv0.18Bromodichloromethaneppbv0.20Bromodichloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Benzeneppbv0.20Styreneppbv0.20Pim-xyleneppbv0.20Pim-xyleneppbv0.20Pim-xyleneppbv0.20Pim-xyleneppbv0.20Pim-trininthylbenzeneppbv0.20Pim-trininthylbenzeneppbv0.501,2,4-Trimethylbenzeneppbv0.401,2-Dichlorobenzeneppbv0.401,2-Dichlorobenzeneppbv0.30Hexanklorobutadieneppbv0.30Hexanklorobutadieneppbv0.30Hexanklorobutadieneppbv0.401,2-Dichlorobenzeneppbv0.401,2-Dichlorobenzeneppbv0.401,	trachloride ppbv 0.30 ND			
Ethylene dibromideppbv0.171,1,1-Trichloroethaneppbv0.301,1,2-Trichloroethaneppbv0.151,1,2,2-Tetraholoroethaneppbv0.18trans-1,3-Dichloropropeneppbv0.18Bromorthaneppbv0.18Bromorthaneppbv0.18Bromorthaneppbv0.18Bromorthaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Straneppbv0.20Enzeneppbv0.20Styreneppbv0.20Styreneppbv0.20Styreneppbv0.20Styreneppbv0.20Styreneppbv0.50Chlorobenzeneppbv0.401,2-4-Trinethylbenzeneppbv0.401,2-4-Trichlorobenzeneppbv0.30Heytaneppbv0.30Cyclohorxaneppbv0.30Heytaneppbv0.30Chlorobenzeneppbv0.30Heytaneppbv0.30I,2-4-Trichlorobenzeneppbv0.30Heytaneppbv <td< td=""><td></td><td></td></td<>				
1,1,1-Trichloroethaneppbv 0.30 1,1,2-Trichloroethaneppbv 0.15 1,1,2,2-Tetrachloroethaneppbv 0.15 1,1,2,2-Tetrachloroethaneppbv 0.15 trans-1,3-Dichloropropeneppbv 0.17 1,2-Dichloropropeneppbv 0.17 1,2-Dichloropropeneppbv 0.18 Bromofornppbv 0.20 Bromodichloromethaneppbv 0.20 Dibromochloromethaneppbv 0.20 Dibromochloromethaneppbv 0.20 Tichloroethylene (PCE)ppbv 0.30 Benzeneppbv 0.20 Ethylbenzeneppbv 0.20 Ethylbenzeneppbv 0.20 Styreneppbv 0.20 Ethylbenzeneppbv 0.20 J.2-Tirimethylbenzeneppbv 0.20 Pitraethyloneppbv 0.20 Ethylbenzeneppbv 0.20 Styreneppbv 0.20 Hylbenzeneppbv 0.50 Chlorobenzeneppbv 0.50 I.3-Dichlorobenzeneppbv 0.40 1,2-Dichlorobenzeneppbv 0.40 1,2-Dichlorobenzeneppbv 0.30 Hexanklorobutadieneppbv 0.30 Hexanklorofutaneppbv 0.30 Cyclohexaneppbv 0.30 Hexanklorobutadieneppbv 0.40 1,2-Dichlorobenzeneppbv 0.40 1,2-Dichlorobenzeneppbv 0.40 1,2-Dichlorobenzene<				
1,1,2-Trichloroethaneppbv0,151,1,2,2-Tetrachloroethaneppbv0,20cis-1,3-Dichloropropeneppbv0,171,2-Dichloropropeneppbv0,171,2-Dichloropropeneppbv0,10Bromofornppbv0,20Bromofornppbv0,20Bromodichloromethaneppbv0,20Dibromochloromethaneppbv0,20Dibromochloromethaneppbv0,20Dibromochloromethaneppbv0,20Branceppbv0,30Tetrachloroethylene (PCE)ppbv0,20Benzeneppbv0,20Ethylbenzeneppbv0,20phr-xyleneppbv0,20Styreneppbv0,20Ethylbenzeneppbv0,20Styreneppbv0,201,3-5-Tinirethylbenzeneppbv0,20Styreneppbv0,50Chlorobenzeneppbv0,50Chlorobenzeneppbv0,401,2-4-Trimethylbenzeneppbv0,401,2-Dichlorobenzeneppbv0,401,2-Dichlorobenzeneppbv0,30Hexanleppbv0,30Hexanleppbv0,30Cyclohexaneppbv0,30Cyclohexaneppbv0,401,2-Dichlorobenzeneppbv0,401,2-Dichlorobenzeneppbv0,401,2-Dichlorobenzeneppbv0,401,2-Dichlorobenzeneppbv0,401,2-Dichloroben				
cis-1,3-Dichloropropeneppbv0.18trans-1,3-Dichloropropeneppbv0.171,2-Dichloropropeneppbv0.171,2-Dichloropropeneppbv0.18Bromodichneppbv0.20Bromodichloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Bremadichloromethaneppbv0.20Bremadichloromethaneppbv0.20Bremadichloromethaneppbv0.20Benzeneppbv0.20Ethylbenzeneppbv0.20bildenzeneppbv0.20Styreneppbv0.20Styreneppbv0.20J.3-5-Trimethylbenzeneppbv0.20Chlorobenzeneppbv0.20Hardhorobenzeneppbv0.20Styreneppbv0.50Chlorobenzeneppbv0.50Chlorobenzeneppbv0.401,2-4-Trinchtylbenzeneppbv0.401,2-Dichlorobenzeneppbv0.401,2-Dichlorobenzeneppbv0.30Hexankorobutadieneppbv0.30Hexankorobutadieneppbv0.20Cyclohexaneppbv0.401,4-Dickloraneppbv0.401,2-Dichlorobenzeneppbv0.20Cyclohexaneppbv0.401,4-Dickloraneppbv0.401,4-Dickloraneppbv0.401,4-Dickloraneppbv0.40 <t< td=""><td>PP</td><td></td></t<>	PP			
trans-1,3-Dichloropropeneppbv0.171,2-Dichloropropaneppbv0.40Bronmoftaneppbv0.18Bronmoftaneppbv0.20Bronmoftaneppbv0.20Bronmoftaneppbv0.20Dibronochloromethaneppbv0.20Dibronochloromethaneppbv0.20Dibronochloromethaneppbv0.20Trichloroethylene (TCE)ppbv0.20Benzeneppbv0.20Ehylbenzeneppbv0.20Pjm-xyleneppbv0.20Styreneppbv0.20L1,3,5-Trimethylbenzeneppbv0.20Pytrateklorobenzeneppbv0.20J,2,4-Trimethylbenzeneppbv0.50Chlorobenzeneppbv0.50L1,2-Lichlorobenzeneppbv0.40L2,2-Lichlorobenzeneppbv0.40L2,2-Lichlorobenzeneppbv0.30Hexanklorofuranppbv0.30Cyclohexaneppbv0.30Cyclohexaneppbv0.40L4-Dickordoranappbv0.40L4-Dickordoranappbv0.40L4-Dickordoranappbv0.40L2,4-Trimethylenzeneppbv0.30Cyclohexaneppbv0.30Cyclohexaneppbv0.40L2,2-Dichlorobenzeneppbv0.40L2,2-Dichlorobenzeneppbv0.40L2,2-Dichlorobenzeneppbv0.40L2,2-Dichlorobenzeneppbv0.40	II			
1.2-Dichloropropaneppbv0.40Bromodichloromethaneppbv0.18Bromodichloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Enzeneppbv0.20Benzeneppbv0.20Benzeneppbv0.20Benzeneppbv0.20Benzeneppbv0.20Benzeneppbv0.20Bryleneppbv0.20Benzeneppbv0.20Styreneppbv0.20Styreneppbv0.20Styreneppbv0.20Styreneppbv0.20Chlorobenzeneppbv0.501,2,4-Trimethylbenzeneppbv0.501,2,4-Trimethylbenzeneppbv0.401,4-Dichlorobenzeneppbv0.401,2-Dichlorobenzeneppbv0.401,2-Dichlorobenzeneppbv0.30Hexanklorobutadieneppbv0.30Hexanklorobutadieneppbv0.401,4-Dichlorobenzeneppbv0.401,2-Dichlorobenzeneppbv0.401,2-Dichlorobenzeneppbv0.30Cyclohexaneppbv0.401,4-Dichlorobenzeneppbv0.401,4-Dichlorobenzeneppbv0.401,4-Dichlorobenzeneppbv0.401,4-Dichlorobenzeneppbv0.401,4-Dichlorobenzeneppbv <td></td> <td></td>				
Bromodichloromethaneppbv0.18Bromodichloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Enzeneppbv0.20Benzeneppbv0.20Ehylbenzeneppbv0.20Ehylbenzeneppbv0.20Pirm-xyleneppbv0.20eryleneppbv0.20Styreneppbv0.204chylkolueneppbv0.201,2,4-Trimethylbenzeneppbv0.20Benzyl chlorideppbv0.20Benzyl chlorideppbv0.20Benzyl chlorideppbv0.501,2-1-Trimethylbenzeneppbv0.20Benzyl chlorideppbv0.401,2-1-Trihethylbenzeneppbv0.401,2-1-Trihothorobenzeneppbv0.401,2-1-Trihothorobenzeneppbv0.30Hexanklorobutadieneppbv0.30Heytaneppbv0.401,4-Dichorobenzeneppbv0.401,4-Dichorobenzeneppbv0.401,2-1-Trichlorobenzeneppbv0.30Cyclohexaneppbv0.401,4-Dichorobenzeneppbv0.401,4-Dichorobenzeneppbv0.401,4-Dichorobenzeneppbv0.401,4-Dichorobenzeneppbv0.401,4-Dichorobenzeneppbv0.40 <td></td> <td></td>				
Bromoform ipbv 0.20 Bromodichloromethane ppbv 0.20 Dirbomochloromethane ppbv 0.20 Dirbomochloromethane ppbv 0.20 Trichloroethylene (TCE) ppbv 0.30 Tetrachloroethylene (PCE) ppbv 0.20 Benzene ppbv 0.20 Ethylbenzene ppbv 0.20 pim-xylene ppbv 0.20 pim-xylene ppbv 0.20 syrene ppbv 0.20 syrene ppbv 0.20 syrene ppbv 0.20 4-ethylholuene ppbv 0.20 1,3,5-Trimethylbenzene ppbv 0.50 Chlorobenzene ppbv 0.40 1,3-Dichlorobenzene ppbv 0.40 1,2,4-Trinkthylbenzene ppbv 0.40 1,2,4-Trinkthylbenzene ppbv 0.40 1,2,4-Trinkthylbenzene ppbv 0.40 1,2,4-Trinkthylbenzene ppbv 0.40				
Dibromochloromethane ppbv 0.20 Trichloroethylene (TCE) ppbv 0.30 Tetrachloroethylene (PCE) ppbv 0.20 Benzene ppbv 0.20 Toluene ppbv 0.20 Ehylbenzene ppbv 0.20 p+m-sylene ppbv 0.20 sylene ppbv 0.20 sylene ppbv 0.20 styrene ppbv 0.20 styrene ppbv 0.20 4-ethyloluene ppbv 0.20 1,2,5-Trimethylbenzene ppbv 0.50 Chlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.30 Hexanle ppbv 0.30 Hexanle ppbv 0.30 Kashlorobutadiene ppbv 0.40 1,4-Dichlorobenzene ppbv 0.30 Heytane ppbv	rm ppbv 0.20 ND			
Trichloroethylene (TCE) ppbv 0.30 Tetrachloroethylene (PCE) ppbv 0.20 Benzene ppbv 0.18 Toluene ppbv 0.20 Ethylbenzene ppbv 0.20 p*m-xylene ppbv 0.20 p*m-xylene ppbv 0.20 ptbr 0.20 ppbv styrene ppbv 0.20 4-ethylkoluene ppbv 0.20 1,3,5-Trimethylbenzene ppbv 0.50 Chlorobenzene ppbv 0.50 Ghlorobenzene ppbv 0.40 1,2-4-Trimethylbenzene ppbv 0.40 1,3-5-Tichlorobenzene ppbv 0.40 1,2-4-Trichlorobenzene ppbv 0.40 1,2-4-Trichlorobenzene ppbv 0.40 1,2-4-Trichlorobenzene ppbv 0.40 1,2-4-Trichlorobenzene ppbv 0.30 Hexanle ppbv 0.30 Hexanle ppbv 0.40 1,4-Dichor	chloromethane ppbv 0.20 ND			
Tetrachiorothylene (PCE) ppbv 0.20 Benzene ppbv 0.18 Toluene ppbv 0.20 Ethylbenzene ppbv 0.20 pim-sylene ppbv 0.20 sylene ppbv 0.20 Styrene ppbv 0.20 sylene ppbv 0.20 Styrene ppbv 0.20 4-ethylholuene ppbv 0.20 4-ethylholuene ppbv 0.50 Chlorobenzene ppbv 0.50 Chlorobenzene ppbv 0.40 1,2-4-Trinkhylbenzene ppbv 0.40 1,3-5ichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Jrichlorobenzene ppbv 0.30 Hexanklorobutadiene ppbv 0.30 Heytane ppbv 0.30 Cyclohexane ppbv 0.40 1,4-Dicknofuran ppbv 0.40 1,4-Dicknofuran ppbv				
Benzene ppbv 0.18 Toluene ppbv 0.20 Ehylbenzene ppbv 0.20 p+m-xylene ppbv 0.20 p+m-xylene ppbv 0.20 p+m-xylene ppbv 0.20 p+m-xylene ppbv 0.20 ptmexplene ppbv 0.20 Styrene ppbv 0.20 4-ethyltoluene ppbv 0.20 1,2,4-Trimethylbenzene ppbv 0.50 1,2,4-Trimethylbenzene ppbv 0.40 1,4-Dichlorobenzene ppbv 0.40 1,4-Dichlorobenzene ppbv 0.40 1,2-Jrichlorobenzene ppbv 0.40 1,2-Jrichlorobenzene ppbv 0.30 Hexanklorobutadiene ppbv 0.30 Hexanklorobutadiene ppbv 0.40 1,4-Dichlorobenzene ppbv 0.40 1,2,4-Trihoforan ppbv 0.30 Heyane ppbv 0.40 1,2,4-Trichlorobenzene <td></td> <td></td>				
Toluene Tpbv Ethylkenzene 0.20 ppbv 0.20 0.20 p+m-xylene ppbv 0.20 o-xylene ppbv 0.20 Styrene ppbv 0.20 Styrene ppbv 0.20 Styrene ppbv 0.20 Styrene ppbv 0.20 L_3.5-Trimethylbenzene ppbv 0.50 Chlorobenzene ppbv 0.60 L_4.Trimethylbenzene ppbv 0.40 L_3.5-Trinethylbenzene ppbv 0.40 L_4.Trichlorobenzene ppbv 0.40 L_2.Dichlorobenzene ppbv 0.40 L_2.4-Trichlorobenzene ppbv 0.40 L_2.4-Trichlorobenzene ppbv 0.30 Hexankorobutadiene ppbv 0.30 Heptane ppbv 0.40 Cyclohexane ppbv 0.40 L_4-Dichlorobutadiene ppbv 0.30 Heptane ppbv 0.40 L_4-Dichlorobutadiene ppbv 0.60				
p+m-xylene ppbv 0.37 o-xylene ppbv 0.20 Siyrene ppbv 0.20 4-chyltoluene ppbv 0.20 4-chyltoluene ppbv 2.2 1,3,5-Trimethylbenzene ppbv 0.50 1,2,4-Trimethylbenzene ppbv 0.50 Benzyl chloride ppbv 0.00 Benzyl chloride ppbv 0.40 1,4-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Trichlorobenzene ppbv 0.30 Hexachlorobutadiene ppbv 0.30 Heytane ppbv 0.30 Cyclohexane ppbv 0.40 1,4-Dichorobutatiene ppbv 0.40 1,4-Dichoroberzene ppbv 0.30 Heytane ppbv 0.40 1,2,4-Trichlorobenzene ppbv 0.40 1,4-Dichorobenzene ppbv 0.60 Vijnus ppbv 0.60 Vijnus	ppbv 0.20 7.53			
o-xylene ppbv 0.20 Styrene ppbv 0.20 styrene ppbv 0.20 4-thylkoluene ppbv 0.50 1,3,5-Trimethylbenzene ppbv 0.50 1,2,4-Trimethylbenzene ppbv 0.50 Chlorobenzene ppbv 0.40 1,3-Dichlorobenzene ppbv 0.40 1,4-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.30 Hexanchorobutadiene ppbv 0.30 Hexanene ppbv 0.40 1,4-Dichorobenzene ppbv 0.30 Hotsane ppbv 0.40 1,2,4-Trichlorobenzene ppbv 0.30 Hotsane ppbv 0.40 1,4-Dickorober ppbv 0.40 1,4-Dickorober ppbv 0.60 Vingl hormide ppbv 0.60 Vingl hormide	zene ppbv 0.20 0.94			
Styrene ppbv 0.20 4-ethyltoluene ppbv 2.2 1,3,5-Trimethylbenzene ppbv 0.50 1,2,4-Trimethylbenzene ppbv 0.50 Phylochorzene ppbv 0.20 Benzyl chloride ppbv 0.00 1,3-Dichlorobenzene ppbv 0.40 1,3-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.30 Hexanlorobutadiene ppbv 0.30 Heptane ppbv 0.30 Cyclohexane ppbv 0.40 1,4-Dicinane ppbv 0.60 Vinyl bromide ppbv 0.60 Vinyl bromide ppbv 0.20 Propene ppbv 0.30				
4-ethyloluene ppbv 2.2 1,3,5-Trimethylbenzene ppbv 0.50 1,2,4-Trimethylbenzene ppbv 0.50 Chlorobenzene ppbv 0.20 Benzyi chloride ppbv 0.40 1,3-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.30 Hexanklorobutadiene ppbv 0.30 Hexane ppbv 0.30 Cyclohexane ppbv 0.40 1,4-Dichorofuran ppbv 0.40 1,4-Dichoroberzene ppbv 0.30 Heyane ppbv 0.40 1,2,4-Trikhoroberzene ppbv 0.40 1,2,4-Trikhoroberzene ppbv 0.30 Cyclohexane ppbv 0.40 1,4-Dichorofuran ppbv 0.60 Vingi hormide ppbv 0.20 <t< td=""><td>PPO</td><td></td></t<>	PPO			
1,3,5-Trimethylbenzene ppbv 0.50 1,2,4-Trimethylbenzene ppbv 0.50 Chlorobenzene ppbv 0.20 Bernyl chlorobenzene ppbv 0.40 1,3-Dichlorobenzene ppbv 0.40 1,3-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.30 Hexachlorobutadiene ppbv 0.30 Hexane ppbv 0.30 Cyclohexane ppbv 0.40 1,4-Dichlorobenzene ppbv 0.20 Petrahydrofuran ppbv 0.20 Yelene (Total) ppbv 0.60 Vinyl bromide ppbv 0.20 Propene ppbv 0.30				
Chlorobenzene ppbv 0.20 Benzyl chloride ppbv 1.0 1,3-Dichlorobenzene ppbv 0.40 1,4-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.30 Hexachlorobutadiene ppbv 0.30 Heptane ppbv 0.30 Cyclohexane ppbv 0.40 1,4-Dichlorobutadiene ppbv 0.20 Cyclohexane ppbv 0.40 1,4-Dickane ppbv 0.40 1,4-Dickane ppbv 0.60 Vingl tromide ppbv 0.20 Propene ppbv 0.30				
Chlorobenzene ppbv 0.20 Benzy (chloride ppbv 1.0 1,3-Dichlorobenzene ppbv 0.40 1,3-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.30 Hexankorobutadiene ppbv 0.30 Heptane ppbv 0.30 Cyclohexane ppbv 0.40 1,4-Dichlorobutadiene ppbv 0.20 Cyclohexane ppbv 0.40 1,4-Dickane ppbv 0.40 1,4-Dickane ppbv 0.60 Vingi hormide ppbv 0.20 Propene ppbv 0.30	nethylbenzene ppbv 0.50 0.58			
1,3-Dichlorobenzene ppbv 0.40 1,4-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Trichlorobenzene ppbv 2.0 Hexachlorobutadiene ppbv 0.30 Heytane ppbv 0.30 Cyclohexane ppbv 0.20 Tetrahydrofuran ppbv 0.40 1,4-Dichlorobenzene ppbv 0.20 Veylene (Total) ppbv 0.40 ylene (Total) ppbv 0.20 Propene ppbv 0.30	nzene ppbv 0.20 ND			
1,4-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2,4-Trichlorobenzene ppbv 2.0 Hexachlorobutadiene ppbv 3.0 Hexachlorobutadiene ppbv 0.30 Heptane ppbv 0.30 Cyclohexane ppbv 0.40 Tettahydrofuran ppbv 0.40 1,4-Dichlorobenzene ppbv 0.40 Vylene (Total) ppbv 0.60 Vinyil bromide ppbv 0.20 Propene ppbv 0.30	nloride ppbv 1.0 ND orobenzene ppbv 0.40 ND			
1,2-Dichlorobenzene ppbv 0.40 1,2,4-Trichlorobenzene ppbv 2.0 Hexanklorobutadiene ppbv 3.0 Hexane ppbv 0.30 Heptane ppbv 0.30 Cyclohexane ppbv 0.20 Tetrahydrofuran ppbv 0.40 1,4-Dioxame ppbv 0.60 Vinyl bromide ppbv 0.20 Propene ppbv 0.20				
1,2,4-Trichlorobenzene ppbv 2.0 Hexankorobutadiene ppbv 3.0 Hexane ppbv 0.30 Heptane ppbv 0.30 Cyclohexane ppbv 0.20 Tetrahydrofuran ppbv 0.40 1,4-Dioxane ppbv 2.0 Vylene (Total) ppbv 0.60 Vinyl bromide ppbv 0.20 Propene ppbv 0.30				
Hexane ppbv 0.30 Heptane ppbv 0.30 Cyclohexane ppbv 0.20 Tetrahydrofuran ppbv 0.40 1,4-Dioxane ppbv 2.0 Xylene (Total) ppbv 0.60 Vinyl bromide ppbv 0.20 Propene ppbv 0.30	chlorobenzene ppbv 2.0 ND			
Heptane ppbv 0.30 Cyclohexane ppbv 0.20 Tetrahydrofuran ppbv 0.40 1,4-Dioxane ppbv 2.0 Xylene (Total) ppbv 0.60 Vinyl bromide ppbv 0.20 Propene ppbv 0.30				
Cyclohexane ppbv 0.20 Tetrahydrofuran ppbv 0.40 1,4-Dioxane ppbv 2.0 Xylene (Total) ppbv 0.60 Vinyl bromide ppbv 0.20 Propene ppbv 0.30	**			
Tetrahydrofuran ppbv 0.40 1,4-Dioxane ppbv 2.0 Xylene (Total) ppbv 0.60 Vinyl bromide ppbv 0.20 Propene ppbv 0.30				
1,4-Dioxane ppbv 2.0 Xylene (Total) ppbv 0.60 Vinyl bromide ppbv 0.20 Propene ppbv 0.30				
Xylene (Total) ppbv 0.60 Vinyl bromide ppbv 0.20 Propene ppbv 0.30				
Propene ppbv 0.30	Fotal) ppbv 0.60 5.88			
	mide ppbv 0.20 ND			
2,2,4-1 rimetnylpentane ppbv 0.20				
Carbon disulfide ppbv 0.50				
Vinyl acetate ppbv 0.20				

Table 5C

Results are from sampling performed on Saturday, August 17, 2013.
 ND - Not Detected, less than the limit of method detection.
 - No value established in the detection limit and reference criteria.
 For further information, the reader should refer to the laboratory report in Appendix A.

Detection Limit VW-01									
Parameter			08/17	//2013					
	mg/m ³	ppm	mg/m ³	ppm					
Trimethylsilyl Fluoride			0.0007	0.0002					
Tetramethylsilane	0.0001	0.0001	ND	ND					
Methoxytrimethylsilane	0.0018	0.0004	ND	ND					
Ethoxytrimethylsilane	0.0017	0.0004	ND	ND					
Trimethylsilanol			0.0394	0.0107					
Isopropoxytrimethylsilane	0.0007	0.0001	ND	ND					
Trimethoxymethyl Silane #			ND	ND					
Hexamethyl Disiloxane - L2			0.0005	0.0001					
Propoxytrimethylsilane	0.002	0.0004	ND	ND					
1-Methylbutoxytrimethylsilane *			ND	ND					
Butoxytrimethylsilane *			ND	ND					
Trimethoxyvinyl Silane #			ND	ND					
Hexamethyl Cyclotrisiloxane - D3			0.0074	0.0008					
Octamethyl Trisiloxane - L3	0.0001	0.0001	ND	ND					
Triethoxyvinyl Silane #			ND	ND					
Triethoxyethyl Silane #			ND	ND					
Octamethyl Cyclotetrasiloxane - D4			0.0071	0.0006					
Decamethyl Tetrasiloxane - L4	0.0002	0.0001	ND	ND					
Tetraethylsilicate #			ND	ND					
Decamethyl Cyclopentasiloxane - D5			0.0160	0.0011					
Dodecamethyl Pentasiloxane - L5	0.0017	0.0006	ND	ND					
Dodecamethyl Cyclohexasiloxane - D6			0.1747	0.0096					
Sum			0.2541	0.0245					

Table 5DAnalytics Results - Soil Vapour - Siloxanes

Notes:

1) Soil vapour samples collected on Saturday, August 17, 2013.

2) ND - Not Detected, less than the limit of method detection.

3) - - No value established in the detection limit and reference criteria.

4) V=200 mL, where V is volume of air/gas sampled.

5) * - Semiquanititative (response factor set at 5).

6) # - Unstable, poor detectability, commercial standards tested.

7) For further information, the reader should refer to the laboratory report in Appendix A.

APPENDIX F

BOREHOLE LOGS

PROJECT: Phase II ESA Historic Waste Disposal Sites			BOREHOLE No.: VW-0					
PROJECT No.: 12-435				TYP	'E:	SS Auger		
LOC	ATION: McKenzie Trails Recreation Area	GR	OUN	ID E	LEVA	853.853 m		
CLII	ENT: The City of Red Deer	CO	MPI	ET	ION D	ATE:		06/20/2013
Sam	ole Type: 📕 Shelby Tube 💹 Split Spoon 🚺 Core 🔛 Disturbed			o Rec	overy			
	fill Type: 📕 Bentonite 🔟 Silica Sand 🧱 Grout 🔃 Pea Gravel				uttings		nite : Sand	
Note	Soil Vapour Well on east side of the park road (near the northe	east q	uadr	ant c	f the p	ond)	,	
(ji		ype	4o.	(Combustible Soil Vapours (ppm)		ails	
Depth (m)	Soil Description	le T	Sample No.	SPT (N)	ıstibl ırs (J		Well Details	
Del		Sample Type	Sam	SF	ombı 'apoı		We	
0.0	Sod and loam (fill) - loose, silty, sandy, trace rootlets, moist, dark olive. (~ 15 m thick).				U P			
	Sand and gravel (fill) - compact, silty, trace rootlets, trace organics, moist, dark olive.							
1.0								
	becomes wet at 2 m.							
2.0	End of hole at 2.0 m.	1						
	25 mm diameter 0.3 m length 020 PVC screen.							
	Aboveground lockable steel casing set in concrete.							
3.0								
4.0								
5.0							¢	
5.0								
6.0								
0.0								
7.0								
8.0							0	
9.0								
10.0								
11.0								
12.0								
12.0								
	T. (D.) C. C. S.	Sloug	1:	•		None	Completion Depth	(m): 2
	Tiamat Environmental Consultants Ltd.		to Grou	indwate	er :		1	LTM
		Logge	a By:			LTM	Page:	1 of 1

PROJECT: Phase II ESA Historic Waste Disposal Sites			BOREHOLE No.: MW-01						
PRO	JECT No.: 12-435	DRILL TYPE:			SS Auger/ODEX				
LOCATION: McKenzie Trails Recreation Area				ND E	LEVA	848.292 m			
CLII	ENT: The City of Red Deer	COMPLETION DATE:						06/20/2013	
Sam	ole Type: 📕 Shelby Tube 💹 Split Spoon 📗 Core 🔛 Disturbed	[o Rec	overy				
Back	fill Type: 📕 Bentonite 🔟 Silica Sand 🧱 Grout 🔃 Pea Gravel		D 🛛	rill C	uttings	Bento	nite : Sand		
Note	Groundwater Monitoring Well near VW-01								
Depth (m)	Soil Description	Sample Type	Sample No.	SPT (N)	Combustible Soil Vapours (ppm)		Well Details		
0.0	Sod and loam (fill) - loose, silty, sandy, moist, dark olive. (~15 cm thick). Sand and gravel (fill) - loose, silty, trace organics, moist, dark olive.	-							
	Sand and graver (mi) - roose, smy, nace organics, moist, dark onve.						1000000 1000000		
							_		
1.0									
2.0	becomes wet at 2 m.								
3.0									
3.0									
	Sand and gravel (native) - compact, trace silt, wet, olive.	1							
4.0									
5.0									
	End of hole at 5.5 m. 51 mm diameter 4.6 m length 010 PVC screen.								
6.0	Aboveground lockable steel casing set in concrete.								
7.0									
8.0									
9.0									
10.0									
11.0									
12.0									
		Slough	.			None	Completion Depth	(m): 55	
	Tiamat Environmental Consultants Ltd.	-	to Grou	undwat	er :	1 tone		LTM	
		Logge	d By:			JAL/LTM	Page:	1 of 1	

PROJECT: Phase II ESA Historic Waste Disposal Sites			BOREHOLE No.: TH-03						
PRO	JECT No.: 12-435	DR	ILL	TYP		SS Auger			
LOC	ATION: McKenzie Trails Recreation Area	GR	OUN		850.002 m				
	CNT: The City of Red Deer	CO	MPI	ET		06/20/2013			
Samp	ole Type: 📕 Shelby Tube 💹 Split Spoon 📗 Core 🔛 Disturbed	[N	o Rec	overy				
	fill Type: 📕 Bentonite 📗 Silica Sand 🧱 Grout 🔃 Pea Gravel	[D	rill C	uttings	Bentor	nite : Sand		
Notes	: Testhole in north central area of waste; south of north parking	lot a	nd ea	st of		naintenance	storage		
		pe			Soil m)		ils		
Depth (m)	Soil Description	Sample Type	Sample No.	SPT (N)	Combustible Soil Vapours (ppm)		Well Details		
0.0	Sod and loam (fill) - loose, sand, silty, trace rootlets, damp, olive. (~ 10 cm thick) Silt (fill) mixed with MSW - some organics, masonry brick fragments, ash, some plastic, grass clippings, news print, magazines, wood fragments, wire, glass, tin can, soft, loamy, trace rootlets, trace clay, damp, olive brown.								
1.0									
2.0									
3.0	becomes wet at 3 m.								
4.0									
5.0	Silt (native) - firm, trace sand, moist, olive brown.	-							
6.0	No obvious waste material.								
7.0	Shale (bedrock) - weak, highly weathered, damp, grey.								
	End of hole at 7.6 m. Backfilled with bentonite chips to 5.5 m; ~ 50:50 bentonite and silica sand to surface.								
9.0									
10.0									
12.0									
12.0									
	Tiamat Environmental Consultants Ltd.	Sloug				None	Completion Depth		
	I famat Environmental Consultants Ltu.	<u> </u>	to Grou	indwate	er :	I TM		LTM	
		Logge	u by:			LTM	Page:	1 of 1	

PROJECT: Phase II ESA Historic Waste Disposal Sites			BOREHOLE No.: TH-04						
PRO	JECT No.: 12-435	DRILL TYPE:					SS Auger		
LOCATION: McKenzie Trails Recreation Area				ID E		850.580 m			
	ENT: The City of Red Deer	CO	MPI	ET		07/11/2013			
	ole Type: 📕 Shelby Tube 💹 Split Spoon 📗 Core 💹 Disturbed				overy				
	fill Type: 📕 Bentonite 🏢 Silica Sand 🧱 Grout 🔛 Pea Gravel		D	rill C	uttings	Bentor	nite : Sand		
Note									
		e			Soil m)		ls		
Depth (m)		Sample Type	Sample No.	(\mathbf{Z})	Combustible Soil Vapours (ppm)		Well Details		
Jeptł	Soil Description	mple	ampl	SPT (N)	bust		Vell		
-		Sa	õ		Com Vaj		-		
0.0	Sod and loam (fill) - sandy, trace silt, damp, olive. (~ 8 cm thick) Sand (fill) mixed with MSW - organics, minor plastic pieces, metal, trace glass fragments,								
	strong pungent odour, compact, silty, moist, olive brown.								
1.0									
2.0									
	Silt (fill) - firm, sandy, moist, olive. charred wood fragments with sand and gravel matrix at 2.4 m.								
3.0									
	No obvious waste material.								
	Sand and gravel (native) - compact, wet, olive.								
4.0	becomes wet at 3.8 m.								
5.0									
5.0									
6.0									
0.0	Siltstone (bedroock) - weak, highly weathered, moist, grey.								
7.0									
7.0									
	End of hole at 7.6 m.								
	Backfilled with $\sim 50:50$ bentonite and silica sand.								
8.0									
9.0									
10.0									
11.0									
12.0									
l		Slough	I			None	Completion Depth	(m): 7.6	
				indwate	er :			LTM	
		Logge			-	LTM	Page:	1 of 1	